# Unitary representations of $\widetilde{\mathit{SL}}(2,\mathbb{R})$

Katarzyna Budzik

8 czerwca 2018

Schroedinger operators with inverse square potential

$$-\frac{\partial^2}{\partial x^2} + \left(m^2 - \frac{1}{4}\right) \frac{1}{x^2}$$

- 2 Universal cover of  $SL(2,\mathbb{R})$
- $lacksquare{1}{3}$  Integrating  $sl(2,\mathbb{R})$  representations to  $\widetilde{\mathit{SL}}(2,\mathbb{R})$  representations
- $\blacksquare$  Lowest and highest weight representations of  $\widetilde{\mathit{SL}}(2,\mathbb{R})$  on  $\mathit{L}^2[0,\infty[$
- **⑤** Principal and complementary representations of  $\widetilde{SL}(2,\mathbb{R})$  on  $L^2[0,\infty[\oplus L^2[0,\infty[$ .

Consider a formal differential expression:

$$L_{m^2} = -\frac{\partial^2}{\partial x^2} + \left(m^2 - \frac{1}{4}\right) \frac{1}{x^2}.$$

When does it define

- a self-adjoint operator?
- a closed operator?

We have corresponding minimal and maximal operators on domains:

$$\mathsf{Dom}(L_{m^2}^{max}) = \left\{ f \in L^2[0, \infty[: L_{m^2} f \in L^2[0, \infty[] \right\} \\ \mathsf{Dom}(L_{m^2}^{min}) = (C_c^{\infty}]0, \infty[)^{cl}.$$

### **Properties**

- homogeneous of degree -2
- $L_{m^2}^{min} \subset L_{m^2}^{max}$
- $\left(L_{m^2}^{min}\right)^* = L_{\overline{m}^2}^{max} \implies L_{m^2}^{min}$  is **Hermitian** for  $m^2 \in \mathbb{R}$ .

Notice that formally

$$L_{m^2} \, x^{\frac{1}{2} + m} = 0$$

Suppose:

■ Re 
$$m > -1$$
:  $x^{\frac{1}{2}+m} x^{\frac{1}{2}+m} = x^{1+2 \operatorname{Re} m}$ 

lacktriangle - smooth cutoff function with compact support

then

$$x^{\frac{1}{2}+m}\xi\in \mathsf{Dom}(L_{m^2}^{\mathsf{max}}).$$

### Definition

For Re m > -1, define operator  $H_m$  as a restriction of  $L_{m^2}^{max}$  to domain:

$$\mathsf{Dom}(L_{m^2}^{min}) \cup \mathbb{C} x^{\frac{1}{2}+m} \xi.$$

- sp  $H_m = [0, \infty[$
- $H_m^* = H_{\overline{m}} \implies H_m$  is **self-adjoint** for  $m \in \mathbb{R}$
- $m \mapsto H_m$  is a 1-parameter holomorphic family of closed operators.

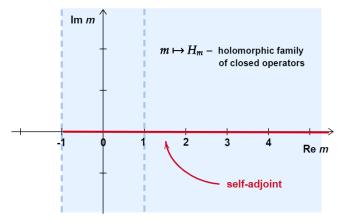
**1** 1 < Re *m*:

$$H_m = L_{m^2}^{min} = L_{m^2}^{max}$$

-1 < Re m < 1:

$$L_{m^2}^{min} \subsetneq H_m \subsetneq L_{m^2}^{max}$$

and the codimension of the domain is 1.



 $H_m$  generates a holomorphic 1-parameter semigroup:

$$\begin{split} e^{-\frac{t}{2}H_{m}}(x,y) &= \sqrt{\frac{2}{\pi t}}I_{m}\!\left(\frac{xy}{t}\right)\!e^{-\frac{x^{2}+y^{2}}{2t}}, & \text{Re } t > 0 \\ e^{\pm i\frac{t}{2}H_{m}}\!\left(x,y\right) &= e^{\pm i\frac{\pi}{2}(m+1)}\sqrt{\frac{2}{\pi t}}\mathcal{I}_{m}\!\left(\frac{xy}{t}\right)\!e^{\mp i\frac{x^{2}+y^{2}}{2t}}, & \pm \text{Im } t \geqslant 0 \end{split}$$

Kernel of the resolvent:

$$\frac{1}{(H_m + k^2)}(x, y) = \frac{1}{k} \begin{cases} I_m(kx) K_m(ky) & 0 < x < y \\ I_m(ky) K_m(kx) & 0 < y < x \end{cases}, \quad \text{Re } k > 0$$

## Universal cover of $SL(2,\mathbb{R})$

 $SL(2,\mathbb{R})$  has subgroups:

$$SO(2) = \left\{ u_{\phi} := \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} : \phi \in ]-\pi,\pi] \right\}$$
 $AN(2,\mathbb{R}) = \left\{ t := \begin{bmatrix} a & 0 \\ n & \frac{1}{a} \end{bmatrix} : n \in \mathbb{R}, a > 0 \right\}$ 

KAN decomposition:

$$SL(2,\mathbb{R}) = SO(2) \times AN(2,\mathbb{R}).$$

Lets define a group:

$$\widetilde{\mathit{SL}}(2,\mathbb{R}) \coloneqq \mathbb{R} \times \mathit{AN}(2,\mathbb{R})$$

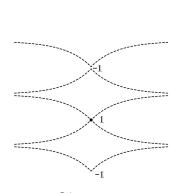
and maps:

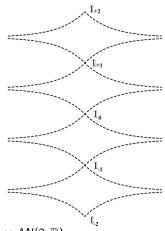
$$\tau: \widetilde{SL}(2,\mathbb{R}) \ni (\phi,t) \longmapsto u_{\phi}t \in SL(2,\mathbb{R})$$
$$\phi: \widetilde{SL}(2,\mathbb{R}) \ni (\phi,t) \longmapsto \phi \in \mathbb{R}$$

 $\widetilde{SL}(2,\mathbb{R})$  is the universal cover of  $SL(2,\mathbb{R})$ :

- ullet  $au: SL(2,\mathbb{R}) o SL(2,\mathbb{R})$  is a surjective homomorphism
- $\widetilde{SL}(2,\mathbb{R})$  is a simply connected Lie group.

## Universal cover of $SL(2,\mathbb{R})$





Center of  $\widetilde{SL}(2,\mathbb{R})$ :

$$\mathbb{1}_n := (\pi n, (-1)^n \mathbb{1}) \in \mathbb{R} \times \mathsf{AN}(2, \mathbb{R})$$

 $\mathbb{1}_n$  cover  $\mathbb{1}$  and  $-\mathbb{1}$ :

$$\widetilde{SL}(2,\mathbb{R})\ni \mathbb{1}_n \stackrel{\tau}{\longmapsto} (-1)^n \mathbb{1} \in SL(2,\mathbb{R}).$$

## Integrating representations of Lie algebra

 ${\it G}$  - Lie group with Lie algebra  ${\mathfrak g}$ 

 $\widetilde{G}$  - universal cover of G

Exponential maps:

$$\exp: \mathfrak{g} \ni X \longmapsto e^X \in G$$

$$\widetilde{\exp}: \mathfrak{g} \ni X \longmapsto \widetilde{\exp}X \in \widetilde{G}$$

### Theorem

Let

$$\pi:\mathfrak{g}\longrightarrow gl(V)$$

be a representation of the Lie algebra g. If G is compact, there exists exactly one representation of  $\widetilde{\mathsf{G}}$ 

 $\widetilde{\pi}:\widetilde{G}\longrightarrow GL(V)$ 

such that

$$\widetilde{\pi}(\widetilde{\exp}X) = e^{\pi(X)}.$$

## Representations of $\widetilde{SL}(2,\mathbb{R})$

We will define a "representation" of  $sl(2, \mathbb{R})$ :

$$sl(2,\mathbb{R}) 
i X \stackrel{\pi}{\longmapsto} \pi(X)$$
 – **unbounded** operator on a Hilbert space V

which integrates to a representation of  $\widetilde{\mathit{SL}}(2,\mathbb{R})$ :

$$\widetilde{\pi}:\widetilde{SL}(2,\mathbb{R})\ni\widetilde{h}\longmapsto\widetilde{\pi}(\widetilde{h})\in B(V)$$

i.e.

$$sl(2,\mathbb{R})\ni X \xrightarrow{\widetilde{\exp}} \widetilde{\exp}X \in \widetilde{SL}(2,\mathbb{R})$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\tilde{\pi}}$$

$$\pi(X) \xrightarrow{\exp} \boxed{e^{\pi(X)} = \widetilde{\pi}(\widetilde{\exp}X)}$$

### Problems:

- $\blacksquare$   $\pi(X)$  are unbounded operators
- $SL(2,\mathbb{R})$  is not compact  $\Longrightarrow \pi$  doesn't have to integrate to a representations of  $\widetilde{SL}(2,\mathbb{R})$ .

## $sl(2,\mathbb{R})$ standard triplet

Matrices

$$A_+,A_-,N\in sl(2,\mathbb{R})$$

are called a standard triplet if

$$[A_+, A_-] = 2N, \qquad [N, A_{\pm}] = \pm A_{\pm}.$$

Introduce standard triplet in  $sl(2, \mathbb{R})$ :

$$A_+ = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \qquad A_- = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \qquad N = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{bmatrix}.$$

Then,

$$e^{s_+A_+} = \begin{bmatrix} 1 & s_+ \\ 0 & 1 \end{bmatrix}, \quad e^{s_-A_-} = \begin{bmatrix} 1 & 0 \\ s_- & 1 \end{bmatrix}, \quad e^{tN} = \begin{bmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{bmatrix}.$$

Any  $\widetilde{h} \in \widetilde{\mathit{SL}}(2,\mathbb{R})$  can be written using

$$e^{s_+A_+}, e^{s_-A_-}, e^{tN}, \mathbb{1}_n$$

Therefore, representation  $\widetilde{\pi}(\widetilde{h})$  for  $\widetilde{h} \in \widetilde{SL}(2,\mathbb{R})$  can be written using

$$e^{s_+\pi(A_+)}, e^{s_-\pi(A_-)}, e^{t\pi(N)}, \widetilde{\pi}(\mathbb{1}_n).$$

## $SL(2,\mathbb{R})$ representation on $L^2[0,\infty[$

**1** Define operators on  $L^2[0,\infty[$ :

$$A:=-rac{i}{2}(x\partial_x+\partial_x x)$$
 dilation operator  $K:=x^2$  
$$H_m:=-\partial_x^2+\left(m^2-rac{1}{4}
ight)rac{1}{x^2}$$
 Schroedinger operator

**2** Define representation  $\pi$  of  $sl(2,\mathbb{R})$  on  $L^2[0,\infty[$ 

• the Casimir operator  $C = \frac{1}{2}(A_+A_- + A_-A_+) + N^2$ 

$$\pi(C) = \frac{1}{4}m^2 - \frac{1}{4}$$

 $\blacksquare \pi(g)$  are antihermitian  $\implies e^{\pi(g)}$  are unitary and bounded.

# $SL(2,\mathbb{R})$ representation on $L^2[0,\infty[$

Kernels of the three operators:

$$\mathbf{1} \pi(A_{+}) = \frac{i}{2}H_{m}$$

$$e^{\alpha \pi(A_{+})}(x,y) = e^{\frac{i}{2}\pi(m+1)}\sqrt{\frac{2}{\pi|\alpha|}}\mathcal{I}_{m}\left(\frac{xy}{|\alpha|}\right)e^{-i\frac{x^{2}+y^{2}}{2\alpha}}, \quad \text{Im } \alpha \geqslant 0$$

$$\pi(A_{-}) = -\frac{i}{2}K$$

$$e^{-\frac{i}{2}\beta K}f(x) = e^{-\frac{i}{2}\beta x^2}f(x)$$
$$e^{\beta \pi(A_-)}(x, y) = e^{-\frac{i}{2}\beta x^2}\delta(x - y)$$

$$\pi(N) = -\frac{i}{2}A$$

$$\begin{split} e^{itA}f(x) &= e^{t/2}f(e^tx) \\ e^{\gamma\pi(N)}(x,y) &= e^{-\frac{\gamma}{4}}\delta\Big(e^{-\frac{\gamma}{2}}x - y\Big). \end{split}$$

## $SL(2,\mathbb{R})$ representation on $L^2[0,\infty[$

$$SL(2,\mathbb{R}) = SO(2) \times AN(2,\mathbb{R}) = ]-\pi,\pi] \times AN(2,\mathbb{R})$$

We have a map

$$\phi: SL(2,\mathbb{R}) \longrightarrow ]-\pi,\pi].$$

Using  $\phi$  we can partition  $SL(2,\mathbb{R})$  into sectors:

$$Y_{-} := \{h : \phi(h) \in ] - \pi, 0[\} = \{h : h_{12} < 0\}$$

$$Z_{0} := \{h : \phi(h) = 0\} = \{h : h_{12} = 0, h_{11} > 0\} = AN(2, \mathbb{R})$$

$$Y_{+} := \{h : \phi(h) \in ]0, \pi[\} = \{h : h_{12} > 0\} = -Y_{-}$$

$$Z_{1} := \{h : \phi(h) = \pi\} = \{h : h_{12} = 0, h_{11} < 0\} = -AN(2, \mathbb{R})$$

 $SL(2,\mathbb{R})$  is a disjoint sum of sectors:

$$SL(2,\mathbb{R}) = Y_- \sqcup Z_0 \sqcup Y_+ \sqcup Z_1.$$

## $\widetilde{\mathit{SL}}(2,\mathbb{R})$ representation on $\mathit{L}^2[0,\infty[$

$$\widetilde{SL}(2,\mathbb{R}) = \mathbb{R} \times AN(2,\mathbb{R})$$

We have a map

$$\widetilde{\phi}:\widetilde{\mathit{SL}}(2,\mathbb{R})\longrightarrow\mathbb{R}.$$

Using  $\widetilde{\phi}$  we can partition  $\widetilde{SL}(2,\mathbb{R})$  into sectors:

$$\widetilde{Y}_{n+\frac{1}{2}} := \left\{ \widetilde{h} \in \widetilde{SL}(2,\mathbb{R}) : \phi(\widetilde{h}) \in ]n\pi, (n+1)\pi[ \right\}$$

$$\widetilde{Z}_n := \left\{ \widetilde{h} \in \widetilde{SL}(2,\mathbb{R}) : \phi(\widetilde{h}) = n\pi \right\}$$

- $\mathbf{1}_n \in \tilde{Z}_n$
- $SL(2,\mathbb{R})$  is a disjoint sum of sectors:

$$\widetilde{\mathit{SL}}(2,\mathbb{R}) = \bigsqcup_{n \in \mathbb{Z}} \widetilde{\mathit{Y}}_{n+\frac{1}{2}} \; \sqcup \; \widetilde{\mathit{Z}}_{n}.$$

we can identify

$$SL(2,\mathbb{R})\supset Y_-\cup Z_0\cup Y_+ \cong \widetilde{Y}_{-\frac{1}{2}}\cup \widetilde{Z}_0\cup \widetilde{Y}_{\frac{1}{2}}\subset \widetilde{SL}(2,\mathbb{R}).$$

# $\widetilde{\mathit{SL}}(2,\mathbb{R})$ representation on $\mathit{L}^2[0,\infty[$

For  $h \in Z_0 = AN(2,\mathbb{R})$ 

$$h = \begin{bmatrix} a & 0 \\ n & \frac{1}{a} \end{bmatrix} = e^{\frac{n}{a}A} - e^{2\log(a)N}$$

so the representation is

$$\widetilde{\pi}(h) = e^{\frac{n}{a}\left(-\frac{i}{2}K\right)}e^{2\log(a)\left(-\frac{i}{2}A\right)}.$$

For 
$$h \in Y_+ \sqcup Y_ (h_{12} \neq 0)$$

$$h = e^{\frac{h_{22}-1}{h_{12}}A_{-}}e^{h_{12}A_{+}}e^{\frac{h_{11}-1}{h_{12}}A_{-}}.$$

So the representation is given by

$$\widetilde{\pi}(h) = e^{\frac{h_{22}-1}{h_{12}}\left(-\frac{i}{2}K\right)}e^{h_{12}\left(\frac{i}{2}H_m\right)}e^{\frac{h_{11}-1}{h_{12}}\left(-\frac{i}{2}K\right)}.$$

Kernel of this operator equals

$$\widetilde{\pi}(h)(x,y) = e^{i\frac{\pi}{2}(m+1)\operatorname{sgn}(h_{12})} \sqrt{\frac{2}{\pi|h_{12}|}} \mathcal{I}_m\left(\frac{xy}{|h_{12}|}\right) e^{-\frac{i}{2h_{12}}(h_{11}x^2 + h_{22}y^2)}.$$

$$\widetilde{SL}(2,\mathbb{R})$$
 representation on  $L^2[0,\infty[$ 

$$\mathbb{1} \in SL(2,\mathbb{R})$$

$$\mathbb{1} = \lim_{\epsilon \searrow 0} egin{bmatrix} 1 & \pm \epsilon \ 0 & 1 \end{bmatrix}$$
  $\mathbb{1} = \widetilde{\pi}(\mathbb{1}) = s - \lim_{\epsilon \searrow 0} e^{\pm rac{i}{2}\epsilon H_m}$ 

Therefore, kernels of these operators

$$e^{\pm i\frac{\pi}{2}(m+1)}\sqrt{\frac{2}{\pi\epsilon}}\mathcal{I}_m\left(\frac{xy}{\epsilon}\right)e^{\mp\frac{i}{2\epsilon}(x^2+y^2)}\stackrel{\epsilon\searrow 0}{\longrightarrow}\delta(x-y)=\widetilde{\pi}(\mathbb{1})(x,y)$$

$$\mathbb{1}_{\pm 1} \in \widetilde{\mathit{SL}}(2,\mathbb{R})$$

$$\mathbb{1}_{\pm 1} = \lim_{\epsilon \searrow 0} \begin{bmatrix} -1 & \mp \epsilon \\ 0 & -1 \end{bmatrix}$$

These matrices correspond to operators with kernels:

$$e^{\mp i\frac{\pi}{2}(m+1)}\sqrt{\frac{2}{\pi\epsilon}}\mathcal{I}_m\left(\frac{xy}{\epsilon}\right)e^{\mp\frac{i}{2\epsilon}(x^2+y^2)}.$$

So the operators converge to

$$\widetilde{\pi}(\mathbb{1}_{\pm 1}) = e^{\pm i\pi(m+1)}\mathbb{1}.$$

# $\widetilde{\mathit{SL}}(2,\mathbb{R})$ representation on $\mathit{L}^2[0,\infty[$

$$\mathbb{1}_n \in \widetilde{\mathit{SL}}(2,\mathbb{R})$$

$$\mathbb{1}_n = (\pi n, (-1)^n \mathbb{1}) \in \mathbb{R} \times AN(2, \mathbb{R}), \quad n \in \mathbb{Z}$$

Center of  $\widetilde{SL}(2,\mathbb{R})$ :

$$Z(\widetilde{SL}(2,\mathbb{R}))=\{\mathbb{1}_n\ :\ n\in\mathbb{Z}\}.$$

Then, from Schur's lemma:

$$\widetilde{\pi}(\mathbb{1}_n) = e^{i\pi n (m+1)} \mathbb{1}.$$

In particular:

 $lacksquare{m} = 1, 3, ...$ :  $\widetilde{\pi}$  is also a representation of  $PSL(2,\mathbb{R})$  and  $SL(2,\mathbb{R})$ 

$$\widetilde{\pi}(\mathbb{1}_n) = \mathbb{1}$$

m = 0, 2, ...  $\widetilde{\pi}$  is also a representation of  $SL(2, \mathbb{R})$ 

$$\widetilde{\pi}(\mathbb{1}_n) = (-1)^n \mathbb{1}.$$

We calculated  $\widetilde{\pi}(\widetilde{h})$  for all  $\widetilde{h} \in \widetilde{SL}(2,\mathbb{R})$ .

## $sl(2,\mathbb{C})$ representation

Lets take a standard triplet in  $sl(2,\mathbb{C})$ :

$$\mathcal{A}_+,\mathcal{A}_-,\mathcal{N}\in sl(2,\mathbb{C})=\mathbb{C}sl(2,\mathbb{R}).$$

Consider space of monomials:

$$W^m := \{ w^k : k \in \mathbb{Z} + m \}, \quad m \in \mathbb{C}.$$

Define representation  $X^{l,m}$  of  $sl(2,\mathbb{C})$  on  $W^m$ :

Spectrum of  $\mathcal{N}'$ :

$$\mathcal{N}^l w^k = k w^k \implies \boxed{\operatorname{sp}(\mathcal{N}^l) \subset \mathbb{Z} + m.}$$

## $sl(2,\mathbb{C})$ representation

### **Theorem**

### Suppose

- lacksquare  $\pi$  is an irreducible representation of  $sl(2,\mathbb{C})$
- ullet  $\pi(\mathcal{N})$  has an eigenvector with eigenvalue  $m \in \mathbb{C}$ .

Then, there exists  $l \in \mathbb{C}$  s.t. the representation  $\pi$  is equivalent to  $X^{l,m}$  (or one of its subrepresentations).

Example of a standard triplet in  $sl(2,\mathbb{C})$ :

$$\mathcal{A}_{+} = \frac{1}{2} \begin{bmatrix} 1 & i \\ i & -1 \end{bmatrix}, \qquad \mathcal{A}_{-} = \frac{1}{2} \begin{bmatrix} 1 & -i \\ -i & -1 \end{bmatrix}, \qquad \mathcal{N} = \frac{1}{2} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}.$$

Notice:  $(2i\mathcal{N})^2 = -1$ .

Connection between this  $sl(2,\mathbb{C})$  standard triplet and previous  $sl(2,\mathbb{R})$  standard triplet:

$$\mathcal{N}=\frac{i}{2}(A_{-}-A_{+}).$$

## Representation of $\mathbb{1}_n$

### Fact 1

From Schur's lemma:

$$\widetilde{\pi}(\mathbb{1}_n) = e^{i\pi n (m+1)} \mathbb{1}.$$

### Fact 2

For  $X \in sl(2,\mathbb{R})$  such that  $(2X)^2 = -1$ :

$$\mathbb{1}_n = \widetilde{\exp}(\pi nX)$$

The representation  $\widetilde{\pi}$  is an exponent of representation  $\pi$ :

$$\widetilde{\pi}(\mathbb{1}_n) = e^{\pi n \, \pi(X)}.$$

From 1 and 2 X has to satisfy:

$$\operatorname{sp}(\pi(X)) \subset i(m+\mathbb{Z}), \qquad (2X)^2 = -1$$

Therefore

$$X = i\mathcal{N}, \qquad \mathcal{N} = \frac{1}{2} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}.$$

## Lowest weight representation of $\widetilde{SL}(2,\mathbb{R})$

We can write  $\mathcal N$  from  $sl(2,\mathbb C)$  standard triplet using  $A_+,A_-$  from  $sl(2,\mathbb R)$  standard triplet:

$$\mathcal{N}=\frac{i}{2}(A_{-}-A_{+})$$

Then, the operator corresponding to  $\mathcal{N}$ :

$$\pi(\mathcal{N}) = \frac{1}{4}(K + H_m) = \frac{1}{4}\left(-\partial_x^2 + \left(m^2 - \frac{1}{4}\right)\frac{1}{x^2} + x^2\right),$$

which is a Hamiltonian of a harmonic oscillator + potential  $1/x^2$ .

- $\implies \pi(\mathcal{N})$  is an operator with spectrum bounded from below
- $\implies \pi$  is equivalent to  $X^{l,lw}$ .

## Lowest weight representation of $\widetilde{SL}(2,\mathbb{R})$ on $L^2[0,\infty[$

### **Theorem**

The representation (m,lw) of  $SL(2,\mathbb{R})$  can be represented as bounded operators on  $L^2[0,\infty[$  with kernels:

$$\begin{split} \tilde{h} &\in \tilde{Y}_{n+\frac{1}{2}} : \\ &\tilde{h}^{m,lw}(x,y) = e^{i\pi(m+1)(n+\frac{1}{2})} \sqrt{\frac{2}{\pi|h_{12}|}} \mathcal{I}_m \left(\frac{xy}{|h_{12}|}\right) e^{-\frac{i}{2h_{12}}(h_{11}x^2 + h_{22}y^2)} \\ \tilde{h} &\in \tilde{\mathcal{Z}}_n : \\ &\tilde{h}^{m,lw}(x,y) = e^{i\pi n(m+1) - \log(|h_11|)/4} e^{-i\frac{h_{21}}{2h_{11}}x^2} \delta(|h_{11}|^{-1}x - y). \end{split}$$

Its generators are

$$\pi(A_{+}) = \frac{i}{2}H_{m} = \frac{i}{2}\left(-\partial_{x}^{2} + \left(m^{2} - \frac{1}{4}\right)\frac{1}{x^{2}}\right)$$

$$\pi(A_{-}) = -\frac{i}{2}K = -\frac{i}{2}x^{2}$$

$$\pi(N) = -\frac{i}{2}A = -\frac{1}{4}(x\partial_{x} + \partial_{x}x).$$

## Lowest and highest weight representations of $\widetilde{SL}(2,\mathbb{R})$

Lowest weight representation generators:

$$A_{+}^{m,lw} = \frac{i}{2}H_{m} = \frac{i}{2}\left(-\partial_{x}^{2} + \left(m^{2} - \frac{1}{4}\right)\frac{1}{x^{2}}\right)$$

$$A_{-}^{m,lw} = -\frac{i}{2}K = -\frac{i}{2}x^{2}$$

$$N^{m,lw} = -\frac{i}{2}A = -\frac{1}{4}(x\partial_{x} + \partial_{x}x).$$

$$\mathcal{N}^{m,lw} = \frac{i}{2} \left( A_{-}^{m,lw} - A_{+}^{m,lw} \right) = \frac{1}{4} \left( -\partial_{x}^{2} + \left( m^{2} - \frac{1}{4} \right) \frac{1}{x^{2}} + x^{2} \right)$$

Highest weight representation generators:

$$A_{+}^{m,hw} = -\frac{i}{2}H_{m}$$

$$A_{-}^{m,hw} = -\frac{i}{2}K$$

$$N^{m,hw} = -\frac{i}{2}A.$$

$$\mathcal{N}^{m,hw} = \frac{i}{2} \big( A_-^{m,hw} - A_+^{m,hw} \big) = -\frac{1}{4} \bigg( -\partial_x^2 + \bigg( m^2 - \frac{1}{4} \bigg) \frac{1}{x^2} + x^2 \bigg).$$

# $SL(2,\mathbb{R})$ representation on $L^2[0,\infty] \oplus L^2[0,\infty]$

Define a representation of  $sl(2,\mathbb{R})$  on  $L^2[0,\infty[\oplus L^2[0,\infty[):$ 

### Operator $H_m \oplus (-H_m)$

For  $-1 < \text{Re}\, m < 1$  we have operators

$$\begin{split} L_{m^2}^{min} \oplus \left(-L_{m^2}^{min}\right) & L_{m^2}^{max} \oplus \left(-L_{m^2}^{max}\right). \\ (f^+, f^-) \in \mathsf{Dom} \left(L_{m^2}^{max} \oplus \left(-L_{m^2}^{max}\right)\right): \\ f^+(x) &\sim \alpha_+^+ x^{\frac{1}{2}+m} + \alpha_-^+ x^{\frac{1}{2}-m} \\ f^-(x) &\sim \alpha_+^- x^{\frac{1}{2}+m} + \alpha_-^- x^{\frac{1}{2}-m}, \end{split}$$

where  $\alpha_+^+, \alpha_-^+, \alpha_-^-, \alpha_-^- \in \mathbb{C}$ .

#### Definition

Define  $H_m^{\omega_+,\omega_-}$  as a restriction of  $L_{m^2}^{max}\oplus (-L_{m^2}^{max})$  to functions satisfying condition:

$$\alpha_+^+ \omega_+ = \alpha_+^-$$
$$\alpha_-^+ \omega_- = \alpha_-^-,$$

where  $\omega_+, \omega_- \in \mathbb{C} \cup \{\infty\}$ .

 $H_m^{\omega_+,\omega_-}, A \oplus A, K \oplus (-K)$  generate principal and complementary series.