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Consider a globally hyperbolic spacetime (M, gµν).

The Klein–Gordon operator with electromagnetic poten-
tial Aµ and a scalar potential (mass squared) Y is an
operator acting on functions on M given by

K := |g|−
1
4(x)

(
i∂µ + Aµ(x)

)
gµν|g|

1
2(x)

(
i∂ν + Aν(x)

)
|g|−

1
4(x)

+Y (x).



We say that G is a bisolution of K if

GK = KG = 0.

We say that G is an inverse (Green’s function or a fun-
damental solution) if

GK = KG = 1l.

I will discuss how to define distinguished bisolutions and
inverses. I will call them propagators. (This word is often
used in this context in quantum field theory).



I will also discuss the problem of essential self-adjointness
of the Klein-Gordon operator K on L2(M) for curved
spacetimes. (Note that K is obviously Hermitian).

Note that the analogous problem of the essential self-
adjointness of the Laplace-Beltrami operator has a posi-
tive answer for large classes of Riemannian manifolds.



For generic Lorentzian manifolds the problem of self-
adjointness of K seems rather difficult and is almost ab-
sent from mathematical literature. It can be easily shown
for static spacetimes (Siemssen and D.). Recently, a
proof for asymptotically Minkowskian spaces was given
(Vasy).



On the other hand, in physical literature one can find
many places where the authors tacitly assume that the
Klein-Gordon operator is self-adjoint and write e.g.

1

K
= −i

∫ ∞
0

eitKdt.

The method involving eitK has a name: it is called the
Fock-Schwinger proper time method.



Let me summarize what every student of QFT learns
about propagators on the Minkowski space R1,d for the
free Klein-Gordon operator

K = pµp
µ + m2,

where pµ = −i∂µ.



We have the following standard Green’s functions:

the forward/backward or advanced/retarded propagator

G± :=
1

(p2 + m2 ∓ i0sgnp0)
,

the Feynman/anti-Feynman propagator

GF/F :=
1

(p2 + m2 ∓ i0)
.

The former have an obvious application to the Cauchy
problem.

The Feynman propagator equals the expectation values
of time-ordered products of fields and is used to evaluate
Feynman diagrams.



We have the following standard bisolutions:

the Pauli-Jordan propagator

GPJ := sgn(p0)δ(p2 + m2),

and the positive/negative frequency bisolution

G(+)/(−) := θ(±p0)δ(p2 + m2).

The former expresses commutation relations of fields,
and hence it is often called the commutator function.

The positive frequency bisolution is the 2-point function
of the vacuum state.



It is well known that

• the forward propagator G+,

• the backward propagator G−,

• the Pauli-Jordan propagator GPJ := G+ −G−.

are defined under very broad conditions on globally hy-
perbolic spaces. All of them have a causal support. We
will jointly call them classical propagators.



We are however more interested in “non-classical prop-
agators”, typical for quantum field theory. They are less
known to pure mathematicians and more difficult to de-
fine. They are

• the Feynman propagator GF,

• the anti-Feynman propagator GF,

• the positive frequency bisolution G(+),

• the negative frequency bisolutions G(−).



There exists a well-known paper of Duistermat-Hörmander,
which defined Feynman parametrices (a parametrix is an
approximate inverse in appropriate sense).

There exists a large literature devoted to the so-called
Hadamard states, which can be interpreted as bisolu-
tons with approximately positive frequencies. These are
however large classes of propagators. We would like to
have distinguished choices.



It is helpful to introduce a time variable t, so that the
spacetime is M = R × Σ. Assume that there are no
time-space cross terms so that the metric can be written
as

−g00(t, ~x)d2t + gij(t, ~x)dxidxj.

By conformal rescaling we can assume that g00 = 1, so
that, setting V := A0, we have

K = (i∂t + V )2 + L,

L = −|g|−
1
4(i∂i + Ai)|g|

1
2gij(i∂j + Aj)|g|−

1
4 + Y.



We rewrite the Klein-Gordon equation as a 1st order
equation given by

∂t + iB(t),

where

B(t) :=

(
W (t) 1l

L(t) W (t)

)
,

W (t) := V (t) +
i

4
|g|(t)−1∂t|g|(t).



Denote by U(t, t′) the dynamics defined by B(t), that is

∂tU(t, t′) = −iB(t)U(t, t′),

U(t, t) = 1l.

Note that if

E =

(
E11 E12

E21 E22

)
is a bisolution/inverse of ∂t + iB(t), then E12 is a bisolu-
tion/inverse of K.



The classical propagators can be easily expressed in
terms of the dynamics:

EPJ(t, t′) := U(t, t′), EPJ
12 = −iGPJ;

E+(t, t′) := θ(t− t′)U(t, t′), E+
12 = −iG+;

E−(t, t′) := −θ(t′ − t)U(t, t′), E−12 = −iG−.



We introduce the charge matrix

Q :=

(
0 1l

1l 0

)
.

and the classical Hamiltonian

H(t) := QB(t) =

(
L(t) W (t)

W (t) 1l

)
.

We will assume that H(t) is positive and invertible.



Assume now for a moment that the problem is static, so
that L, V , B, H do not depend on time t. Clearly,

U(t, t′) = e−i(t−t′)B.

The quadratic formH defines the so-called energy scalar
product. It is easy to see that B is Hermitian in this prod-
uct and has a gap in its spectrum around 0. Let Π(±)

be the projections onto the positive/negative part of the
spectrum of B.



We define the positive and negative frequency bisolu-
tions and the Feynman and anti-Feynman inverse on the
level of ∂t + iB(t):

E(±)(t, t′) := ±e−i(t−t′)BΠ(±),

EF(t, t′) := θ(t− t′) e−i(t−t′)BΠ(+) − θ(t′ − t) e−i(t−t′)BΠ(−),

EF(t, t′) := θ(t− t′) e−i(t−t′)BΠ(−) − θ(t′ − t) e−i(t−t′)BΠ(+).



They lead to corresponding propagators on the level of
K:

G(±) := E
(±)
12 ,

GF := −iEF
12,

GF := −iEF
12.

They satisfy the relations

GPJ = iG(+) − iG(−),

GF = iG(+) + G− = −iG(−) + G+,

GF = −iG(+) + G+ = −iG(−) + G−.



Nonclassical propagators are important in quantum field
theory, and they are often called 2-point functions, be-
cause they are vacuum expectation values of free fields:

G(+)(x, y) =
(
Ω|φ̂(x)φ̂(y)Ω

)
,

GF(x, y) = −i
(
Ω|T

(
φ̂(x)φ̂(y)

)
Ω
)
.

GF is used to evaluate Feynman diagrams.



It is easy to see that on a general spacetime the Klein-
Gordon operator K is Hermitian (symmetric) on C∞c (M)

in the sense of the Hilbert space L2(M). In the static
case, using Nelson’s Commutator Theorem one can show
that it is essentially self-adjoint.

Theorem. For s > 1
2, the operator GF is bounded from

the space 〈t〉−sL2(M) to 〈t〉sL2(M). Besides, in the sense
of these spaces,

s− lim
ε↘0

(K − iε)−1 = GF.



Let 0 ≤ θ ≤ π. Suppose we replace the metric g by

gθ := −e−2iθdt2 + gΣ

and the electric potential V by Vθ := e−iθV . This replace-
ment is called Wick rotation. The value θ = π

2 corre-
sponds to the Riemannian metric

gπ/2 = dt2 + gΣ.



The Wick rotated Klein-Gordon operator, which is elliptic
and even invertible:

Kθ = e−i2θ(∂t + iV )2 + L,

Theorem. For s > 1
2, we have

s− lim
θ↘0

K−1
θ = GF,

in the sense of operators from 〈t〉−sL2(M) to 〈t〉sL2(M).



Can one generalize non-classical propagators to non-
static spacetimes? We will assume that the spacetime is
close to being static and for large times it approaches a
static spacetime sufficiently fast.

In the non-static case we do not have a single energy
space, because the Hamiltonian depends on time. We
make technical assumptions that make possible to de-
fine a Hilbertizable energy space in which the dynamics
is bounded.



One can define the incoming positive/negative frequency
bisolution by cutting the phase space with the projections
Π

(±)
− onto the positive/negative part of the spectrum of

B(−∞). Π
(+)
− defines the vacuum state in the distant

past given by a vector Ω−. It corresponds to a prepara-
tion of an experiment.



Analogously, one can define the outgoing positive/negative
bisolutions by using the projections Π

(±)
+ onto the posi-

tive/negative part of the spectrum of B(∞). They corre-
spond to the vacuum state in the remote future given by
a vector Ω+. This vector is related to the future measur-
ments.



The projection Π
(+)
−∞ can be transported by the dynamics

to any time t, obtaining the projection Π
(+)
− (t). Similarly

we obtain the projection Π
(−)
+ (t). Using the fact that the

dynamics is symplectic, one can show that for a large
class of spacetimes for all t the subspaces

Ran Π
(+)
− (t), Ran Π

(−)
+ (t)

are complementary.



Define Π
(+)
can(t), Π

(−)
can (t) to be the unique pair of projec-

tions corresponding to the pair of spaces

Ran Π
(+)
− (t), Ran Π

(−)
+ (t)

The canonical Feynman propagator is defined as

EF(t2, t1) := θ(t2 − t1)U(t2, t1)Π
(+)
can(t1)

−θ(t1 − t2)U(t2, t1)Π
(−)
can (t1),

GF := −iEF
12.



In a somewhat different setting, in the case of mass-
less Klein-Gordon operator GF was considered before
by A.Vasy et al. A similar construction can be found in a
recent paper of Gerard-Wrochna.

Here is the physical meaning of the canonical Feynman
propagator: it is the expectation value of the time-ordered
product of fields between the in-vacuum and the out vac-
uum:

GF(x, y) =

(
Ω+|T

(
φ̂(x)φ̂(y)

)
Ω−
)(

Ω+|Ω−
) .



Thus for a large class of asymptotically static space-
times one can show the existence of a distinguished
Feynman propagator. One can make a stronger coje-
jecture (perhaps only of academic interest):

Conjecture. For compactly supported perturbations of
static spacetimes the Klein-Gordon operator K is essen-
tially self-adjoint on C∞c (M) and in the sense of opera-
tors from 〈t〉−sL2(M) to 〈t〉sL2(M),

s− lim
ε↘0

(K − iε)−1 = GF.

Apparently, in a recent paper of A. Vasy this conjecture
is proven for asymptotically Minkowskian spaces.


