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1 Introduction 

The wave equation or, more generally, the Klein–Gordon equation on curved 
Lorentzian manifolds is one of the classic topics of linear partial differential 
equations [2, 15, 26]. One could expect that it is difficult to find new important 
concepts in this subject. However, the present paper analyzes a few natural objects 
associated to the Klein–Gordon equation, which we believe are rather fundamental 
and to a large extent were overlooked in the mathematical literature until quite 
recently. These objects include the (in-out) Feynman and anti-Feynman inverse (or 
propagator), and various well-posed realizations of the Klein–Gordon operator. A  
proof of the existence of the Feynman and anti-Feynman propagators under rather 
mild assumptions is probably the main result of our paper. 

The Feynman and anti-Feynman propagators play a central role when we com-
pute the scattering operator in Quantum Field Theory (QFT) on curved spacetimes. 
In fact, the Feynman propagator is associated to each internal line of a Feynman 
diagram. 

The Feynman propagator is thus crucial in the global approach to QFT, involving 
the whole spacetime, when one wants to compute the scattering operator. Our results 
are thus complementary to a large mathematical literature devoted to QFT on curved 
spacetimes involving the local approach [1, 6, 21, 22]. 
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1.1 Propagators on the Minkowski Spacetime 

As indicated above, the main motivation of our paper comes from curved space-
times. However, it is natural to start from the flat Minkowski spacetime. Let us recall 
the most important “propagators” or “two-point functions” used in QFT, known 
from many textbooks, e.g., Appendix 2 of Bogoliubov–Shirkov [5] and Appendix C 
of Bjorken–Drell [4]:

• the forward/backward or retarded/advanced propagator 

.G∨/∧(x, y) := 1
(2π)4

∫
e−i(x−y)·p

p2 +m2 ± i0 sgn(p0)
dp, (1a)

• the Feynman/anti-Feynman propagator 

.GF/F(x, y) := 1
(2π)4

∫
e−i(x−y)·p

p2 +m2 ∓ i0
dp, (1b)

• the Pauli–Jordan propagator 

.GPJ(x, y) := i
(2π)3

∫
e−i(x−y)·p sgn(p0)δ(p

2 +m2) dp, (1c)

• the positive/negative frequency or particle/antiparticle bisolution 

.G(±)(x, y) := 1
(2π)3

∫
e−i(x−y)·pθ(±p0)δ(p

2 +m2) dp. (1d) 

Mathematically, (1a), (1b) are distinguished inverses and (1c), (1d) are distinguished 
bisolutions of the Klein–Gordon operator −! + m2. We will call them jointly 
“propagators”. They satisfy a number of identities: 

.GPJ = G∨ −G∧. (2a) 

= iG(+) − iG(−) , . (2b) 

GF − GF = iG(+) + iG(−) , . (2c) 

GF + GF = G∨ + G∧, . (2d) 

GF = iG(+) + G∧ = iG(−) + G∨, . (2e) 

GF = −iG(+) +G∨ = −iG(−) + G∧. (2f)
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Let us describe applications of these propagators to quantum field theory. We 
will restrict ourselves to scalar fields. We will consider both basic formalisms for 
scalar free fields—the neutral or real and charged or complex formalism. 

In the neutral formalism the basic object is a self-adjoint operator-valued 
distribution on spacetime φ̂(x) satisfying the Klein–Gordon equation 

. (−!+m2)φ̂(x) = 0.

Here are various “two-point functions” of these fields:

• commutation relations 

.[φ̂(x), φ̂(y)] = −iGPJ(x, y)1,

• vacuum expectation of products of fields 

.($ | φ̂(x)φ̂(y)$) = G(+)(x, y),

• vacuum expectation of direct/reverse time-ordered products of fields 

. 
(
$ |T{φ̂(x)φ̂(y)}$

)
= −iGF(x, y),

(
$ |T{φ̂(x)φ̂(y)}$

)
= iGF(x, y).

In the charged formalism the field is non-self-adjoint. It will be denoted with a 
different letter: ψ̂(x). It also satisfies the Klein–Gordon equation 

. (−!+m2)ψ̂(x) = (−!+m2)ψ̂∗(x) = 0.

The “two-point functions” of the charged field are slightly more rich than in the 
neutral case: 

.[ψ̂(x), ψ̂∗(y)] = −iGPJ(x, y)1, . (4a) 

($ | ψ̂(x)  ̂ψ∗(y)$) = G(+) (x, y), . (4b) 

($ | ψ̂∗(x) ψ̂(y)$)  = G(−) (x, y), . (4c)

(
$ |T{ψ̂(x)  ̂ψ∗(y)}$

)
= −iGF(x, y), . (4d)

(
$ |T{ψ̂(x)  ̂ψ∗(y)}$

)
= iGF(x, y). (4e) 

We will use the name classical propagators as the joint name for GPJ, G∨ and 
G∧. The functions G(+), G(−), GF and GF express vacuum expectation values, 
therefore they will be jointly called non-classical propagators.
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1.2 The Klein–Gordon Equation on a Curved Spacetime and 
Its Classical Propagators 

In the first part of the introduction (until Sect. 1.10) we will discuss the Klein– 
Gordon equation and related objects in a purely mathematical setting, without a 
direct reference to classical or quantum fields. 

Consider a globally hyperbolic manifold M equipped with a metric tensor g = 
[gµν] and its inverse g−1 = [gµν], an electromagnetic potential A = [Aµ] and a 
scalar potential Y . Throughout most of the introduction we will assume that g, A, Y 
are smooth—this assumption will not be necessary in the rest of our paper. 

Let Dµ := −i∂µ. Our paper is devoted to the Klein–Gordon operator: 

.K := −|g|− 1
4 (Dµ − Aµ)|g|

1
2 gµν(Dν − Aν)|g|−

1
4 − Y. (5) 

(Note that we use the so-called half-density formalism, see Sect. 7.1.) The equation 

.Ku = 0 (6) 

will be called the (homogeneous) Klein–Gordon equation. 
It has been shown by many authors that there exist unique distributions G∨ and 

G∧ on M × M with the following properties. If f ∈ C∞c (M), then 

. u∨(x) =
∫

G∨(x, y)f (y) dy, u∧(x) =
∫

G∧(x, y)f (y) dy

satisfy 

. Ku∨ = Ku∧ = f

and supp u∨, supp u∧ are contained in the future, resp. past causal shadow of supp f . 
We can also generalize the Pauli–Jordan propagator (1c) by using the identity (2a): 

. GPJ = G∨ −G∧.

Thus the classical propagators GPJ, G∨ and G∧ are well defined (and also well 
known) for general Klein–Gordon equations on globally hyperbolic manifolds. 

1.3 Pseudounitary Structure 

We will denote by Wsc the space of smooth space-compact functions M ) x *→ 
u(x) ∈ C solving (6).
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Let u, v ∈Wsc. Then it is easy to see that 

. jµ(x; u, v) :=− u(x)gµν(x)|g| 1
4 (x)

(
Dν − Aν(x)

)
|g|− 1

4 (x)v(x)

−
(
Dν − Aν(x)

)
|g|− 1

4 (x)u(x)gµν(x)|g| 1
4 (x)v(x).

is a conserved current, that is ∂µjµ = 0. Hence a Hermitian form on Wsc called 
sometimes the charge 

.(u |Qv) :=
∫

S
jµ(x, u, v) dsµ(x) (7) 

does not depend on the choice of a Cauchy surface S (where dsµ(x) denotes the 
natural measure on S times the normal vector). 

Note that many authors instead of the charge prefer to use the symplectic form 
on Wsc given by the imaginary part of (7). 

The charge form Q is not positive definite: it contains vectors with positive and 
negative charge. The space Wsc can be decomposed in many ways in a direct sum 
of a maximally positive space and a maximally negative space, both orthogonal to 
one another in the sense of the charge form. Every such a decomposition can be 
encoded with help of an admissible involution S•: an operator on Wsc satisfying 

.S2
• = 1, (u |QS•v) = (S•u |Qv) is positive. (8) 

As every involution, S•, determines a pair projections, so that 

. ((+)
• + ((−)

• = 1, S• = ((+)
• −((−)

• .

The ranges of ((+)
• and ((−)

• are Q-orthogonal and maximally positive, resp. 
negative. They will be used to define Fock states in QFT. 

1.4 Non-Classical Propagators on Curved Spacetimes 

In the literature it is often claimed that it makes no sense to ask for distinguished 
non-classical propagators on generic spacetimes. The main message of our paper 
disputes this statement. We will argue that for a large class of non-stationary 
spacetimes there exist physically relevant distinguished non-classical propagators. 

We will consider two types of spacetimes. 

1. the slab geometry case, where M can be identified with [t−, t+] × ), where 
[t−, t+] is a finite interval describing time;
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2. the unrestricted time case, where M is a globally hyperbolic spacetime with 
no boundary, equipped with the Klein–Gordon equation which is asymptotically 
stationary and stable in the future and in the past. 

By the asymptotic stationarity we will mean that one can identify M with R×)

such that g, A and Y converge as t → ±∞  to limiting values sufficiently fast. Often, 
for simplicity we will just assume that there exists T >  0 such that for ±t >  T  the 
Klein–Gordon operator is stationary. 

By stability we mean the positivity of the Hamiltonian. Thus in Case (2) we 
assume that for large t the Hamiltonian is positive. 

Case (2) is probably more interesting both physically and mathematically. 
Nevertheless, it is instructive to compare Case (1) with Case (2). 

In our opinion the assumption of asymptotic stationarity and stability in Case (2) 
is natural from the physical point of view. Asymptotic stationarity is a necessary 
condition to apply the ideas of scattering theory, which is the main means of 
extracting useful information from QFT. Stability is satisfied in typical physics 
applications. 

Non-classical propagators are associated with special boundary conditions in the 
past and future. After quantization, they will be used to encode Fock representations 
of Canonical Commutation Relation. In this subsection we will describe them 
without a reference to quantum fields, as a part of an operator-theoretic analysis 
of the Klein–Gordon operator. 

Consider first Case (1). In order to define non-classical propagators at time t+ and 
t− we fix a pair of admissible involutions S+, resp. S−. They lead to corresponding 
projections (

(+) 
± and (

(−) 
± . The choice of S± is to a large extent arbitrary, although 

one can argue that those satisfying the so-called Hadamard property [14, 31, 34] are  
more physical than the others. 

In Case (2) it is natural to select the admissible involutions S± given by the 
sign of the generator of the dynamics at t → ±∞. (Recall that we assume that 
the evolution is asymptotically stationary and stable.) Thus (

(+) 
± is the projection 

onto “in/out positive frequency modes” and (
(−) 
± onto “in/out negative frequency 

modes”. 
The projections (

(+) 
± and (

(−) 
± naturally define two pairs of bisolutions of the 

Klein–Gordon equation, G (+) 
± and G (−) ± . The identity (2b) now splits into two 

independent identities 

.GPJ = iG(+)
± − iG(−)

± , (9) 

It is less obvious that the Feynman and anti-Feynman propagators also possess 
natural unique generalizations. The Feynman propagator GF can be described as 
the inverse of the Klein–Gordon operator corresponding to the Cauchy data in (

(+) 
+ 

for t = t+ or t → +∞, and in (
(−) 
− for t = t− or t → +∞. The anti-Feynman 

propagator GF is the inverse of the Klein–Gordon operator corresponding to the 
Cauchy data in (

(−) 
+ for t = t+ or t → +∞, and in (

(+) 
− for t = t− or t → −∞.



An Evolution Equation Approach to Linear Quantum Field Theory 23

Clearly, in Case (1) GF and GF depend on the choice of S+, S−. In Case (2) they  
are defined uniquely. 

Note that GF are GF are sometimes called the in-out, resp. out-in Feynman 
propagators [16], to distinguish them from some other, non-canonical proposals, 
such as those mentioned below in (20). We will sometimes use these terms to stress 
their physical meaning. However, in our opinion, when one writes the Feynman 
propagator using the definite article the, there should be no doubt that GF is meant. 

Note that in the generic case the relations (2) are not satisfied, except for (2a) and 
the two versions of (2b), see also (9). 

1.5 Well-Posedness/Self-Adjointness of the Klein–Gordon 
Operator 

Formally, the Feynman and anti-Feynman propagators are inverses of the Klein– 
Gordon operator. One can ask whether this can be interpreted in a more precise 
operator-theoretic sense. We will see that this is often true, however the situation is 
quite different in Case (1) and (2). 

It is easy to see that the Klein–Gordon operator K is Hermitian (symmetric) on, 
say, C∞c (M). In Case (1) K is obviously not essentially self-adjoint—it possesses 
many extensions parametrized by boundary conditions at t = t+ and t = t−. The  
admissible involutions S+ and S− determine special boundary conditions that lead 
to closed realizations KF = (KF)∗, so that we have 

. GF = (KF)−1, GF = (KF)−1 = (GF)∗.

Note that KF and KF are not self-adjoint. Clearly, they are invertible, and hence 
well-posed. 1 

In Case (2) there seems to be no need for boundary conditions and one can expect 
that K is often essentially self-adjoint on C∞c (M). Suppose that K is essentially 
self-adjoint and let us denote by Ks.a. its self-adjoint extension. Then we can expect 
that 

.GF = lim
ε↘0

(Ks.a. − iε)−1, GF = lim
ε↘0

(Ks.a. + iε)−1, (10) 

in the sense of quadratic forms on an appropriate weighted space, e.g., 〈t〉−s L2(M) 
with s >  1 

2 .

1 An operator which has a non-empty resolvent set is called well-posed, see [12]. For instance, 
self-adjoint operators are well-posed. 
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The above conjectures are obviously true on the Minkowski space. They also 
hold in the stationary case. In the absence of the electrostatic potential this is 
straightforward, with the electrostatic potential it requires some work, see [8]. 
There exists also recent interesting papers by Vasy [33] and Taira–Nakamura [27– 
29], where all these properties are proven for some classes of spacetimes, mostly 
assuming the asymptotic Minkowskian property and non-trapping conditions. 

The question of the self-adjointness of the Klein–Gordon operator is beyond 
the scope of our paper. It is much more difficult to answer and most probably 
requires additional assumptions (like non-trapping conditions). However, as the 
analysis of our paper shows, the Feynman inverse is well-defined for essentially 
all asymptotically stable and stationary spacetimes. 

Note that if asymptotic stability and stationarity does not hold, but K can be 
interpreted as a self-adjoint operator, then one can try to use (10) as the definition of 
the Feynman/anti-Feynman propagators. 

1.6 Reduction to a 1st Order Equation for the Cauchy Data 

In order to compute non-classical (actually, also classical) propagators, it is useful to 
convert the Klein–Gordon equation into a 1st order evolution equation on the phase 
space describing Cauchy data. To this end, we fix a decomposition M = I × ), 
where I = [t−, t+] or I = R. We assume that M is Lorentzian and ) is Riemannian. 
We will use Latin letters for spatial indices. We introduce 

. h = [hij ] = [gij ], h−1 = [hij ],
βj := g0ih

ij , α2 := g0ih
ij gj0 − g00.

Note that [hij ], [hij ] are positive definite and α2 > 0. Set 

. L := |g|− 1
4 (Di − Ai)|g|

1
2 hij (Dj − Aj)|g|−

1
4 + Y,

W := βiDi − A0 + βiAi +
i
4
|g|−1|g|,0 −

i
4
βi |g|−1|g|,i .

Then the Klein–Gordon operator and the charge can be written as 

.K = (D0 +W ∗)
1
α2 (D0 +W)− L, (11) 

(u |Qv) =
∫

)
u(t, /x) 1 

α2(t, /x)
(
D0 +W(t, /x)

)
v(t, /x) d/x 

+
∫

)

(
D0 + W(t, /x)

)
u(t, /x) 1 

α2(t, /x) v(t, /x) d/x.
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Therefore, the Klein–Gordon equation Ku = 0 can be rewritten as a 1st order 
equation for the Cauchy data on ): 

. 
(
∂t + iB(t)

)
w = 0,

where 

. B(t) =
[
B11(t) B12(t)

B21(t) B22(t)

]
:=

[
W(t) α2(t)

L(t) W ∗(t)

]
,

w =
[
w1

w2

]
:=

[
u

−α−2(− i∂t +W(t)
)
u

]
.

The current preserved by the dynamics is given by the matrix 

. Q =
[

0 1
1 0

]
.

It is natural to introduce the classical Hamiltonian 

. H(t) = QB(t) =
[
L(t) W ∗(t)
W(t) α2(t)

]

and the Cauchy data operator 

. M := ∂t + iB(t).

(The notational clash with the occasionally appearing manifold M should cause no 
confusion.) 

We will say that an operator E is a bisolution/inverse or Green’s operator of M 
if it satisfies 

. MEw = 0, EMw = 0,

resp. MEw = w, EMw = w

for a large class of functions t *→ w(t) =
[
w1(t) 
w2(t)

]
. An inverse/bisolution of M can 

be written as a 2× 2 matrix  

.E(t, s) =
[
E11(t, s) E12(t, s)

E21(t, s) E22(t, s)

]
.
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If we set 

.G(t, s) := iE12(t, s), (12) 

then G is formally a bisolution/inverse of the Klein–Gordon operator: 

. KGu = 0, GKu = 0,

resp. KGu = u, GKu = u,

for a large class of spacetime functions x *→ u(x). 

1.7 Stationary Case 

The theory of propagators for the Klein–Gordon equation greatly simplifies in the 
stable stationary case. More precisely, suppose for the moment that M = R × )

and that g, A and Y , hence also B(t) =: B and H(t)  =: H , do not depend on 
time t . Assume also that B is stable, which means that H is positive and has a zero 
nullspace. 

First of all, the Cauchy data can then be organized in a Hilbert space. Actually, 
using the Hamiltonian H and the generator B, one can construct a whole scale of 
natural Hilbert spaces Wλ, λ  ∈ R, which can be used to describe the Cauchy data. 
Among them three have a special importance. The energy space, W 1 

2 
, has the scalar 

product given by the Hamiltonian H . There is also the dual energy space, which we 
denote by W− 1 

2 
, with the scalar product given by (QHQ)−1. Finally, interpolating 

between W 1 
2 

and W− 1 
2 
, we obtain the dynamical space W0, which in addition to 

the scalar product has a natural pseudo-unitary structure given by the charge Q, and 
which is then used for quantization. 

The operator B can be interpreted as self-adjoint on all members of the scale 
Wλ. Therefore, the dynamics is simply defined as e−itB  and preserves the scale 
Wλ. 

Then we can define the propagators on the level of the Cauchy data as follows: 

.EPJ(t, s) := e−i(t−s)B,

E∨(t, s) := θ(t − s)e−i(t−s)B,

E∧(t, s) := −θ(s − t)e−i(t−s)B,

E(+)(t, s) := e−i(t−s)B1[0,∞[(B),

E(−)(t, s) := e−i(t−s)B1[−∞,0[(B),
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EF(t, s) := e−i(t−s)B(
θ(t  − s)1[0,∞[(B) − θ(s  − t)1]−∞,0](B)

)
, 

EF(t, s) := e−i(t−s)B(
θ(t  − s)1]−∞,0](B)− θ(s  − t)1[0,∞[(B)

)
. 

At least formally, E∨, E∧, EF, EF are inverses and EPJ, E(+) , E(−) are bisolutions 
of M . 

Then we set 

.G• := iE•
12, • = PJ,∨,∧,F,F, . (13a) 

G(+) := E (+) 
12 , G(−) := −E (−) 12 , (13b) 

(hence we use (12) or its minor modifications) obtaining the generalizations of the 
propagators from the Minkowski space to the general stationary case. 

Note that in the stationary case all the identities (2) still hold. 

1.8 Evolution on Hilbertizable Spaces 

In the generic situation the generator B(t) depends on time. This leads both to 
technical and conceptual problems. 

First, in order to do functional analysis we need topology. However the Hilbert 
spaces Wλ are no longer uniquely defined. It seems reasonable to assume that 
Cauchy data are described by elements of a certain nested pair of Hilbertizable 
spaces W1 ⊂ W0, which does not change throughout the time. (A Hilbertizable 
space is a space with a topology of a Hilbert space, but without a fixed scalar 
product.) 

We devote the whole Sect. 3 to a construction of cousins of all propagators 
described in Sect. 1.7 in the setting of an evolution on Hilbertizable spaces (without 
assuming the existence of a charge form preserved by the dynamics). 

The construction of the dynamics in the stationary case was straightforward. 
Constructing the evolution generated by a time-dependent generator B(t) is much 
more technical. To this end we use an old result of Kato [25]. In this approach 
one assumes that the Cauchy data are described by a nested pair of Hilbertizable 
spaces, and the generators are self-adjoint with respect to certain time-dependent 
scalar products compatible with both Hilbertizable structures. Besides, one needs 
to make some technical assumptions, which essentially say that the generator of 
the evolution does not vary too much in time, so that all the time it acts in the 
same nested pair of Hilbertizable spaces. Using this evolution it is easy to define 
E∨, E∧, EPJ, which are the analogs of classical propagators on the level of the 
Cauchy data operator. 

In order to define “non-classical” propagators we need to choose the incoming 
and outgoing “particle/antiparticle projections”, which as we discussed in Sect. 1.4 
are determined by specifying involutions S±. This leads to a straightforward defini-
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tion of “in/out particle bisolutions” E (+) 
± and “in/out antiparticle bisolutions” E (−) ± , 

which are two distinguished analogs of particle and antiparticle bisolutions. (The 
plus/minus in the parentheses correspond to particles/antiparticles; the plus/minus 
without parentheses correspond to the future/past.) 

What is more interesting, we can also try to define a natural Feynman and 
anti-Feynman propagator, denoted EF, EF. In the general Hilbertizable setting the 
existence of these propagators is not guaranteed and requires an extra condition that 
we call the asymptotic complementarity. 

1.9 Pseudo-Unitary Dynamics 

As discussed above, the evolution of Cauchy data for the Klein–Gordon equation 
preserves the charge form—a natural Hermitian indefinite scalar product. On the 
technical level it is convenient to assume that the charge form is compatible with 
the Hilbertizable structure. More precisely, we need the structure of a Krein space. 

Note, in parenthesis, that we prefer to work in the complex setting of a Krein 
space instead of the real setting of a symplectic space, perhaps more common in the 
literature. If the dynamics commutes with the complex conjugation, e.g., if there are 
no electromagnetic potentials, then by restricting our dynamics to the real space we 
can go back to the real symplectic setting. 

In Sect. 4 we discuss propagators in the context of a pseudo-unitary evolution 
on a Krein space. We note an important property of Krein spaces: every maximally 
positive subspace is complementary to every maximally negative subspace. By this 
property, if the boundary conditions are given by admissible involutions (see (8)), 
then the condition of asymptotic complementarity is automatically satisfied. There-
fore the in-out Feynman and anti-Feynman propagator always exist. The existence 
of these two propagators under rather general conditions is probably the main result 
of our paper. 

To sum up, in the context of an evolution on Krein spaces we are able to define 
the whole family of “propagators” on the level of the Cauchy data operator: 

.E∨, E∧, EPJ, E
(+)
± , E

(−)
± , EF, EF. (14) 

1.10 Abstract Klein–Gordon Operator 

Let L(t), α(t) and W(t)  be time-dependent operators on a Hilbert space K. We  
assume that L(t) is positive, α(t) is positive and invertible, plus some additional 
technical assumptions. By an abstract Klein–Gordon operator we mean an operator
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of the form 

.K :=
(
Dt +W ∗(t)

) 1
α2(t)

(
Dt +W(t)

)
− L(t), (15) 

acting on the Hilbert space L2(I,K) 1 L2(I )⊗K. 
In our applications, K is the Hilbert space L2()) (the space of functions on 

a spacelike Cauchy surface). Besides, α2(t) is related to the metric tensor, W(t)  
consists mostly of A0, and L(t) is a magnetic Schrödinger operator on ). The usual 
Klein–Gordon operator (5) on the Hilbert space L2(M) 1 L2(I ) ⊗ L2()) has the 
form of (15), as discussed in Sect. 1.6, see (11). 

The operator (15) is second order in t . It can be viewed as a 1-dimensional mag-
netic Schrödinger operator with operator-valued potentials. To describe its Cauchy 
data, under our assumptions it is natural to introduce the scale of Hilbertizable 
spaces 

.Wλ := L(t)−
λ
2− 1

4 K⊕ L(t)−
λ
2 + 1

4 K, (16) 

where usually |λ| ≤  1 
2 . Note that W0 has a natural Krein structure. Using 

the formalism of Sect. 4 we construct various propagators (14). Then, using a 
slight extension of (13), we pass from the Cauchy data propagators to spacetime 
propagators: 

. G• := iE•
12, • = PJ,∨,∧,F,F;

G
(+)
± := E

(+)
±,12, G

(−)
± := −E(−)

±,12.

Feynman and anti-Feynman inverses of the Klein Gordon operator can be viewed 
as some special inverses of its well-posed realizations. 

In Case (1) the Klein–Gordon operator is Hermitian (symmetric) but not self-
adjoint. It possesses many well-posed realizations defined by boundary conditions. 
In particular, each Feynman-type and anti-Feynman-type inverse defines a certain 
well-posed realization. Note that these realizations are always non-self-adjoint. 

In Case (2) the situation is more difficult and not fully understood. Clearly, the 
Feynman and anti-Feynman inverses are not bounded operators. It is natural to 
conjecture that under quite general conditions they are boundary values of a certain 
distinguished self-adjoint realization of the abstract Klein–Gordon operator. This 
conjecture has been partly proven in [33] and [27–29]. 

1.11 Bosonic Quantization 

Let us now describe applications of the above mathematical analysis of the Klein– 
Gordon equation to Quantum Field Theory.
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Various authors use different formalisms when introducing quantum fields. These 
formalisms are essentially equivalent, however it may often be difficult for the reader 
to translate the concepts from one formalism to another. Therefore, we start our 
discussion with some remarks about various approaches to quantization. We restrict 
ourselves to linear bosonic theories. 

Bosonic quantization can be divided into two steps: 

1. First we choose an algebra of observables satisfying canonical commutation 
relations corresponding to a classical phase space. 

2. Then we select a representation of this algebra on a Hilbert space. 

The first step can be presented in several ways, which superficially look 
differently. In particular, we can use the real or complex formalism:

• The real or neutral formalism starts from a real space equipped with an 
antisymmetric form (it does not have to be symplectic, that is, non-degenerate) 
and leads to a self-adjoint field .̂.

• The complex or charged formalism starts from a complex space equipped with 
a Hermitian form (sometimes called the charge) and leads to a pair of non-self-
adjoint fields /̂, /̂∗. 

The neutral formalism is in a sense more general, since every charged particle can 
be understood as a pair of neutral particles in the presence of a U(1) symmetry. 

In both the real and the complex approach, we can use the one-component 
formalism or the two-component formalism. In the two-component formalism we 
split the fields into “positions” and “momenta”. This splitting is typical for Quantum 
Field Theory. 

Thus we can distinguish four formalisms of bosonic quantization, which can be 
summarized in the following table: 

Real (or neutral) fields Complex (or charged) fields 

1-component [.̂(w), .̂(w′)] = iwωw′ [/̂(w), /̂∗(w′)] = (w |Qw′) 
formalism ω is an antisymmetric form Q is a Hermitian form 

on a real space on complex space 

2-component [φ̂(u), π̂(v)] = i〈u |v〉 [ψ̂(u),  ̂η∗(v)] =  i(u |v) 
formalism [ψ̂∗(u), η̂(v)] =  i(v |u)

〈· | ·〉 is a bilinear scalar (· | ·) is a sesquilinear scalar 
product on a real space product on a complex space 

If the number of degrees of freedom is finite, by the Stone-von Neumann 
Theorem all irreducible representations of the CCR over a symplectic space are 
equivalent. If the number of degrees of freedom is infinite this is not true, and we 
have to select a representation. Usually this is done by fixing a state on the algebra 
of observables and going to the GNS representation. In most applications to QFT
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one chooses a pure quasi-free state, and then this representation naturally acts on a 
bosonic Fock space. 

There are several ways to describe pure quasi-free states (called also Fock states). 
As we mentioned above, in our paper these states are described by admissible 
involutions on the phase space, see (8). In the real formalism one needs to assume 
in addition that S• is anti-real (i.e., S• = −S•). 

1.12 Classical Field Theory on Curved Spacetimes 

Let us now briefly describe linear Classical Field Theory on curved spacetimes. In 
the introduction, for brevity we restrict ourselves to complex scalar fields. In Sects. 6 
and 7 we will consider also real scalar fields. 

The phase space of our system is Wsc introduced in Sect. 1.3. Then the field ψ 
and its complex conjugate ψ∗ are interpreted as the linear, resp. antilinear functional 
on Wsc given by 

. 〈ψ(x) |u〉 := u(x), 〈ψ∗(x) |u〉 := u(x), u ∈Wsc.

Clearly, the fields ψ and ψ∗ satisfy the Klein–Gordon equation: 

.Kψ(x) = Kψ∗(x) = 0. (17) 

As described in Sect. 1.2, the space Wsc is naturally a symplectic vector space. 
The Poisson bracket of the fields was first computed by Peierls and can be expressed 
by the Pauli–Jordan propagator: 

. {ψ(x),ψ(y)} = {ψ∗(x),ψ∗(y)} = 0,

{ψ(x),ψ∗(y)} = −GPJ(x, y).

1.13 Quantum Field Theory on Curved Spacetimes 

Quantization of the classical theory defined by (17) is performed in two steps. 
First we replace the classical fields ψ(x),  ψ∗(x) by ψ̂(x), ψ̂∗(x) interpreted 
as distributions with values in a ∗-algebra satisfying the following commutation 
relations, a generalization of the identity (4a): 

.[ψ̂(x), ψ̂(y)] = [ψ̂∗(x), ψ̂∗(y)] = 0,

[ψ̂(x), ψ̂∗(y)] = −iGPJ(x, y)1.
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They also satisfy the Klein–Gordon equation 

. Kψ̂(x) = Kψ̂∗(x) = 0.

The second step consists in choosing a representation of the CCR. 
If the Klein–Gordon equation is stationary and stable, then there exists a natural 

Fock representation given by the so-called positive energy quantization [7, 8]. As we 
discussed above, in the stationary case all propagators described for the Minkowski 
space have a natural generalization and the relations (4) still hold. 

If the Klein–Gordon equation is not necessarily stationary and we selected 
the involutions S− and S+ (see Sect. 1.4), we consider the Fock representations 
corresponding to S− and S+, the so-called in and out representations. As described 
above, we obtain two pairs of bisolutions G (+) 

± and G (−) ± , which after quantization 
describe the vacuum expectation values of products of fields in the in and out Fock 
representation. More precisely, the identities (4b) and (4c) split into two identities: 

.($± | ψ̂(x)ψ̂∗(y)$±) = G
(+)
± (x, y), . (18a) 

($± | ψ̂∗(x) ψ̂(y)$±) = G (−) ± (x, y). (18b) 

After quantization the Feynman and anti-Feynman propagators satisfy slight 
modifications of the identities (4d) and (4e): 

.

(
$+T{ψ̂(x)ψ̂∗(y)}$−)

($+ |$−)
= −iGF(x, y), . (19a)

(
$− |T{ψ̂(x)  ̂ψ∗(y)}$+) 

($− |$+)
= iGF(x, y). (19b) 

Strictly speaking, (19) are true if the Shale condition for the in and out states 
holds, so that the vectors $− and $+ belong to the same representation of CCR. If 
the Shale condition is violated, the left hand sides do not make sense. However, the 
right hand sides are well defined. This is an example of a renormalization in QFT: 
we are able to compute a quantity, which at the first sight is ill-defined. 

In a large part of the literature the so-called Hadamard property is considered 
to be the main criterion for a physically satisfactory state [14, 31, 34]. Note 
that if one assumes enough smoothness, then in Case 2 the two-point functions 
G (+) 

± (x, y), G (−) ± (x, y) automatically satisfy the Hadamard property. This is a non-
trivial fact proven by Gérard–Wrochna [19], see also [18]. 

In the slab geometry case we can choose non-Hadamard states for $− and $+ 
if we insist. However, there are good arguments saying that Hadamard states are 
“more physical” than the others. Actually, one could argue that the main argument 
for the Hadamard condition in Case (1) is the fact that by Gérard and Wrochna [19] 
it is automatic in the Case (2) scenario.
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1.14 Hadamardists and Feynmanists 

Oversimplifying and exaggerating, one can distinguish two approaches to QFT on 
curved spacetimes: let us call them the Hadamardist and Feynmanist approach. 

The Hadamardist approach is mostly represented by researchers with a mathe-
matical or General Relativity background. It stresses that QFT should be considered 
in a local fashion, often restricting attention to a small causally convex region of a 
spacetime. In such a setting it is impossible to choose a distinguished state $ on the 
algebra of observables in a locally covariant way, see e.g. [13, 21]. This approach 
stresses that one has a lot of freedom in choosing a state and argues that physical 
states should satisfy the so-called Hadamard property. In the modern mathematical 
literature this condition is usually described in an elegant but abstract way with 
the help of the wave front set [31] of their two-point function

(
$ | ψ̂(x)  ̂ψ∗(y)$. 

Using this two-point function one can define the (formal) ∗-algebra of observables 
and perturbatively renormalize local polynomials of fields. A particularly clear 
explanation of this philosophy can be found in Apps. B and D1 of [21]. 

In the Feynmanist approach the main goal is usually to compute scattering 
amplitudes, cross sections, etc. see e.g. [10]. Such computations are typically based 
on path integrals and Feynman diagrams. Clearly, in this case it is indispensable 
to look at the spacetime globally, so that one can define an in and out state, and 
the assumption of asymptotic stability and stationarity in the past and future is 
rather natural. There is no need to worry about the Hadamard property. As we 
mentioned above, it is automatic under rather weak assumptions thanks to the results 
of Fulling–Narcowich–Wald [18] and Gérard–Wrochna [19]. The (in-out) Feynman 
propagator is needed to compute perturbatively the scattering operator in terms of 
Feynman diagrams. 

There is no contradiction between these two approaches and both have their 
philosophical merits. Our paper clearly belongs to the latter approach (in spite of 
being rather abstract mathematically). 

Actually, in Case (1) (the slab geometry case) it is natural to use the hybrid point 
of view, which reconciles the Hadamardist and Feynmanist philosophy. If we want 
to compute the scattering operator between time t− and t+ it is natural to choose S− 
and S+ both satisfying the Hadamard condition, and then to use the corresponding 
(in-out) Feynman propagator. 

1.15 Comparison with Literature 

The basic formalism of pseudo-unitary (or symplectic) evolution equations 
described in this paper is of course contained more or less explicitly in all works 
on Quantum Field Theory in curved spacetime, including the standard textbooks 
[3, 17, 30, 35]. Surprisingly, however, its point of view is rarely fully exploited.



34 J. Dereziński and D. Siemssen

The (trivial) observation about the existence of two distinguished states on 
asymptotically stationary spacetimes can be found e.g. in [3], Sect. 3.3. It is rather 
obvious that they are the preferred states for many actual applications, such as the 
calculation of the scattering operator. 

In the well-known paper [11] Duistermat and Hörmander prove the existence of 
the Feynman parametrix, which is unique only up to a smoothing operator. However, 
the canonical in-out Feynman inverse defined rigorously in our paper is essentially 
absent from the mathematical literature, with a few recent exceptions [20, 27–29, 
33]. 

Sometimes one considers another generalization of the Feynman propagator: 
given a Hadamard state with the two-point functions G (+/−)

• , one can introduce 

.GF
• = iG(+)

• +G∧ = −iG(−)
• +G∨, (20) 

which is an inverse of the Klein Gordon operator, and can be called the Feynman 
inverse associated to the pair of two-point functions G(+)

• , G(+)
• , see e.g. [9] and 

[21] App. D1. Note, however, that GF
• is non-unique and, more importantly, does 

not satisfy the relation (19a), which is the basis for perturbative calculations of the 
scattering operator. 

In the more physically oriented literature the in-out Feynman propagator, defined 
rigorously in our paper, is ubiquitous, even if implicitly. It essentially appears 
each time when the functional integration method is applied to compute scattering 
amplitudes, at least on asymptotically stationary spacetimes. More precisely, in 
order to compute perturbatively Feynman diagrams for the scattering operator one 
needs to associate the Feynman propagator to each line. 

It seems that this point is not sufficiently appreciated in a part of mathematically 
oriented literature. Let us quote from App. B of [21], which as we mentioned 
above, expresses the Hadamardist philosophy: “[the effective action] depends upon 
a choice of state [. . . ].  Here,  the  choice of state would enter the precise choice 
of the formal path-integral measure [Dφ].” In reality, typically the path-integral 
formalism yields a unique prescription for Feynman diagrams (which then need to 
be renormalized). This prescription naturally involves two states: the “in state” and 
the “out state”. It also determines uniquely the Feynman propagator, which should 
be associated to each line of the Feynman diagram. 

The formula (19a), which gives a physical meaning to the in-out Feynman 
propagator, can be found in the physical literature in various places, see, for instance, 
Equation (4.7) of [17] and the following equations. 

Until quite recently, the question of the self-adjointness of the Klein–Gordon 
operator was almost absent in the mathematical literature. There were probably two 
reasons for this. First, the question seemed difficult. The Klein–Gordon operator 
is unbounded from below and above, and the positivity is usually the major tool in 
functional analysis. The second reason is that this question at the first sight appeared 
not interesting physically. Indeed, the space L2(M) is not the space of states of any
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reasonable quantum system and e−iτK  seems to have no meaning as a quantum 
evolution. 

However, in physical literature many researchers tacitly assume that the Klein– 
Gordon operator is self-adjoint, see e.g. [32] or Sect. 9 of [17]. The Feynman 
and anti-Feynman propagator are important for applications and, formally, assum-
ing (10), they can be computed from 

.(K ± i0)−1 = ±i
∫ ∞

0
e∓itK dt, (21) 

Note that (21) presupposes that one can interpret K as a self-adjoint operator, so 
that (z −K)−1 can be defined for z 6∈ R. 

2 Preliminaries 

In this section we collect various basic mathematical definitions and facts that are 
useful in our paper. Most readers will find them rather obvious—nevertheless, they 
should be recorded. 

If A is an operator, then R(A), N(A), D(A) and σ (A)  denote the range, the 
nullspace, the domain and the spectrum of A. B(W) denotes the space of bounded 
operators on a Banach space W. 

2.1 Scales of Hilbert Spaces 

Suppose that W is a Hilbert space and A a positive invertible operator on W. Then 
one defines A−αW as the domain of Aα for α ≥ 0 and as its anti-dual for α <  0. 
We thus obtain a scale of nested Hilbert spaces A−αW, α ∈ R, with A0W = 
W and A−αW continuously and densely embedded in A−βW for α ≥ β. By  
restriction/extension, the operator Aβ can be interpreted as a unitary from A−αW 
to A−α+βW. Often we simplify notation by writing Wα for A−αW, so that W0 = 
W and W1 = D(A). 

In practice, the starting point of a construction of a scale of Hilbert spaces is often 
not an operator A but a nested pair of Hilbert spaces. More precisely, suppose that 
(W,V) is a pair of Hilbert spaces, where V is densely and continuously embedded 
in W. Then there exists a unique invertible positive self-adjoint operator A on W 
with the domain V such that 

. (v |v)V = (Av |Av)W, v ∈ V.

We can then define the scale Wα = A−αW,α  ∈ R. Note that W = W0 and 
V = W1.
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We will often use the following facts: 

Proposition 2.1 Consider a scale of Hilbert spaces Wα , α ∈ R. 

1. A ∈ B(Wα,Wβ) implies A∗ ∈ B(W−β ,W−α). 
2. Let α0 ≤ α1, β0 ≤ β1. If  A ∈ B(Wα0 , Wβ0) can be restricted to an operator 

in B(Wα1 ,Wβ1), then for τ ∈ [0, 1] it can be restricted to an operator in 
B(W(1−τ )α0+τα1 ,W(1−τ )β0+τβ1). 

2.2 One-Parameter Groups 

Let W be a Banach space. Recall that a one-parameter group on W is a 
homomorphism 

. R ) t *→ R(t) ∈ B(W).

It is well-known that to every strongly continuous one-parameter group R(t) one 
can uniquely associate a densely defined operator B called the generator of R(t), 
so that R(t) = e−itB . It can be shown that D(B) is preserved by R(t) and the 
following equation is true: 

.(∂t + iB)R(t)w = 0, w ∈ D(B). (22) 

Suppose now that W is a Hilbert space. A unitary group on W is always of the 
form e−itB , where B is a self-adjoint operator. Let 〈B〉 := (B2+1) 

1 
2 . Note that e−itB  

preserves the scale Wα := 〈B〉−αW for α ≥ 0, and can be uniquely extended by 
continuity to Wα for α ≤ 0. For any α we have 

.(∂t + iB)e−itBw = 0, w ∈W1+α, (23) 

where the left-hand side of (23) is understood as an element of Wα . 
In practice, two choices of α are especially useful: α = 0 corresponds precisely 

to (22), and α = − 1 
2 means that (23) is considered on the form domain of B. We  

will use both points of view when considering a natural setup for non-autonomous 
evolutions, see Theorem 3.10. 

If in addition B is invertible, then we can slightly modify the scale of Hilbert 
spaces by setting Wα := |B|−αW. Note that B is then unitary from Wα to Wα−1.
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2.3 Hilbertizable Spaces 

Definition 2.2 Let W be a complex2 topological vector space. We say that it is 
Hilbertizable if it has the topology of a Hilbert space for some scalar product (· | ·)• 
on W. We will then say that (· | ·)• is compatible with (the Hilbertizable structure 
of) W. The subscript • serves as a placeholder for a name of a scalar product. 
The Hilbert space

(
W, (· | ·)•

)
will be occasionally denoted W•. The corresponding 

norm will be denoted ‖ · ‖•. 

In what follows W is a Hilbertizable space. Let (· | ·)1, (· | ·)2 be two scalar 
products compatible with W. Then there exist constants 0 < c  ≤ C such that 

. c(w |w)1 ≤ (w |w)2 ≤ C(w |w)1.

Let R be a linear operator on W. We say that it is bounded if for some (hence 
for all) compatible scalar products (· | ·)• there exists a constant C• such that 

. ‖Rw‖• ≤ C•‖w‖•.

Suppose that A is a (densely defined) operator on W. We say that it is similar 
to self-adjoint if there exists a compatible scalar product (· | ·)• such that A is self-
adjoint with respect to (· | ·)•. Note that for such operators the spectral theorem can 
be applied. In particular, for any (complex-valued) Borel function f on the spectrum 
of A we can define f (A). 

Let Q be a sesquilinear form on W. We say that it is bounded if for some (hence 
for all) compatible scalar products (· | ·)• there exists C• such that 

. |(v |Qw)| ≤ C•‖v‖•‖w‖•, v, w ∈W.

Note that on Hilbertizable spaces we do not have a natural identification of 
sesquilinear forms with operators. 

2.4 Interpolation Between Hilbertizable Spaces 

Definition 2.3 A pair of Hilbertizable spaces (W,V), where V is densely and 
continuously embedded in W, will be called a nested Hilbertizable pair. 

After fixing scalar products (· | ·)V,• and (· | ·)W,• compatible with V, resp. 
W, we can interpolate between the Hilbert spaces V• and W• obtaining a scale 
of Hilbert spaces Wα,•, α ∈ R, with V• = W1,• and W = W0,•. By

2 Analogous definitions and results are valid for real Hilbertizable spaces. 
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complex interpolation, for α ∈ [0, 1] they do not depend on the choice of scalar 
products (· | ·)W,• and (· | ·)V,• as Hilbertizable spaces. Therefore, the family of 
Hilbertizable spaces Wα , α ∈ [0, 1], is uniquely defined. 

If R ∈ B(W) and its restriction to V belongs to B(V), then R restricts to 
B(Wα) for 0 ≤ α ≤ 1. 

2.5 From Complex to Real Spaces and Back 

To pass from a complex space to a real one, it is useful to have the notion of a 
conjugation: 

Let W be a complex space. An antilinear involution v *→ v on W will be 
called a conjugation. In the context of Hilbertizable spaces we always assume that 
conjugations are bounded. For an operator R on W we set 

. Rv := Rv, RT := R
∗
.

If R satisfies R = ±R, it will be called real resp. anti-real. The real subspace of 
W is defined as 

.WR := {w ∈W | w = w}. (24) 

Conversely, to pass from a real space to a complex one, suppose now that Y is 
a real space. Then Y ⊗R C = CY will denote the complexification of Y (i.e., for 
every w ∈ W we can write w = wR + iwI with wR,wI ∈ Y), and we have the 
natural conjugation vR + ivI = vR − ivI . 

2.6 Complexification of (Anti-)Symmetric Forms 

Let Y be a real space. 
Every symmetric form q on Y, and thus in particular every scalar product, 

extends to a Hermitian form on CY: 

. 

(
vR + ivI |q(wR + iwI )

) := 〈vR |qwR〉+ 〈vI |qwI 〉
− i〈vI |qwR〉+ i〈vR |qwI 〉.

Note the property (v |qw) = (v |qw).
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Extending an antisymmetric form ω on Y to a Hermitian form on CY is slightly 
different: 

.

(
vR + ivI |Q(wR + iwI )

) := 〈vI |ωwR〉 − 〈vR |ωwI 〉
+ i〈vR |ωwR〉+ i〈vI |ωwI 〉.

(25) 

Note the property (v |Qw) = −(v |Qw), which differs from the symmetric case 
above. 

2.7 Realification of Hermitian Forms 

Let Q be a Hermitian form on W. 
We say that a conjugation · preserves Q if

. (v |Qw) = (v |Qw).

In that case, 

. Re (v |Qw), v,w ∈WR,

is a symmetric form on WR. Note that Im (v |Qw) = 0 on WR. 
Similarly, we say that a conjugation · anti-preserves Q if

.(v |Qw) = −(v |Qw). (26) 

In that case, 

. Im (v |Qw), v,w ∈WR,

is an antisymmetric form on WR. Note that Re (v |Qw) = 0 on WR. 

2.8 Involutions 

Definition 2.4 We say that a pair (Z(+)
• ,Z(−)

• ) of subspaces of a vector space W 
is complementary if 

. Z(+)
• ∩Z(−)

• = {0}, Z(+)
• +Z(−)

• = W.

Definition 2.5 An operator S• on W is called an involution, if  S2
• = 1.
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We can associate various objects with S•: 

.((±)
• := 1

2
(1± S•), Z(±)

• := R(((±)
• ). (27) 

(((+)
• ,((−)

• ) is a pair of complementary projections and (Z(+)
• ,Z(−)

• ) is the 
corresponding pair of complementary subspaces. 

A possible name for Z(+)
• is the positive space, and for Z(−)

• is the negative 
space (associated with S•). We will however prefer names suggested by QFT: Z(+)

• 
will be called the particle space, and Z(−)

• the antiparticle space. 
If W is Hilbertizable, we will usually assume that S• is bounded. Then so are

((+)
• and ((−)

• , moreover, Z(+)
• and Z(−)

• are closed. 

2.9 Pairs of Involutions 

Suppose that S1 and S2 are two bounded involutions on W. Let  

. (
(±)
i := 1

2
(1± Si), Z(±)

i := R(((±)
i ), i = 1, 2,

be the corresponding pairs of complementary projections and subspaces. The 
following operator can be defined by many distinct expressions: 

.ϒ := 1− ((
(+)
1 −(

(+)
2 )2 = 1− ((

(−)
1 −(

(−)
2 )2

. (28a) 

= (
(+) 
1 (

(+) 
2 + (

(−) 
2 (

(−) 
1 = (

(+) 
2 (

(+) 
1 + (

(−) 
1 (

(−) 
2 . (28b) 

= (((+) 
1 + (

(−) 
2 )((

(+) 
2 + (

(−) 
1 ) = ((

(+) 
2 + (

(−) 
1 )((

(+) 
1 + (

(−) 
2 ). (28c) 

= (((+) 
1 (

(+) 
2 + (

(−) 
2 )((

(+) 
2 (

(+) 
1 + (

(−) 
1 ). (28d) 

= (((+) 
2 (

(+) 
1 + (

(−) 
1 )((

(+) 
1 (

(+) 
2 + (

(−) 
2 ). (28e) 

= 
1 
4 
(2 + S1S2 + S2S1) = 

1 
4 
(S1 + S2)

2. (28f) 

Observe that ϒ commutes with (
(+) 
1 , (

(−) 
1 , (

(+) 
2 and (

(−) 
2 . 

Proposition 2.6 The following conditions are equivalent: 

(i) ϒ is invertible. 
(ii) (

(+) 
1 + (

(−) 
2 and (

(+) 
2 + (

(−) 
1 are invertible. 

(iii) (
(+) 
1 (

(+) 
2 + (

(−) 
2 and (

(+) 
2 (

(+) 
1 + (

(−) 
1 are invertible.
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Moreover, if one of the above holds, then the pairs (Z(+) 
1 ,Z(−) 

2 ) as well as 
(Z(+) 

2 ,Z(−) 
1 ) are complementary. 

Proof (i) ⇐⇒ (ii) and (i) ⇐⇒ (iii) follow from (28c) and (28e) by the following 
easy fact: If R, S, T are maps such that R = ST = T S, then R is bijective if and 
only if both T and S are bijective. 

The last implication follows from the next proposition. <=
In the setting of the above proposition we can use ϒ to construct two pairs of 

complementary projections: 

Proposition 2.7 Suppose that ϒ is invertible. Then 

. 6
(+)
12 := (

(+)
1 ϒ−1(

(+)
2 is the projection onto Z(+)

1 alongZ(−)
2 ,

6
(−)
21 := (

(−)
2 ϒ−1(

(−)
1 is the projection onto Z(−)

2 along Z(+)
1 ,

6
(+)
21 := (

(+)
2 ϒ−1(

(+)
1 is the projection onto Z(+)

2 along Z(−)
1 ,

6
(−)
12 := (

(−)
1 ϒ−1(

(−)
2 is the projection onto Z(−)

1 along Z(+)
2 .

In particular, 

. 6
(+)
12 + 6

(−)
21 = 1, 6

(+)
21 + 6

(−)
12 = 1.

Proof First we check that 6
(+) 
12 is a projection: 

. 
(
6

(+)
12

)2 = (
(+)
1 ϒ−1(

(+)
2 (

(+)
1 ϒ−1(

(+)
2

= (
(+)
1 ϒ−1((

(+)
2 (

(+)
1 + (

(−)
1 (

(−)
2 )ϒ−1(

(+)
2 = 6

(+)
12 .

Moreover, 

. 6
(+)
12 = (

(+)
1 ((

(+)
2 + (

(−)
1 )ϒ−1 = ϒ−1((

(+)
1 + (

(−)
2 )(

(+)
2 .

But (((+) 
2 + (

(−) 
1 )ϒ−1 and ϒ−1((

(+) 
1 + (

(−) 
2 ) are invertible. Hence R(6(+) 

12 ) = 
R(((+) 

1 ) and N(6
(+) 
12 ) = N((

(+) 
2 ) = R(((−) 

2 ). This proves the statement of the 
proposition about 6

(+) 
12 . The remaining statements are proven analogously. <=

3 Evolutions on Hilbertizable Spaces 

In this section we investigate the concept of an evolution (family) in the 
Hilbertizable setting and without the additional pseudo-unitary structure, which 
will be added in later sections. Already in the present setting we can try to define
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abstract versions of “forward/backward”, “Pauli–Jordan”, “particle/antiparticle”, 
“Feynman/anti-Feynman” propagators and derive their basic properties. The 
existence of the abstract version of the Feynman propagator (inverse) will 
depend on a certain property called “asymptotic complementarity”, which 
in general is not guaranteed to hold. In the next section we will see that 
this property automatically holds under some natural assumptions typical of 
QFT. 

Throughout the section, −∞ ≤ t− < t+ ≤ +∞. For brevity, we write 
I := ]t−, t+[. Without limiting the generality, we will always assume that 0 ∈ I . 
Moreover, we will always assume that either t± are both finite or both infinite. The 
case where only one of t± is infinite can be deduced from the other cases. 

In typical situations to define an evolution one first introduces a time-dependent 
family of operators t *→ −iB(t) that generate R(t, s). The necessary and sufficient 
conditions for an operator B to generate an autonomous evolution or, what is equiv-
alent, a strongly continuous one-parameter group are well-known and relatively 
simple. In the non-autonomous case, there exist various relatively complicated 
theorems describing sufficient conditions. Unfortunately, it seems that a complete 
theory on this subject is not available. 

In the first part of this section we will avoid discussing the topic of generators of a 
non-autonomous evolutions apart from heuristic remarks. We will treat the evolution 
as given. The Cauchy data operator M := ∂t+ iB(t) will be just a heuristic concept, 
without a rigorous meaning. However, “bisolutions” and “inverses of M” will be 
rigorously defined. They will be the main topic of this section. 

In Sect. 3.6 we describe a possible approach to the generation of non-autonomous 
evolutions based on a theorem of Kato. 

3.1 Concept of an Evolution 

Definition 3.1 Let W be a Banach space. We say that the two-parameter family 

.I × I ) (t, s) *→ R(t, s) ∈ B(W) (29) 

is a strongly continuous evolution (family) on W if for all r, s, t ∈ I , we have the  
identities 

.R(t, t) = 1, R(t, s)R(s, r) = R(t, r), (30) 

and the map (29) is strongly continuous. 

One can also consider evolutions parametrized by the closed interval I cl := 
[t−, t+] instead of I , with the obvious changes in the definition.
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Note also that Definition 3.1 involves both forward and backward evolution, since 
we do not assume t ≥ s in R(t, s). In other words, this definition is a generalization 
of a one-parameter group instead of a one-parameter semigroup. 

3.2 Generators of Evolution 

Until the end of this section we consider a strongly continuous evolution R(t, s), 
t, s ∈ I , on a Hilbertizable space W. 

If R(t, s) = R(t − s, 0) for all t, s, t − s, 0 ∈ I , we say that the evolution 
is autonomous. An autonomous evolution can always be extended to R × R in 
the obvious way. Setting R(t) := R(t, 0), we obtain a strongly continuous one-
parameter group. As we have already mentioned, we can then write R(t) = e−itB , 
where B is a certain unique, densely defined, closed operator called the generator 
of R. 

For non-autonomous evolutions, the concept of a generator is understood only 
under some special assumptions. Heuristically, the operator-valued function I )
t *→ B(t) is called the (time-dependent) generator of R(t, s) if 

. B(t) :=
(
i∂tR(t, s)

)
R(s, t).

Note that the evolution should satisfy in some sense 

. i∂tR(t, s)v = B(t)R(t, s)v,

−i∂sR(t, s)v = R(t, s)B(s)v.

A possible rigorous meaning of the concept of a time-dependent generator will 
be discussed in Sect. 3.6. 

3.3 Bisolutions and Inverses of the Cauchy Data Operator 

Introducing the (heuristic) generator B(t), we can consider the (still heuristic) 
Cauchy data operator 

. M := ∂t + iB(t).

Let Cc(I,W) denote continuous compactly supported functions from the open 
interval I to W. We will say that an operator E is a bisolution resp. an inverse 
or Green’s operator of M if it is maps Cc(I,W) → C(I,W) and satisfies
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(heuristically) 

.
(
∂t + iB(t)

)
Ew = 0, E

(
∂t + iB(t)

)
v = 0, . (31a) 

resp.
(
∂t + iB(t)

)
Ew = w, E

(
∂t + iB(t)

)
v = v. (31b) 

for all w ∈ Cc(I,W) and for v in an appropriate domain inside C(I,W). (Note  
that M is an example of an unbounded operator, hence problems with its domain 
are not surprising.) A possible rigorous version of (31a) and (31b) will be given in 
Sect. 3.7. 

Note that all the definitions of inverses and bisolution that we will give below will 
be rigorous. Yet, for the time being, they will satisfy the conditions (31a) or (31b) 
only on a heuristic level. 

The following definition introduces the two most natural inverses and the most 
natural bisolution: 

Definition 3.2 Define the operators E• : Cc(I,W) → C(I,W) 

.(E•w)(t) :=
∫

I
E•(t, s)w(s) ds, • = PJ,∨,∧, (32) 

by their temporal integral kernels 

. EPJ(t, s) := R(t, s),

E∨(t, s) := θ(t − s)R(t, s),

E∧(t, s) := −θ(s − t)R(t, s).

EPJ is called the Pauli–Jordan bisolution and E∨, E∧ are called the forward resp. 
backward inverse. Jointly, we call them classical propagators. 

Clearly, we have 

.EPJ = E∨ − E∧, (34) 

which is analogous to (2a). 
If I is finite, then the operators E∨, E∧, EPJ can be extended to bounded 

operators on the Hilbertizable space L2(I,W) = L2(I )⊗W. 
If I = R, typically they are not bounded on L2(R,W). However, if R(t, s) 

is uniformly bounded (which we will typically assume), then E∨, E∧, EPJ are 
bounded as operators 〈t〉−s L2(I,W) → 〈t〉s L2(I, W) for s >  1 

2 .
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3.4 Bisolutions and Inverses Associated with Involutions 

Let S+ and S− be two bounded involutions, 

. ((
(−)
− ,(

(+)
− ), ((

(−)
+ ,(

(+)
+ )

the corresponding two pairs of complementary projections and 

. (Z(−)
− ,Z(+)

− ), (Z(−)
+ ,Z(+)

+ ).

the corresponding two pairs of complementary subspaces (see Sect. 2.8). 
For finite t+, t−, we set  

. S±(t) = R(t, t±)S±R(t±, t),

(
(+)
± (t) := R(t, t±)(

(+)
± R(t±, t), (

(−)
± (t) := R(t, t±)(

(−)
± R(t±, t),

Z(+)
± (t) := R(t, t±)Z(+)

± , Z(−)
± (t) := R(t, t±)Z(−)

± .

If t± = ±∞, we assume that there exists T such that on ]−∞,−T [ and ]T ,∞[ 
the evolution is autonomous, that is, there exist B± such that 

. ±t,±s > T ⇒ R(t, s) = e−i(t−s)B± .

We also assume that 

.e−i(t−s)B±S± = S±e−i(t−s)B± . (35) 

We then set 

. S±(t) = R(t, s)S±R(s, t),

(
(+)
± (t) := R(t, s)(

(+)
± R(s, t), (

(−)
± (t) := R(t, s)(

(−)
± R(s, t),

Z(+)
± (t) := R(t, s)Z(+)

± , Z(−)
± (t) := R(t, s)Z(−)

± ,

where ±s >  T  is arbitrary. 

Definition 3.3 For any t, s ∈ I , we define 

.E
(+)
± (t, s) := R(t, s)(

(+)
± (s) = (

(+)
± (t)R(t, s).. (36a) 

E (−) ± (t, s) := R(t, s)((−) 
± (s) = (

(−) 
± (t)R(t, s). (36b)
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Define the operators E (+) 
± and E (−) ± : Cc(I,W) → C(I,W) by their temporal 

integral kernels (36). E (+) 
± are called the (

(+) 
± -in/out bisolutions and E (−) ± are called 

the (
(−) 
± -in/out bisolutions. 

Clearly, we have 

.EPJ = E
(+)
± + E

(−)
± , (37) 

which is analogous to (2b). 

Definition 3.4 We say that asymptotic complementarity holds for (Z(+) 
+ ,Z(−) 

− ) if 
for some (and thus for all) t ∈ I , 

. 
(
Z(+)

+ (t),Z(−)
− (t)

)

is a pair of complementary subspaces of W. Suppose that asymptotic complemen-
tarity holds for (Z(+) 

+ ,Z(−) 
− ). Then we define 

.6F(+)(t), the projection onto Z(+)
+ (t) along Z(−)

− (t), . (38a)

6F(−) (t), the projection onto Z(−) 
− (t) along Z(+) 

+ (t). (38b) 

It is the pair of projections associated to the direct sum decomposition W = 
Z(+) 

+ (t) ⊕ Z(−) 
− (t). We also define the operator EF : Cc(I,W) → C(I,W) as 

in (32) by its temporal integral kernel 

. EF(t, s) := θ(t − s)R(t, s)6F(+)(s)− θ(s − t)R(t, s)6F(−)(s).

EF is called the Z(+) 
+ -out Z(−) 

− -in inverse. 

The following definition is fully analogous to the previous one: 

Definition 3.5 We say that asymptotic complementarity holds for (Z(−) 
+ ,Z(+) 

− ) if 
for some (and thus for all) t ∈ I , 

. 
(
Z(−)

+ (t),Z(+)
− (t)

)

is a pair of complementary subspaces of W. Suppose that asymptotic complemen-
tarity holds for (Z(−) 

+ ,Z(+) 
− ). Then we define 

.6F(−)(t), the projection onto Z(−)
+ (t) along Z(+)

− (t), . (39a)

6F(+) (t), the projection onto Z(+) 
− (t) along Z(−) 

+ (t). (39b)
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It is the pair of projections associated to the direct sum decomposition W = 
Z(−) 

+ (t) ⊕ Z(+) 
− (t). We also define the operator EF : Cc(I,W) → C(I,W) as 

in (32) by its temporal integral kernel 

. EF(t, s) := θ(t − s)R(t, s)6F(−)(s)− θ(s − t)R(t, s)6F(+)(s).

EF is called the Z(−) 
+ -out Z(+) 

− -in inverse. 

We clearly have 

. R(t, s)6F(±)(s) = 6F(±)(t)R(t, s),

R(t, s)6F(±)(s) = 6F(±)(t)R(t, s),

Heuristically, EF and EF are inverses in the sense of (31b). If  I is finite, then 
they are bounded on L2(I, W). 

Asymptotic complementarity is trivially satisfied for the pairs (W, {0}) and 
({0},W). The corresponding inverses are simply E∨ and E∧, defined in Defini-
tion 3.2. 

Remark 3.6 Let us explain the notation that we are using: + and − without 
parenthesis are related to t+ or “out”, resp. t− or “in”. (+) and (−) inside parenthesis 
denote the “particle space”, resp. the “antiparticle space”. 

3.5 Identities Involving Bisolutions and Inverses 

We make all assumptions of Sect. 3.4. In addition we suppose that asymptotic 
complementarity holds for both pairs of subspaces. Using Proposition 2.7, we have  
the following: 

Proposition 3.7 The projections defined in (38) and (39) are given explicitly by 

. 6F(+)(t) = (
(+)
+ (t)ϒ(t)−1(

(+)
− (t), 6F(−)(t) = (

(−)
− (t)ϒ(t)−1(

(−)
+ (t),

and 6F(+)(t) = (
(+)
− (t)ϒ(t)−1(

(+)
+ (t), 6F(−)(t) = (

(−)
+ (t)ϒ(t)−1(

(−)
− (t),

where ϒ(t)  is the invertible operator defined by 

.ϒ(t) := 1
4

(
2 + S−(t)S+(t)+ S+(t)S−(t)

)
.
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Observe that ϒ(t)  has the properties 

. ϒ(t) = R(t, s)ϒ(s)R(s, t),

ϒ(t)S±(t) = S±(t)ϒ(t).

Thus we have defined the inverses E∨, E∧, EF, EF and the bisolutions EPJ, 
E (+) 
− , E (−) − , E (+) 

+ , E (−) + . They satisfy the relations (34) and (37). As described in 
the introduction, in the setting of the Minkowski space and, more generally, of a 
stationary spacetime, they satisfy several other identities. These identities do not 
hold in general. Instead, we have: 

Proposition 3.8 The following three identities hold: 

.(E
(+)
+ − E

(−)
+ − E

(+)
− + E

(−)
− )(t, s) = R(t, s)(S+ − S−)(s); . (40) 

(EF + EF − E∨ − E∧)(t, s) = 
1 
4 
R(t, s)ϒ(s)−1[S−(s), S+(s)]; (41) 

.

(EF − EF)(t, s)− 1
2
(E

(+)
+ − E

(−)
+ + E

(+)
− − E

(−)
− )(t, s)

= 1
8
R(t, s)ϒ(s)−1[S+(s)− S−(s), [S+(s), S−(s)]

]
.

(42) 

Proof Equation (40) is straightforward. 
Obviously, the difference of two inverses is a bisolution. The temporal kernels of 

the following bisolutions have very simple forms: 

.(EF − E∧)(t, s) = R(t, s)6F(+)(s), . (43) 

(EF − E∨)(t, s) = −R(t, s)6F(−) (s), . (44) 

(EF − E∧)(t, s) = R(t, s)6F(−) (s), . (45) 

(EF − E∨)(t, s) = −R(t, s)6F(+) (s). (46) 

Taking the sum of (43) and (46) we obtain 

.(EF + EF − E∨ − E∧)(t, s) = R(t, s)(6F(+) −6F(−))(s)

= R(t, s)ϒ(s)−1((
(+)
+ (

(+)
− −(

(+)
− (

(+)
+ )(s),
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which yields (41). Taking the difference of (43) and (45) we obtain the following 
identities: 

. EF(t, s)− EF(t, s) = R(t, s)(6F(+) −6F(−))(s)

= 1
4
R(t, s)ϒ(s)−1((1 + S+)(1 + S−)− (1− S+)(1− S−)

)
(s)

= 1
2
R(t, s)ϒ(s)−1(S+ + S−)(s)

= R(t, s)
(1

2
(S+ + S−)(s)+

1
8
ϒ(s)−1

× (S+ + S− − S−S+S− − S+S−S+)(s)
)
,

This yields (42). <=
Note that for the standard choice of propagators in a stationary QFT the right 

hand sides of (40), (42) and (41) vanish. It is easy to see that they do not have to 
vanish in general. 

The identities (41) and (42) simplify in some important situations: 

Proposition 3.9 Assume that asymptotic complementarity holds. Further, suppose 
that for any (and hence for all) t ∈ I 

.S−(t)S+(t) = S+(t)S−(t). (47) 

Then 

.EF + EF = E∨ + E∧, . (48a) 

EF − EF = 
1 
2 
(E (+) 

+ − E (−) + + E (+) 
− − E (−) − ). (48b) 

Equation (47) is satisfied in a number of interesting situations. In particular, if the 
evolution is autonomous, it is natural to assume that S+ = S− =: S•, requiring that 
it commutes with the generator B. Then E (+) 

± and E (−) ± collapse to two bisolutions: 

. E
(+)
+ = E

(+)
− =: E(+),

E
(−)
+ = E

(−)
− =: E(−).

Thus, in the autonomous case, the identity (48a) holds and (48b) can be rewritten as 

.EF − EF = E(+) − E(−).
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3.6 Almost Unitary Evolutions on Hilbertizable Spaces 

So far we discussed generators of an evolution only in a heuristic way. In this 
subsection we will describe a setting that allows us to make this concept precise. In 
view of our applications, we will introduce generators of evolutions on Hilbertizable 
spaces that one might call almost unitary evolutions. 

For the remainder of this section, we consider the scale of Hilbertizable spaces 
Wα , α ∈ [0, 1], as in Sect. 2.4. 

Theorem 3.10 (cf. Thm. C.10 of [9]) Let {B(t)}t∈I be a family of densely defined, 
closed operators on W0. Suppose that the following conditions are satisfied: 

(a) W1 ⊂ D
(
B(t)

)
so that B(t) ∈ B(W1,W0) and I ) t *→ B(t) ∈ 

B(W1,W0) is norm continuous. 
(b) For every t ∈ I , scalar products (· | ·)0,t and (· | ·)1,t compatible with W0 

resp. W1 have been chosen. Denote the corresponding Hilbert spaces W0,t 
and W1,t . 

(c) B(t) is self-adjoint in the sense of W0,t and the part B̃(t) of B(t) in W1 is 
self-adjoint in the sense of W1,t . 

(d) For a positive C ∈ L1 
loc(I ) and all s, t ∈ I , 

. ‖w‖0,t ≤ ‖w‖0,s exp|
∫ t

s
C(r) dr|,

‖v‖1,t ≤ ‖v‖1,s exp|
∫ t

s
C(r) dr|.

Then there exists a unique family of bounded operators {R(t, s)}s,t∈I , on W0 with 
the following properties: 

(i) For all r, s, t ∈ I , we have the identities (30). 
(ii) R(t, s) is W0-strongly continuous. It preserves W1 and is W1-strongly 

continuous. Hence it preserves Wα , 0 ≤ α ≤ 1, and is Wα-continuous. 
Moreover, 

. ‖R(t, s)‖α,t ≤ exp|
∫ t

s
2C(r) dr|, s, t ∈ I.

(iii) For all w ∈W1 and s, t ∈ I , 

. i∂tR(t, s)w = B(t)R(t, s)w,

−i∂sR(t, s)w = R(t, s)B(s)w,

where the derivatives are in the strong topology of W0. 

We call {R(t, s)}s,t∈I the evolution generated by B(t).
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Note that, if t± are finite, the above theorem remains true if we everywhere 
replace I with I cl = [t−, t+], and L1 

loc]t−, t+[ with L1[t−, t+], provided that we 
consider only the right/left-sided derivatives at t−/t+. 

Sometimes it is convenient to use an easy generalization of Theorem 3.10, where 
the generator is perturbed by a bounded operator. It is also proven in [9]. 

Theorem 3.11 Suppose that {B0(t)}t∈I satisfies all the assumptions of Theo-
rem 3.10 and I ) t *→ V (t)  ∈ B(W0) is a norm continuous family of operators. 
Let B(t) := B0(t) + V (t). Then there exists a unique family of bounded operators 
{R(t, s)}s,t∈I , on W0 satisfying all properties of Theorem 3.10. 

If we want to pass to the real case, we use the following obvious fact: 

Proposition 3.12 If W0 has a conjugation which preserves W1, then R(t, s) is 
real for t, s ∈ I if and only if its generator B(t) is anti-real for all t ∈ I . 

3.7 Rigorous Concept of a Bisolution and Inverse 

Under the assumptions of Theorem 3.10 it is possible to propose a rigorous version 
of a concept of a (left) bisolution and a (left) inverse, and check that they are satisfied 
by the E• that we have constructed. 

Proposition 3.13 

1. Let v ∈ Cc(I,W1) ∩ C1 
c (I,W0). Then for E• = EPJ, E  (+) 

− , E  (−) − , E (+) 
+ , E  (−) + 

we have 

. E•(∂t + iB(t)
)
v = 0,

and for E• = E∧, E∨, EF, EF we have 

. E•(∂t + iB(t)
)
v = v.

2. Let w ∈ Cc(I, W1). Then for E• = EPJ we have 

. 
(
∂t + iB(t)

)
E•w = 0,

and for E• = E∧, E∨ we have 

.
(
∂t + iB(t)

)
E•w = w.
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Proof Let us prove (1) for EF: 

. 

(
EF(

∂s + iB(s)
)
v
)
(t) =

∫ t

t−
6F(+)(t)R(t, s)

(
∂s + iB(s)

)
v(s) ds

−
∫ t+

t
6F(−)(t)R(t, s)

(
∂s + iB(s)

)
v(s) ds

=
∫ t

t−
6F(+)(t)∂s

(
R(t, s)v(s)

)
ds

−
∫ t+

t
6F(−)(t)∂s

(
R(t, s)v(s)

)
ds

= 6F(+)(t)v(t)+ 6F(−)(t)v(t)

= v(t).

Let us prove (2) for E∨: 

. 

((
∂t + iB(t)

)
E∨w

)
(t) =

(
∂t + iB(t)

) ∫ t

t−
R(t, s)w(s) ds

= R(t, t)w(t)+
∫ t

t−

(
∂t + iB(t)

)
R(t, s)w(s) ds

= w(t).

<=

4 Evolutions on Pseudo-Unitary Spaces 

Pre-pseudo-unitary spaces are Hilbertizable spaces with a distinguished bounded 
Hermitian form. They can be viewed as complexifications of pre-symplectic 
spaces—real spaces with a distinguished bounded antisymmetric form. 

In practice, one usually assumes that the Hermitian or pre-symplectic form is 
non-degenerate. Then these spaces are called pseudo-unitary, resp. symplectic. A  
transformation preserving the structure of a pseudo-unitary, resp. symplectic space 
is called pseudo-unitary, resp. symplectic. 

Krein spaces constitute an especially well-behaved class of pseudo-unitary 
spaces. The Krein structure adds interesting new features to bisolutions and inverses 
of M := ∂t + iB(t). The most interesting new fact is the automatic validity of 
asymptotic complementarity if the “in particle space” is maximally positive and the 
“out antiparticle space” is maximally negative. This implies the existence of the 
Feynman and anti-Feynman inverses.
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We will also discuss generators of 1-parameter groups preserving the pseudo-
unitary structure, called pseudo-unitary generators. In particular, we will introduce 
the so-called stable pseudo-unitary generators, which possess positive Hamiltoni-
ans. They are distinguished both on physical and mathematical grounds. Especially 
good properties have strongly stable pseudo-unitary generators, whose positive 
Hamiltonians are bounded away from zero. 

We discuss two constructions of a pseudo-unitary evolution R(t, s). starting from 
a time-depenent generator I ) t *→ B(t). The first construction uses a nested pair of 
Hilbertizable spaces W1 ⊂W0, where W0 is equipped with a Hermitian form Q, 
and B(t) : W1 →W0. The second construction uses a nested pair of Hilbertizable 
spaces W 1 

2 
⊂ W− 1 

2 
equipped with a pairing Q and B(t) : W 1 

2 
→ W− 1 

2 
. The  

pseudo-unitary space W0 is obtained by interpolation. Later on we will use both 
constructions. 

4.1 Symplectic and Pseudo-Unitary Spaces 

Definition 4.1 A pre-symplectic space is a real vector space Y equipped with an 
antisymmetric form ω, called a pre-symplectic form 

. Y×Y ) (v,w) *→ 〈v |ωw〉 ∈ R.

If ω is non-degenerate, then Y is called a symplectic space. If the dimension of Y is 
infinite, we assume that Y is Hilbertizable and ω is bounded. 

Definition 4.2 We will say that a bounded invertible operator R on a pre-symplectic 
space (Y,ω)  preserves ω if 

. 〈Rv |ωRw〉 = 〈v |ωw〉.

If in addition ω is non-degenerate, we will say that R is symplectic. 

Definition 4.3 A pre-pseudo-unitary space is a complex vector space W equipped 
with a Hermitian form Q 

. W×W ) (v,w) *→ (v |Qw) ∈ C.

If Q is non-degenerate, then W is called a pseudo-unitary space. If the dimension 
of W is infinite, we assume that W is Hilbertizable and Q is bounded. 

Definition 4.4 We will say that a bounded invertible operator R on (W,Q)  
preserves Q if 

.(Rv |QRw) = (v |Qw). (49)
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If in addition Q is non-degenerate, we will say that R is pseudo-unitary. 

Note that even if one starts from a real (pre-)symplectic space, it is useful to 
consider its complexification. In Sect. 2.6 we described how to pass from the real 
to complex formalism. In this section we will treat the complex formalism as the 
standard one. 

In the context of a pre-pseudo-unitary space treated as the complexification of 
a pre-symplectic space it is natural to consider conjugations that anti-preserve (and 
not preserve) Q, that is (v |Qw) = −(v |Qw), see (26). 

Definition 4.5 An antilinear involution v *→ v on a pseudo-unitary space (W,Q)  
which anti-preserves Q and such that there exists a compatible scalar product (· | ·)• 
satisfying 

. (v |w)• = (v |w)•,

will be called a conjugation on (W,Q). 

As in (24), given a conjugation we can define the real subspace WR of W. The  
restriction of Q to WR is clearly a pre-symplectic space. 

4.2 Admissible Involutions and Krein Spaces 

Let (W,Q)  be a pre-pseudo-unitary space. 

Definition 4.6 A (bounded) involution S• on W will be called admissible if it 
preserves Q and the scalar product 

.(v |w)• := (v |QS•w) = (S•v |Qw) (50) 

is compatible with the Hilbertizable structure of W. Sometimes we will write W• 
to denote the space W equipped with the scalar product (50). 

Definition 4.7 A pre-pseudo-unitary space is called a Krein space if it possesses an 
admissible involution. 

Clearly, every Krein space is pseudo-unitary. 

Proposition 4.8 If S• is an admissible involution on (W,Q), then S• is self-adjoint 
and unitary on W•. 

For any admissible involution S•, we define the corresponding particle projection
((+)

• and particle space Z(+)
• , as well as the  antiparticle projection ((−)

• and
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antiparticle space Z(−)
• , as in  (27). Note the following relations: 

. (v |w)• = (((+)
• v((+)

• w)• + (((−)
• v |((−)

• w)•,

(v |Qw) = (((+)
• v |((+)

• w)• − (((−)
• v |((−)

• w)•.

Let us make an additional comment on Krein spaces with conjugations. 

Proposition 4.9 Suppose that (W,Q)  is a Krein space with conjugation. If S• is 
an admissible anti-real involution, then iS• is real and we have 

. (
(+)
• = ((−)

• , Z(+)
• = Z(−)

• ,

so that W = Z(+)
• ⊕Z(+)

• . 

4.3 Basic Constructions in Krein Spaces 

Let (W,Q)  be a Krein space. 

Definition 4.10 Let Z ⊂W. We define its Q-orthogonal complement as follows: 

. Z⊥Q := {w ∈W | (w |Qv) = 0, v ∈ Z}.

If (· | ·)• is a scalar product, we also have the •-orthogonal complement 

. Z⊥• := {w ∈W | (w |v)• = 0, v ∈ Z}.

Proposition 4.11 1. If Z is a closed subspace, then so is Z⊥Q, and (Z⊥Q )⊥Q = 
Z. 

2. If Z1,Z2 are complementary in W, then so are Z⊥Q 
1 , Z⊥Q 

2 . 
3. If (v |Qw) = (v |S•w)• (equivalently, if S• is admissible), then Z⊥Q = S•Z⊥•. 

Definition 4.12 Let A ∈ B(W). We define its Q-adjoint as follows: 

. (A∗Qv |Qw) = (v |QAw), v,w ∈W.

If (· | ·)• is a scalar product, we also have the •-adjoint of A 

. (A∗•v |w)• = (v |Aw)•, v, w ∈W.

Proposition 4.13 

1. If (v |Qw) = (v |S•w)• (equivalently, if S• is admissible), then A∗Q = S•A∗•S•.
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2. Let (((+) ,((−) ) be a pair of complementary projections. Then (((+)∗Q ,
((−)∗Q ) is also a pair of complementary projections and 

. R(((±)∗Q) = N(((∓)∗Q) = R(((∓))⊥Q = N(((±))⊥Q.

Proposition 4.14 Let Z(+)
• be a closed subspace of W. Set Z(−)

• := Z(+)⊥Q
• . The 

following conditions are equivalent: 

1. Z(+)
• satisfies 

.v ∈ Z(+)
• ⇒ (v |Qv) ≥ 0, . (51) 

and v ∈ Z(−)
• ⇒ (v |Qv) ≤ 0. (52) 

2. Z(+)
• is a maximal closed subspace of W with the property (51). 

3. The spaces Z(+)
• and Z(−)

• are complementary, and if (((+)
• ,((−)

• ) is the 
corresponding pair of projections, then S• := ((+)

• − ((−)
• is an admissible 

involution. 

Definition 4.15 If Z(+)
• satisfies the conditions of Proposition 4.14, then it is 

called a maximally positive subspace. Analogously we define maximally negative 
subspaces. 

4.4 Pairs of Admissible Involutions 

Let S1, S2 be a pair of admissible involutions on a Krein space (W,Q). We will 
describe some structural properties of such a pair. 

Let (
(+) 
i ,(

(−) 
i ,Z(+) 

i ,Z(−) 
i , i = 1, 2, be defined as in (27). Set 

. K := S2S1, c := (
(+)
1

1−K

1+K
(

(−)
1 ,

where c is interpreted as an operator from Z(−) 
1 to Z(+) 

1 . 

Proposition 4.16 K is pseudo-unitary and invertible. K is positive and ‖c‖ < 1 
with respect to (· | ·)1 and (· | ·)2. We have 

.S1KS1 = S2KS2 = K−1, . (53) 

S1 
1−K 
1+K 

S1 = S2 
1− K 
1+ K 

S2 = −
1 − K 
1+ K 

. (54)
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Proof K is pseudo-unitary as the product of two pseudo-unitary transformations. 
The inequality 

. (v |Kv)1 = (S1v |QS2S1v) = (S1v |S1v)2 ≥ a(S1v |S1v)1 = a(v |v)1

with a >  0 shows the positivity of K with respect to (· | ·)1 and its invertibility. This 
implies ‖1−K 

1+K
‖ < 1. Hence ‖c‖ < 1. 

The identities (53) and (54) are direct consequences of the definition of K and 
S2 

1 = S2 
2 = 1. <=

Proposition 4.17 Using the decomposition W = Z(+) 
1 ⊕Z(−) 

1 we have 

.
1−K

1+K
=

[
0 c

c∗ 0

]
, . (55a) 

K =
[
(1+ cc∗)(1− cc∗)−1 −2c(1− c∗c)−1 

−2c∗(1 − cc∗)−1 (1+ c∗c)(1− c∗c)−1

]
,. (55b)

(
(+) 
1 =

[
1 0 
0 0

]
, (

(+) 
2 =

[
(1 − cc∗)−1 c(1− c∗c)−1 

−c∗(1 − cc∗)−1 −c∗c(1− c∗c)−1

]
, . (55c)

(
(−) 
1 =

[
0 0  
0 1

]
, (

(−) 
2 =

[−cc∗(1− cc∗)−1 −c(1− c∗c)−1 

c∗(1− cc∗)−1 (1− c∗c)−1

]
, . (55d) 

S1 =
[
1 0 
0 −1

]
, S2 =

[
(1+ cc∗)(1− cc∗)−1 2c(1− c∗c)−1 

−2c∗(1 − cc∗)−1 −(1 + c∗c)(1− c∗c)−1

]
. 

(55e) 

Moreover, if S1 is an admissible involution and ‖c‖ < 1, then S2 given as in (55e) 
is an admissible involution. 

Proof Equation (54) implies (55a). From the definition of c (or (55a)) we obtain 

. K =
[

1 −c
−c∗ 1

] [
1 c

c∗ 1

]−1

=
[

1 −c
−c∗ 1

] [
(1− cc∗)−1 −c(1− c∗c)−1

−c∗(1− cc∗)−1 (1− c∗c)−1

]
.

This yields (55b). 
From S2 = KS1 we obtain (55c), (55d) and (55e). <=
The involutions S1 and S2 correspond to the pairs of complementary subspaces 

(Z(+) 
1 ,Z(−) 

1 ), resp. (Z(+) 
2 ,Z(−) 

2 ). The following proposition implies the existence 
of two other direct sum decompositions. This fact plays an important role in the 
construction of the (in-out) Feynman inverse.
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Proposition 4.18 The pairs of subspaces (Z(+) 
1 , Z(−) 

2 ) and (Z(+) 
2 , Z(−) 

1 ) are 
complementary. Here are the corresponding projections: 

. 6
(+)
12 =

[
1 c

0 0

]
= (

(+)
1 ϒ−1(

(+)
2 projects onto Z(+)

1 along Z(−)
2 ,

6
(−)
21 =

[
0 −c
0 1

]
= (

(−)
2 ϒ−1(

(−)
1 projects onto Z(−)

2 along Z(+)
1 ,

6
(+)
21 =

[
1 0
−c∗ 0

]
= (

(+)
2 ϒ−1(

(+)
1 projects onto Z(+)

2 along Z(−)
1 ,

6
(−)
12 =

[
0 0
c∗ 1

]
= (

(−)
1 ϒ−1(

(−)
2 projects onto Z(−)

1 along Z(+)
2 ,

where 

. ϒ−1 =
[
1− cc∗ 0

0 1− c∗c

]
= 4

(2 + S2S1 + S1S2)
= 4

(1+K)(1+K−1)
.

Proof We apply Proposition 2.6. <=
We can reformulate Proposition 4.18 as follows. 

Proposition 4.19 Let Z1 be an maximally positive subspace and Z2 an maximally 
negative space. Then they are complementary. 

Proof By Proposition 4.14 there exist admissible involutions S1 and S2 such that 
Z1 = Z(+) 

1 and Z2 = Z(−) 
2 . Hence, it suffices to apply Proposition 4.18. <=

4.5 Pseudo-Unitary Generators 

Let (W,Q)  be a pre-pseudo-unitary space. 

Definition 4.20 We say that a densely defined operator B on W infinitesimally 
preserves Q if B is the generator of a one-parameter group e−itB  on W and 

.(v |QBw) = (Bv |Qw), v,w ∈ D(B). (56) 

If in addition Q is non-degenerate, then we will say that B is a pseudo-unitary 
generator. The quadratic form defined by (56) will be called the energy or 
Hamiltonian quadratic form of B on D(B). 

Proposition 4.21 Let B be a generator of a one-parameter group on W. Then 
e−itB , t ∈ R, preserves Q if and only if B infinitesimally preserves Q.
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Proof Let us show ⇐. Assume first that v, w ∈ D(B). Then 

. 
d
dt
(e−itBv |Qe−itBw) = i(Be−itBv |Qe−itBw)− i(e−itBv |QBe−itBw) = 0.

Hence 

.(e−itBv |Qe−itBw) = (v |Qw). (57) 

By the density of D(B) and the boundedness of Q and e−itB , (57) extends to the 
whole W. 

In the proof of ⇒ we use the above arguments in the reverse order (with the 
exception of the density argument, which is not needed). <=

The following proposition describes a large class of pseudo-unitary transforma-
tions and pseudo-unitary generators on Krein spaces. 

Proposition 4.22 Suppose that (W,Q)  is a Krein space and S• is an admissible 
involution with the corresponding scalar product (· | ·)•. If  B is a densely defined 
operator on W, self-adjoint in the sense of W• and commuting with S•, then B is 
a pseudo-unitary generator on (W,Q)  in the sense of Definition 4.20. 

Proof Clearly, e−itB  is a unitary operator on W• commuting with S•. Therefore, it 
is a pseudo-unitary transformation (see Definition 4.4). <=
Definition 4.23 A densely defined operator B on a Krein space (W,Q)  is called 
a stable pseudo-unitary generator if it is similar to self-adjoint, N(B) = {0}, and 
sgn(B) is an admissible involution. B is called a strongly stable pseudo-unitary 
generator if in addition it is invertible. 

In other words, a stable pseudo-unitary generator has a positive Hamiltonian and 
a strongly stable generator has a positive Hamiltonian bounded away from zero. 

4.6 Bisolutions and Inverses 

Let (W,Q)  be a Krein space. Then naturally L2(I, W) is also a Krein space with 
the Hermitian form 

. (v |Qw) :=
∫

I

(
v(t) |Qw(t)

)
dt,

and compatible scalar products 

.(v |w)• :=
∫

I

(
v(t) |w(t)

)
• dt.



60 J. Dereziński and D. Siemssen

Let {R(t, s)}t,s∈I be a strongly continuous pseudo-unitary evolution on (W,Q). 
We denote by B(t) the (heuristic) generator of R(t, s). Recall that in Sect. 3.3 we 
considered the (heuristic) Cauchy data operator M = ∂t + iB(t). Note that M = 
∂t + iB(t) is (heuristically) anti-Q-Hermitian on L2(I, W). We will give a rigorous 
version of this statement a little later, in (59). 

In Sect. 3.3 we introduced various inverses and bisolutions of M , considered as 
operators Cc(I,W) → C(I,W). In this subsection we add the Krein structure to 
the picture. 

First, as in Sect. 3.3, we define the Pauli–Jordan bisolution EPJ, and the forward 
and backward inverses E∨, resp. E∧. 

Proposition 4.24 EPJ is Q-Hermitian and the Q-adjoint of E∨ is contained in 
−E∧. More precisely, for v, w ∈ Cc

(
I, W

)
we have 

. (v |QEPJw) = (EPJv |Qw),

(v |QE∧w) = −(E∨v |Qw).

Consider now non-classical bisolutions and inverses. If t± are finite, let us select 
two arbitrary admissible involutions S+, S−. If t± = ±∞, recall that we assumed 
that for large ±t, ±s we have R(t, s) = e−i(t−s)B± . We assume that B± are stable 
pseudo-unitary generators and we set 

.S± := sgn
(
B±

)
. (58) 

Note that (58) implies that (35) is satisfied and S± are admissible. 
Define (

(+) 
± ,(

(−) 
± ,Z(+) 

± ,Z(−) 
± , as well as E (+) 

± , E (−) ± , as in Definition 3.3. Note  
that, for any t ∈ I , Z(+) 

+ (t) and Z(+) 
− (t) are maximally positive and Z(−) 

+ and Z(−) 
− 

are maximally negative. This immediately implies 

Proposition 4.25 E (+) 
± and E (−) ± are Q-Hermitian. E (+) 

± is Q-positive and E (−) ± is 
Q-negative. More precisely, for v, w ∈ Cc(I,W) we have 

. (E
(+)
± w |Qv) = (w |QE

(+)
± v), (v |QE

(+)
± v) ≥ 0,

(E
(−)
± w |Qv) = (w |QE

(−)
± v), (v |QE

(−)
± v) ≤ 0.

Proof Consider for definiteness the case of finite t±. It holds 

. (v |QE
(+)
± v) =

(
(

(+)
± w |Q(

(+)
± w

)
,

(v |QE
(−)
± v) =

(
(

(−)
± w |Q(

(−)
± w

)
,

where w =
∫
I R(t±, t)v(t) dt . <=
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What is more remarkable, under the present assumptions by Proposition 4.11 
(2) asymptotic complementarity holds automatically for both

(
Z(+) 

+ ,Z(−) 
−

)
and

(
Z(−) 

+ ,Z(+) 
−

)
. Therefore, we can define the inverses EF and EF, as in Definition 3.4 

and 3.5. 

Proposition 4.26 The Q-adjoint of EF is contained in −EF. More precisely, for 
v, w ∈ Cc

(
I,W

)
we have 

. (EFw |Qv) = −(w |QEFv).

Proof By (49) we have R(s, t)∗Q = R(t, s). Clearly, Z(+) 
± (t)

⊥Q = Z(−) 
± (t), and 

hence by Proposition 4.11 

. 6F(+)(t)∗Q = 6F(+)(t), 6F(−)(t)∗Q = 6F(−)(t).

Now, 

. (EFw |Qv) =
∫

I

(
w(t) |QEF(s, t)∗Qv(s)

)
dt ds

and 

. EF(s, t)∗Q = θ(s − t)6F(+)(t)∗QR(s, t)∗Q − θ(t − s)6F(−)(t)∗QR(s, t)∗Q

= θ(s − t)6F(+)(t)R(t, s)− θ(t − s)6F(−)(t)R(t, s)

= θ(s − t)R(t, s)6F(+)(s)− θ(t − s)R(t, s)6F(−)(s)

= −EF(t, s).

<=
With the choice (58), the bisolutions E (+) 

± are called the in/out positive frequency 
bisolutions, the bisolutions E (−) ± are called the in/out negative frequency bisolutions, 
and the inverses EF, resp. EF are called the Feynman, resp. the anti-Feynman 
inverse. 

4.7 The Cauchy Data Operator in the Krein Setting 

The Cauchy data operator M is the sum of two unbounded operators: ∂t 
and iB(t). Therefore, it is not easy to choose its domain. We will discuss 
two possible approaches to this question. In this subsection we will describe
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the “operator approach”. Sects. 4.8 and 4.9 will discuss the “quadratic form 
approach”. 

Suppose that (W0,Q)  is a pre-pseudo-unitary space. 

Theorem 4.27 Suppose that I ) t *→ B(t) is an operator on a Krein space W0. 
Suppose that W1 is a Hilbertizable space densely and continuously embedded in 
W0 and all the assumptions of Theorem 3.10 are satisfied. In addition, assume 
that for all t ∈ I the operators B(t) infinitesimally preserve Q. Then the evolution 
R(t, s) on W0 preserves Q. 

Proof Recall that among the assumptions of Theorem 3.11 there is W1 ⊂ D(B(t)). 
Besides, for any w ∈W1 this theorem implies that 

. i∂tR(t, s)w = B(t)R(t, s)w.

Hence the above theorem follows by repeating the proof of Proposition 4.21, where 
we use W1 instead of D(B). <=

Suppose that (W0,Q)  is a Krein space and I ) t *→ B(t) is a family of pseudo-
unitary generators satisfying the assumptions of Theorem 4.27. We can treat the 
Cauchy data operator 

. M = ∂t + iB(t)

as a densely defined operator on the Krein space L2(I,W0) with the domain 
Cc(I,W1) ∩ C1 

c (I,W0). Now we can give a rigorous meaning to its anti-Q-
Hermiticity: for v, w ∈ Cc(I,W1) ∩ C1 

c (I, W0), 

.

(
w |Q

(
∂t + iB(t)

)
v
)
= −

((
∂t + iB(t)

)
w |Qv

)
. (59) 

For the remaining part of this subsection we assume that I is finite and two 
admissible involutions S+, S− have been chosen. 

Proposition 4.28 EF and EF extend to bounded operators on L2(I,W0), their 
ranges are dense and their nullspaces are {0}. 
Proof The boundedness is obvious. By Proposition 3.13 (1) for any v ∈ 
Cc(I,W1) ∩ C1 

c (I,W0) we have 

. EF(
∂t + iB(t)

)
v = v.

Hence R(EF) contains Cc(I, W1)∩C1 
c (I,W0), which is dense in L2(I,W0). The  

same argument shows that R(EF) is dense in L2(I,W0). Now  

.N(EF) = R(EF∗Q)⊥Q = R(EF)⊥Q = {0}.

<=
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Thus by Proposition 4.28, for finite I we can define operators with dense domains 

. MF := (EF)−1, MF := (EF)−1.

They satisfy 

. (MF)∗Q = MF

and 0 belongs to their resolvent set. 

4.8 Nested Pre-Pseudo-Unitary Pairs 

In this and the following subsection we describe the “quadratic form approach” to 
dynamics on pre-pseudo-unitary spaces. Such an approach usually requires weaker 
assumptions. 

In this approach the starting point is a nested pair of Hilbertizable spaces 
equipped with a Hermitian pairing. The pre-pseudo-unitary space is then obtained 
by interpolation. 

Let us describe this simple construction in detail. In the next subsection we will 
describe evolutions on such nested pairs. 

Definition 4.29 Let λ >  0. A nested pre-pseudo-unitary pair (W−λ, Wλ,Q)  
consists of a pair of Hilbertizable spaces W−λ, Wλ, where Wλ is densely and 
continuously embedded in W−λ and a Hermitian pairing, that is a sesquilinear 
form 

. Wλ ×W−λ ) (v,w) *→ (v |Qw) ∈ C,

which is Hermitian on Wλ, i.e., 

.(v |Qw) = (w |Qv), v,w ∈Wλ, (60) 

and bounded, i.e., for some (hence all) compatible norms ‖ · ‖λ,• and ‖ · ‖−λ,• on 
Wλ, resp. W−λ there exists C• such that 

.|(v |Qw)| ≤ C•‖v‖λ,•‖w‖−λ,•. (61) 

In what follows, let (W− 1 
2 
,W 1 

2 
,Q)  be a nested pre-pseudo-unitary pair. (The 

parameter 1 
2 can be changed to any positive number, it is chosen here in view of our 

future applications.) Let Wλ, λ ∈ [− 1 
2 , 

1 
2 ], be the Hilbertizable spaces obtained by 

interpolation from the nested pair (W 1 
2 
,W− 1 

2 
).



64 J. Dereziński and D. Siemssen

Proposition 4.30 For λ ∈ [− 1 
2 , 

1 
2 ], there exists a unique family of Hermitian 

pairings Qλ 

. Wλ ×W−λ ) (v,w) *→ (v |Qλw) ∈ C.

such that Q 1 
2 
= Q and if − 1 

2 ≤ λ1 ≤ λ2 ≤ 1 
2 , v ∈ W−λ1 ⊂ W−λ2 , w ∈Wλ2 ⊂ 

Wλ1 , then 

.(v |Qλ1w) = (v |Qλ2w). (62) 

Proof By (61), Q can be viewed as a bounded map from W− 1 
2 

to the antidual of 
W 1 

2 
. The antidual of W 1 

2 
coincides with W− 1 

2 
. Hence, Q ∈ B(W− 1 

2 
). 

The restriction of Q to W 1 
2 
, by (61) and (60) is a bounded map to the antidual 

of W− 1 
2 
, which is W 1 

2 
. Hence Q ∈ B(W 1 

2 
). 

By interpolation, that is, Proposition 2.1 (2), for λ ∈ [− 1 
2 , 

1 
2 ], the restriction of 

Q to Wλ is bounded. <=
In what follows we drop the subscript λ from Qλ, which is allowed because 

of (62). In particular, for λ = 0, we obtain a bounded Hermitian form on W0: 

. W0 ×W0 ) (v,w) *→ (v |Qw) ∈ C.

4.9 Evolutions on Nested Pre-Pseudo-Unitary Pairs 

Recall that in Theorem 4.27 we constructed a pre-pseudo-unitary dynamics starting 
from a pre-pseudo-unitary space W0 and its subspace W1. In this subsection we 
give a slightly different construction of such a dynamics which starts from a nested 
pre-pseudo-unitary pair (W 1 

2 
, W− 1 

2 
,Q). 

Definition 4.31 Let (W 1 
2 
,W− 1 

2 
,Q)  be a nested pre-pseudo-unitary pair. If a 

bounded operator R on W− 1 
2 
, restricts to a bounded operator on W 1 

2 
, and 

. (Rv |QRw) = (v |Qw), v ∈W− 1
2
, w ∈W 1

2
,

then we say that R preserves (W 1 
2 
,W− 1 

2 
,Q). 

Applying complex interpolation we obtain 

Proposition 4.32 Suppose that R preserves (W 1 
2 
,W− 1 

2 
,Q). Then for 0 ≤ λ ≤ 1 

2 
it restricts to an operator preserving (Wλ,W−λ,Q). In particular, R preserves Q 
on W0 in the usual sense.
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Definition 4.33 Suppose that B is an operator on W− 1 
2 

with domain containing 
W 1 

2 
. We say that B infinitesimally preserves (W 1 

2 
,W− 1 

2 
,Q)  if B is a generator of 

a group on W− 1 
2 
, its part B̃ in W 1 

2 
is a generator of a group on W 1 

2 
, and 

.(Bv |Qw) = (v |QBw), v,w ∈W 1
2
. (63) 

The quadratic form defined by (63) is called the energy or Hamiltonian quadratic 
form of B on W 1 

2 
. 

Proposition 4.34 Suppose that B is an operator on W− 1 
2 

that infinitesimally 

preserves (W− 1 
2 
,W 1 

2 
,Q). Then e−itB , t ∈ R, preserves (W− 1 

2 
,W 1 

2 
,Q). 

Proof First we check that 

.(e−itBv |Qe−itBw) = (v |Qw), v,w ∈W 1
2
. (64) 

Then, by continuity, we extend (64) to v ∈W− 1 
2 
. <=

The following theorem can be viewed as an alternative to Theorem 4.27: 

Theorem 4.35 Suppose that all assumptions of Theorem 3.11 are satisfied where 
W0 is replaced with W− 1 

2 
and W1 is replaced with W 1 

2 
. In addition, assume that 

for all t ∈ I the operators B(t) infinitesimally preserve (W− 1 
2 
,W 1 

2 
,Q). Then the 

evolution R(t, s) preserves (W− 1 
2 
,W 1 

2 
,Q). In particular, it is pre-pseudo-unitary 

on W0. 

Let us compare the constructions of Theorem 4.27 and of Theorem 4.35. In both 
cases we obtain a (pre-)pseudo-unitary evolution on a (pre-)pseudo-unitary space. 
However, in the former case we have a fixed space W1 contained in D(B(t)) for all 
t . In the latter case, we do not have information about the domain of the generator 
of the evolution on W0, that is, of the part of B(t) in W0. On the other hand, in 
practice the assumptions of Theorem 4.35 can be weaker. 

5 Abstract Klein–Gordon Operator 

The usual Klein–Gordon operator acts on, say, C∞c (M), where M is a Lorentzian 
manifold, and is given by the expression (11). K can be interpreted as a Hermitian 
operator in the sense of the Hilbert space L2(M). (One of the main ideas of our paper 
is the usefulness of this interpretation.) After the identification of M with I × ), 
where I corresponds to the time variable and ) describes the spatial variables, we 
can identify L2(M) with L2(I, K), where K = L2()), see (105) for more details.
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Then, formally, the operator K is given by the expression 

.K :=
(
Dt +W ∗(t)

) 1
α2(t)

(
Dt +W(t)

)
− L(t), (65) 

where α(t) involves the metric tensor, W(t)  consists mostly of the 0th component 
of the potential and L(t) is a magnetic Schrödinger operator on ). We will describe 
this identification in more detail in Sect. 7.3. 

In this section we study (65) in an abstract setting. We are interested in various 
inverses and bisolutions of K . We treat K as an abstract Hilbert space and L(t), 
α(t), W(t)  as given abstract operators. The results of this section will be applied to 
the usual Klein–Gordon operator in Sect. 7. 

In order to study propagators associated with the abstract Klein–Gordon operator, 
we first introduce a certain scale of Hilbertizable spaces Wλ. Each member of 
this scale is the direct sum of two Sobolev-type spaces based on K describing the 
“configurations” and the “momenta”. The space W0 has the structure of a Krein 
space and will play the central role in quantization. The Cauchy data for K on 
W0 undergo a certain pseudo-unitary evolution whose generator B(t) is made out 
of L(t), W(t), α2(t). After imposing boundary conditions we can define various 
propagators, first associated with the Cauchy data operator M = ∂t + iB(t), and 
then associated with the operator K itself. 

Note that the formula (65) does not give a rigorous definition of a unique 
closed operator. Actually, the analysis of possible closed realizations of K and the 
corresponding inverses is quite subtle and depends strongly on whether I is finite or 
not. 

In the case of a finite I one first needs to impose appropriate boundary conditions 
at the initial time t− and the final time t+. These conditions lead to a construction 
of EF and EF, which are bounded inverses of M . They are then used to define GF 

and GF, which are bounded inverses of K . Inverting them we obtain a well-posed 
realization of the Klein–Gordon operator K . 

The situation is different and less understood if I = R. The Feynman and anti-
Feynman inverse can be constructed, however they are not bounded on L2(R,K). 
We conjecture that there exists a distinguished self-adjoint realization Ks.a. of K 
such that these inverses are the boundary values of the resolvent of Ks.a. from above 
and below at zero. The conjecture can be easily shown in some special cases, e.g., if 
K is stationary. We describe some arguments in favor of the conjecture, notably, we 
sketch a possible construction of the resolvent. There exist recent papers that show 
this conjecture if K corresponds to the Klein–Gordon operator on asymptotically 
Minkowskian spaces satisfying a non-trapping condition. 

Throughout the section we need to overcome a number of technical issues. First, 
it is convenient to assume that the Hamiltonian used in the construction of the 
phase space is bounded away from zero, or in physical terms, that the mass is 
strictly positive. However, physical systems may have a zero mass. This is solved 
by assuming that the phase space is constructed not directly from the Hamiltonian 
H(t), but from H0(t) which differs by a constant b.
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Another problem is the regularity. Assumption 5.36 allows us only to perform the 
basic construction. We introduce the additional Assumption 5.6(ρ), which for ρ = 0 
coincides with Assumption 5.36 and for ρ >  0 guarantees additional regularity. 
With strengthened hypotheses we are able to show some desired properties of the 
propagators and of the Klein–Gordon operator. 

Note that the above issue essentially disappears if we assume that everything 
is smooth, therefore it can be considered as purely academic, of interest only to 
specialists in operator theory. Nevertheless, we try to give an honest (if not optimal) 
treatment of this question. 

5.1 Basic Assumptions on the Abstract Klein–Gordon 
Quadratic Form 

Throughout this section we assume that K is a Hilbert space and for t ∈ I cl we are 
given the following operators on K: 

1. self-adjoint L(t) for which there exists b ∈ R such that L0(t) := L(t) + b are 
positive invertible, 

2. bounded invertible self-adjoint α(t), 
3. operator W(t). 

We will say that an operator-valued function I ) t *→ A(t) ∈ B(K) is absolutely 
norm continuous if there exists c ∈ L1(I ) such that c ≥ 0 and 

. ‖A(t)− A(s)‖ ≤
∫ s

t
c(τ ) dτ, t ≤ s, t, s ∈ I.

Here is the basic assumption that we will use in this section. 

Assumption 5.36 

1. For any t ∈ I there exist 0 < c1 ≤ c2 such that 

.c1L0(0) ≤ L0(t) ≤ c2L0(0) (66) 

and I cl ) t *→ L0(0)−
1 
2 L0(t)L0(0)−

1 
2 ∈ B(K) is absolutely norm continuous. 

2. I cl ) t *→ α2(t) ∈ B(K) is absolutely norm continuous. 
3. I cl ) t *→ W(t)L0(t)

− 1 
2 ∈ B(K) is absolutely norm continuous and there exists 

a <  1 such that 

.‖α(t)−1W(t)L0(t)
− 1

2 ‖ ≤ a.
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For β ∈ R, t ∈ I cl, define the scales of Hilbert spaces 

.Kβ,t := L0(t)
− β

2 K. (67) 

Then by (66) and Sect. 2.4, for β ∈ [−1, 1], Kβ,t is compatible with Kβ,0. Thus we 
obtain the scale of Hilbertizable spaces 

. Kβ , β ∈ [−1, 1].

Assumption 5.36 seems insufficient to define the Klein–Gordon operator. How-
ever, we can define the Klein–Gordon quadratic form by setting 

. (f1 |Kf2) =
∫

I

((
Dt +W(t)

)
f1(t) |

1
α2(t)

(
Dt +W(t)

)
f2(t)

)
dt

−
∫

I

(
L0(t)

1
2 f1(t) |L0(t)

1
2 f2(t)

)
dt + b

∫

I

(
f1(t) |f2(t)

)
dt, (68) 

f1, f2 ∈ Cc(I,K1) ∩ C1 
c (I,K0). Note that K is a Hermitian form in the sense of 

the Hilbert space L2(I ) ⊗ K 1 L2(I,K). Formally, it corresponds to the operator 
given by the expression (65). 

Unfortunately, K is not a semibounded form, hence the usual theory of quadratic 
forms does not apply. Therefore, it is not easy to interpret K as a closed operator 
on L2(I,K). We will come back to this question in Sect. 5.9 under more restrictive 
assumptions. 

5.2 Pseudo-Unitary Evolution on the Space of Cauchy Data 

The following analysis is essentially an adaptation of [8, 9] to the abstract setting. 
We consider the scale of Hilbertizable spaces 

.Wλ = Kλ+ 1
2
⊕Kλ− 1

2
, λ ∈

[
−1

2
,

1
2

]
. (69) 

Of special importance are 

.the energy space Wen := W 1
2
= K1 ⊕K0,

the dynamical space Wdyn := W0 = K 1
2
⊕K− 1

2
,

and the dual energy space W∗
en := W− 1

2
= K0 ⊕K−1.
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For
[
u1 

u2

]
∈ W−λ and

[
v1 

v2

]
∈ Wλ with |λ| ≤  1 

2 we introduce the pairing defined 

by the charge operator Q =
[

0 1 
1 0

]
. In other words, 

. 

([
u1

u2

]
|Q

[
v1

v2

])
= (u1 |v2)+ (u2 |v1).

Note that (W− 1 
2 
,W 1 

2 
,Q)  is a nested pseudo-unitary pair, see Definition 4.29. 

Moreover, (W0,Q)  is a Krein space. Indeed, 

. St :=
[

0 L0(t)
− 1

2

L0(t)
1
2 0

]

is a bounded self-adjoint involution on the Hilbert space 

.W0,t = L0(t)
− 1

4 K⊕ L0(t)
1
4 K. (70) 

Equation (70) is compatible with W0. Hence St is an admissible involution. 
Introduce the Hamiltonians 

. H(t) =
[
L(t) W ∗(t)
W(t) α2(t)

]
, H0(t) =

[
L0(t) W

∗(t)
W(t) α2(t)

]
.

Proposition 5.2 Suppose Assumption 5.36 holds. There exist 0 < c1 ≤ c2 such that 
on K⊕K we have 

. c1

[
L0(t) 0

0 1

]
≤H0(t) ≤ c2

[
L0(t) 0

0 1

]
,

c1

[
1 0
0 L0(t)

]
≤QH0(t)Q ≤ c2

[
1 0
0 L0(t)

]
.

Therefore, 

. W 1
2 ,t

:= H0(t)
− 1

2 (K⊕K) is compatible with W 1
2
,

W− 1
2 ,t

:= (QH0(t)Q)
1
2 (K⊕K) is compatible with W− 1

2
.

In particular, H0(t) is a positive operator on K⊕K with the form domain W 1 
2 
.
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Let Wλ,t , λ ∈ R, denote the scale of Hilbert spaces defined by interpolation from 
the nested pair W 1 

2 ,t
, W− 1 

2 ,t
. Clearly, Wλ,t are compatible with the Hilbertizable 

spaces Wλ for λ ∈ [− 1 
2 , 

1 
2 ]. 

Introduce the generators 

. B(t) := QH(t) =
[
W(t) α2(t)

L(t) W ∗(t)

]
, B0(t) := QH0(t) =

[
W(t) α2(t)

L0(t) W
∗(t)

]
.

Proposition 5.3 Suppose Assumption 5.36 holds. Then for any λ ∈ R, B0(t) is a 
unitary operator from W 1 

2+λ,t to W− 1 
2+λ,t . Besides, it is a self-adjoint operator in 

the sense of W− 1 
2+λ,t with the domain W 1 

2+λ,t . Therefore, 

.Wλ,t = |B0(t)|−λ+ 1
2 W 1

2 ,t
= |B0(t)|−λ− 1

2 W− 1
2 ,t

. (71) 

Proof We drop 0 and (t) from H0(t), B0(t). First note that H is bounded from 
K 1 

2 
⊕ K0 to K− 1 

2 
⊕ K0. Hence B is bounded from W 1 

2 
= K 1 

2 
⊕ K0 to W− 1 

2 
= 

K0 ⊕K− 1 
2 
. Now,  

. (Bu |Bv)− 1
2 ,t

= (QHu |(QHQ)−1QHv) = (u |Hv) = (u |v) 1
2 ,t

.

This proves the unitarity of B from W 1 
2 ,t 

to W− 1 
2 ,t

. 
Let u, v ∈W 1 

2 
. Then 

. (u |Bv)− 1
2 ,t

= (u |(QHQ)−1QHv) = (QHu |(QHQ)−1v) = (Bu |v)− 1
2 ,t

proves the Hermiticity in the sense of W− 1 
2 ,t 

with the domain W 1 
2 ,t

. Clearly, an 
invertible Hermitian operator is self-adjoint. 

Now we obtain 

. W− 1
2 ,t

= |B|W 1
2 ,t

,

from which (71) and all the remaining statements of the proposition follow. <=
Proposition 5.4 Suppose Assumption 5.36 holds. Then I ) t *→ B(t) : W 1 

2 
→ 

W− 1 
2 

satisfies the assumptions of Theorem 4.35. Therefore, it defines an evolution 

R(t, s) on Wλ, − 1 
2 ≤ λ ≤ 1 

2 , pseudo-unitary in the sense of (W−λ,Wλ,Q). In  
particular, the evolution R(t, s) is pseudo-unitary on (W0,Q). 

Proof First we check that t *→ B0(t) ∈ B
(
W 1 

2 
,W− 1 

2

)
is norm continuous. 

Besides, B0(t) is self-adjoint in the sense of the the scalar products (· | ·)− 1 
2 ,t 

and 
(· | ·) 1 

2 ,t
.
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There exists c ∈ L1(I ) such that for t, s ∈ I cl, 

. 

∥∥∥H0(s)
− 1

2
(
H0(t)−H0(s)

)
H0(s)

− 1
2

∥∥∥ ≤ 2
∫ t

s
c(u) du.

Therefore, 

. 

∥∥∥H0(s)
− 1

2 H0(t)H0(s)
− 1

2

∥∥∥ ≤ exp
(

2
∫ t

s
c(u) du

)
,

hence ‖v‖ 1 
2 ,t 

=
∥∥∥H0(t) 

1 
2 H0(s)

− 1 
2

∥∥∥ ‖v‖ 1 
2 ,s 
≤ exp

(∫ s 
t c(τ ) dτ

)
‖v‖ 1 

2 ,s
. 

Similarly, there exists c ∈ L1(I ) such that for t, s ∈ I cl, 

. 

∥∥∥(QH0(s)Q)−
1
2
(
QH0(t)Q−QH0(s)Q

)
(QH0(s)Q)−

1
2

∥∥∥ ≤ 2
∫ t

s
c(u) du.

Therefore, 

. 

∥∥∥(QH0(t)Q)
1
2 (QH0(s)Q)−1(QH0(t)Q)

1
2

∥∥∥

=
∥∥∥(QH0(s)Q)−

1
2 QH0(t)Q(QH0(s)Q)−

1
2

∥∥∥ ≤ exp
(

2
∫ t

s
c(u) du

)
,

hence ‖v‖− 1 
2 ,s 

=
∥∥∥H0(s)

− 1 
2 H0(t) 

1 
2

∥∥∥ ‖v‖− 1 
2 ,t 
≤ exp

(∫ s 
t c(τ ) dτ

)
‖v‖− 1 

2 ,t
. 

Thus the assumptions of Theorem 3.10 are satisfied and B0(t) defines a dynamics 
on Wλ for − 1 

2 ≤ λ ≤ 1 
2 . 

The perturbation B(t) − B0(t) is bounded. Therefore, the assumptions of 
Theorem 3.11 are satisfied, and B(t) also defines a dynamics. 

Finally, both B0(t) and B(t) infinitesimally preserve the pseudo-unitary nested 
pair (W 1 

2 
,W− 1 

2 
,Q). Hence the assumptions of Theorem 4.35 hold and R(t, s) is 

pseudo-unitary in the sense of (W 1 
2 
,W− 1 

2 
,Q). <=

5.3 Propagators on a Finite Interval 

Assume that I = ]t−, t+[ is finite. Suppose Assumption 5.36 holds. Let R(t, s) 
be the corresponding pseudo-unitary evolution on the Krein space W0, whose 
existence is guaranteed by Proposition 5.4. Thus we are now in the setting of 
Sect. 4.6. 

First we define the propagators for the Cauchy data. The classical propagators 
EPJ, E∨, E∧ are introduced as in Definition 3.2. Then we choose two admissible 
involutions S+, S− on W0. We then define the non-classical propagators E (+) 

± ,
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E (+) 
± , EF, EF as in Definitions 3.3, 3.4 and 3.5. (Recall that the asymptotic 

complementarity is automatically satisfied.) All the propagators for the Cauchy data 
are bounded operators on L2(I,W0). 

Clearly, we can write 

.E• =
[
E•

11 E•
12

E•
21 E•

22

]
. (72) 

We define the propagators for the abstract Klein–Gordon operator by selecting 
the upper right element of the matrix of (72) and possibly by multiplying it by a 
conventional factor: 

.G• := iE•
12, • = PJ,∨,∧,F,F; . (73a) 

G (+) 
± := E (+) 

±,12, G  (−) 
± := −E (−) ±,12. (73b) 

Theorem 5.5 Equation (73) are bounded operators on L2(I,K). They satisfy 

. GPJ∗ = −GPJ;
G∨∗ = G∧;

GF∗ = GF;

G
(+)∗
± = G

(+)
± ≥ 0,

G
(−)∗
± = G

(−)
± ≥ 0.

We expect that typically G• with • = ∨,∧,F,F have a zero nullspace and a 
dense range. (This will be proven below under some additional assumptions.) If this 
is the case, we can define 

.K• := G•−1, • = ∨,∧,F,F. (75) 

Note that K• can be viewed as well-posed realizations of the Klein–Gordon operator 
on a slab with appropriate (non-self-adjoint) boundary conditions. Clearly, 

.K∨∗ = K∧;

KF∗ = KF.
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5.4 Propagators on the Real Line 

Let I = R. We assume that for ±t >  T  the operators L(t), α(t) and W(t)  do 
not depend on t . Therefore, the generators B(t) for ±t >  T  do not depend on t , 
so that they can be denoted B±. We also assume that  B± are stable and set S± := 
sgn(B±). We define the propagators E• undestood as operators from L2 

c(R,W0) 
to L2 

loc(R,W0). Then we define the operators G• just as in (73), interpreted as 
operators L2 

c(R,K) to L2 
loc(R, K). Obvious analogs of Propositions 5.13 and 5.14 

hold for I = R. 
The above propagators play a central role in Quantum Field Theory on the 

spacetime M . In fact, they correspond to the positive energy Fock representations 
of incoming and outgoing quantum fields, as will be sketched in Sect. 7. 

We actually believe that this choice is also distinguished for very different rea-
sons by purely mathematical arguments. It probably corresponds to a distinguished 
(maybe unique) self-adjoint realization of the Klein–Gordon operator. We formulate 
our expectation in the following conjecture. 

Conjecture 5.6 For a large class of asymptotically stationary and stable abstract 
Klein–Gordon operators the following holds: 

1. There exists a distinguished self-adjoint operator Ks.a. on L2(R, K) such that on 
D(Ks.a. ) the quadratic form (68) coincides with (f1 |Ks.a. f2). 

2. For s >  1 
2 the following statements hold in the sense of 〈t〉−s L2(R,K) →

〈t〉s L2(R,K): 

. s-lim
ε↘0

(Ks.a. − iε)−1 = GF,

s-lim
ε↘0

(Ks.a. + iε)−1 = GF.

We will discuss arguments in favor of this conjecture in Sect. 5.7. 

5.5 Perturbation of the Evolution by the Spectral Parameter 

Now we are going to compute the resolvent of well-posed realizations of the Klein– 
Gordon operator. To this end in this subsection we introduce the perturbed evolution 
Rz(t, s).
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Let z ∈ C. We define 

. Z :=
[

0 0
1 0

]
,

Bz(t) :=
[

W(t) α2(t)

L(t)− z W ∗(t)

]
= B(t)− zZ.

Note that Z is a bounded operator on each Wλ: 

. ‖Zv‖λ = ‖L(t) 1
2 (λ− 1

2 )v1‖ ≤ ‖L(t)
1
2 (λ+ 1

2 )v1‖+ ‖L(t)
1
2 (λ− 1

2 )v2‖ = ‖v‖λ.

Proposition 5.7 Suppose Assumption 5.36 holds. Then t *→ Bz(t) generates an 
evolution Rz(t, s) on Wλ, λ ∈ [− 1 

2 , 
1 
2 ]. We have 

.Rz(t, s)
∗QRz(t, s) = Q, Rz(t, s)

∗ = QRz(s, t)Q. (77) 

In particular, if z ∈ R, then Rz(t, s) is pseudo-unitary on W0. 

Formally the equation 

. (z+K)f = 0

is equivalent to 

. i∂t

[
u1

u2

]
= Bz(t)

[
u1

u2

]
,

u1 = f, u2 = 1
α2(t)

(
Dt +W(t)

)
f.

Therefore, the evolution Rz(t, s) can be used to construct the resolvent of realiza-
tions of K . 

5.6 Resolvent for Finite Intervals 

Assume again that I is finite. We are back in the setting of Sect. 5.3. Recall 
that we impose Assumption 5.36 and choose admissible involutions S+, S−. Let  
(Z(+) 

+ ,Z(−) 
+ ) and (Z(+) 

− , Z(−) 
− ) be the corresponding particle/antiparticle spaces. 

For z ∈ C and t ∈ I , set  

.Z(+)
±,z(t) := Rz(t, t±)Z(+)

+ , Z(−)
±,z(t) := Rz(t, t±)Z(−)

± . (78)
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Let 

. RS :=
{
z ∈ C

∣∣ for some (hence all)t ∈ I the pair of subspaces
(
Z(+)

+,z(t),Z(−)
−,z(t)

)
is complementary

}
.

By Proposition 4.11 (2), 

. RS :=
{
z ∈ C

∣∣ for some (hence all) t ∈ I the pair of subspaces
(
Z(−)

+,z(t),Z(+)
−,z(t)

)
is complementary

}
.

For z ∈ RS we define 

. 6F(+)
z (t), the projection onto Z(+)

+,z(t) along Z(−)
−,z(t),

6F(−)
z (t), the projection onto Z(−)

−,z(t) along Z(+)
+,z(t);

6F(−)
z (t), the projection onto Z(−)

+,z(t) along Z(+)
−,z(t),

6F(+)
z (t), the projection onto Z(+)

−,z(t) along Z(−)
+,z(t).

Set 

. EF
z (t, s) := θ(t − s)Rz(t, s)6

F(+)
z (s)− θ(s − t)Rz(t, s)6

F(−)
z (s),

EF
z (t, s) := θ(t − s)Rz(t, s)6

F(−)
z (s)− θ(s − t)Rz(t, s)6

F(−)
z (s);

GF
z (t, s) := iEF

z,12(t, s),

GF
z (t, s) := iEF

z,12(t, s).

Proposition 5.8 For z ∈ RS the operators GF 
z , GF 

z are bounded and satisfy the 
resolvent equation: 

.GF
z −GF

w = (z− w)GF
zG

F
w, . (79) 

GF 
z − GF 

w = (z − w)GF 
zG

F 
w. (80) 

Besides, 

.(QEF
z )
∗ = −QEF

z , . (81) 

(GF 
z )
∗ = GF 

z . (82)
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Proof The boundedness is obvious. Let us prove (79). A straightforward computa-
tion yields 

. (z− w)
(
EF
z ZE

F
w

)
(t, s) =

∫ t+

t−
EF
z (t, τ )ZE

F
w(τ, s) dτ

= θ(t − s)(z− w)

∫ t

s
6F(+)

z (t)Rz(t, τ )ZRw(τ, s)6
F(+)
w (s) dτ

+ θ(s − t)(z− w)

∫ s

t
6F(−)

z (t)Rz(t, τ )ZRw(τ, s)6
F(−)
w (s) dτ

− θ(t − s)(z− w)

∫ s

t−
6F(+)

z (t)Rz(t, τ )ZRw(τ, s)6
F(−)
w (s) dτ

− θ(s − t)(z− w)

∫ t

t−
6F(+)

z (t)Rz(t, τ )ZRw(τ, s)6
F(−)
w (s) dτ

− θ(s − t)(z− w)

∫ t+

s
6F(−)

z (t)Rz(t, τ )ZRw(τ, s)6
F(+)
w (s) dτ

− θ(t − s)(z− w)

∫ t+

t
6F(−)

z (t)Rz(t, τ )ZRw(τ, s)6
F(+)
w (s) dτ.

By the fundamental theorem of calculus this equals 

. = θ(t − s)6F(+)
z (t)

(
Rz(t, s)− Rw(t, s)

)
6F(+)

w (s)

+ θ(s − t)6F(−)
z (t)

(
Rw(t, s)− Rz(t, s)

)
6F(−)

w (s)

− θ(t − s)6F(+)
z (t)

(
Rz(t, t−)Rw(t−, s)− Rz(t, s)

)
6F(−)

w (s)

− θ(s − t)6F(+)
z (t)

(
Rz(t, t−)Rw(t−, s)− Rw(t, s)

)
6F(−)

w (s)

− θ(s − t)6F(−)
z (t)

(
− Rz(t, t+)Rw(t+, s)+ Rz(t, s)

)
6F(+)

w (s)

− θ(t − s)6F(−)
z (t)

(
− Rz(t, t+)Rw(t+, s)+ Rw(t, s)

)
6F(+)

w (s).

We rearrange this, obtaining 

. = θ(t − s)6F(+)
z (t)Rz(t, s)

(
6F(+)

w (s)+ 6F(−)
w (s)

)

− θ(t − s)
(
6F(−)

z (t)+ 6F(+)
z (t)

)
Rw(t, s)6

F(+)
w (s)

− θ(s − t)6F(−)
z (t)Rz(t, s)

(
6F(+)

w (s)+ 6F(−)
w (s)

)

+ θ(s − t)
(
6F(−)

z (t)+ 6F(+)
z (t)

)
Rw(t, s)6

F(−)
w (s)
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. − Rz(t, t−)6F(+)
z (t−)6F(−)

w (t−)Rw(t−, s). (83a) 

+ Rz(t, t+)6F(−) 
z (t+)6F(+) 

w (t+)Rw(t+, s) (83b) 

which simplifies to 

. = θ(t − s)6F(+)
z (t)Rz(t, s)− θ(t − s)Rw(t, s)6

F(+)
w (s)

− θ(s − t)6F(−)
z (t)Rz(t, s)+ θ(s − t)Rw(t, s)6

F(−)
w (s)

= EF
z (t, s)− EF

w(t, s).

since, for any z, w, 

. R
(
6F(−)

w (t−)
)
= Z(−)

− = N
(
6F(+)

z (t−)
)

R
(
6F(+)

w (t+)
)
= Z(+)

+ = N
(
6F(−)

z (t+)
)
.

Thus we have proven that 

.(z− w)
(
EF
z ZE

F
w

)
(t, s) = EF

z (t, s)− EF
w(t, s). (84) 

Taking the 1, 2 component of (84) we obtain (79). 
To prove (81) we use (77). This implies (82). <=
Clearly, if we can define KF, KF by (75) as operators with dense domains, then 

we have 

. GF
z = (z+KF)−1, GF

z = (z+KF)−1

and 

. resolvent set of KF = resolvent set of KF ⊂ RS.

5.7 Resolvent for I = R 

In this subsection we will give some arguments supporting Conjecture 5.6. We will 
sketch a construction of a family of operators which we expect to be the resolvent 
of the (putative) distinguished self-adjoint realization of the abstract Klein–Gordon 
operator for I = R. We impose the assumptions of Sect. 5.4 (but it is likely that 
more assumptions are needed). Our analysis will not be complete. 

First note that we cannot repeat the constructions of Sect. 5.6 without major 
changes. In fact, for I = R in the definitions (78) one should take t → ±∞.
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However, for z 6∈ R the evolution Rz(t, s) blows up on a part of W0 and decays on 
another part as t → ±∞. 

We need to define the projections onto the (distorted) positive/negative part of the 
spectrum of B±,z (defined analogously to B± in Sect. 5.4). This is straightforward 
for B±, because they are self-adjoint. However, B±,z in general are not self-adjoint. 

For simplicity, we will assume that B± are strongly stable, so that their spectrum 
has a gap around 0. Then for small Re(z) the operators B±,z are “bisectorial”, which 
is sufficient for the construction of these projections. 

This is described in Proposition 7.2 of [8], which implies the following proposi-
tion: 

Proposition 5.9 There exists ζ0 > 0 such that the strip {ζ ∈ C | −ζ0 ≤ Re(ζ ) ≤ 
ζ0} is contained in the resolvent set of B±,z. Moreover, the operators 

. (
(+)
±,z := lim

τ→∞
1
2

(
1+ 1

π i

∫ iτ

−iτ
(B±,z − ζ )−1 dζ

)
,

(
(−)
±,z := lim

τ→∞
1
2

(
1− 1

π i

∫ iτ

−iτ
(B±,z − ζ )−1 dζ

)

constitute a pair of complementary projections commuting with B±,z such that 

. σ
(
B±,z(

(+)
±,z

)
= σ

(
B±,z

)
∩ {w ∈ C | Re(w) ≥ 0},

σ
(
B±,z(

(−)
±,z

)
= σ

(
B±,z

)
∩ {w ∈ C | Re(w) ≤ 0}.

Set 

. Z(±)
±,z(t) := R

(
lim

τ→±∞
Rz(t, τ )(

(±)
±,zRz(τ, t)

)
, Im(z) ≥ 0

Z(∓)
±,z(t) := R

(
lim

τ→±∞
Rz(t, τ )(

(∓)
±,zRz(τ, t)

)
, Im(z) ≤ 0.

We can now complement Conjecture 5.6 with an additional conjecture about the 
resolvent of Ks.a.: 

Conjecture 5.10 We expect that for Im(z) ≥ 0 for some (hence all) t ∈ R the pair 
of subspaces

(
Z(+) 

+,z(t),Z(−) 
−,z(t)

)
is complementary. Let

(
6

F(+) 
z (t),6

F(−) 
z (t)

)
be the 

pair of projections corresponding to this pair of spaces. 
Equivalently, we expect that for Im(z) ≤ 0 for some (hence all) t ∈ R the pair 

of subspaces
(
Z(−) 

+,z(t),Z(+) 
−,z(t)

)
is complementary. Let

(
6

F(−) 
z (t),6

F(+) 
z (t)

)
be the 

pair of projections corresponding to this pair of spaces. 
We also introduce 

.Ez(t, s) := θ(t − s)Rz(t, s)6
F(+)
z (s)− θ(s − t)Rz(t, s)6

F(−)
z (s), Im(z) > 0;
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Ez(t, s) := θ(t  − s)Rz(t, s)6F(−) 
z (s)− θ(s  − t)Rz(t, s)6F(+) 

z (s), Im(z) < 0; 
Gz(t, s) := iEz,12(t, s), Im(z) 6= 0. 

Then we conjecture that Gz defines for z ∈ C\R a bounded operator on L2(R,K) 
with a dense range and a trivial nullspace such that 

.Gz −Gw = (z− w)GzGw, . (85) 

G∗z = Gz. (86) 

Thus Gz is the resolvent of a self-adjoint operator, which we can call Ks.a and treat 
as the distinguished self-adjoint realization of K . 

Let us sketch some arguments in favor of the above conjecture. 
First of all, in the stationary case, that is, if B(t) does not depend on t , the  

conjecture is true (with minor additional assumptions) following the arguments of 
[8] and [9]. 

The conjecture is also true if K = C. In fact, the operator K is then essentially the 
well-known 1-dimensional magnetic Schrödinger operator. It should not be difficult 
to generalize this to the case of a finite dimensional K, or bounded L(t) and W(t). 

Unfortunately, for a generic spacetime, L(t) is unbounded and non-stationary. 
We know in this case that asymptotic complementarity holds for real z, so we can  
expect it to hold in a neighborhood of R. Ez are well defined as quadratic forms 
on, say, Cc(R,W0) and (86) is easily checked. However, we do not know how to 
control the norm of Ez(t, s) for large t, s, and hence to show the boundedness of Ez. 

We expect that 

. lim
t→+∞

e∓itB±,z(
(±)
±,z = 0, Im(z) ≥ 0; . (87) 

lim 
t→−∞

e∓itB±,z(
(∓) 
±,z = 0, Im(z) ≤ 0. (88) 

(This follows under a slightly stronger assumption from Proposition 7.2 of [8].) 
Now the resolvent Eq. (85) should follow by the same calculation as in the proof 
of Proposition 5.8, except that the terms (83a) and (83b) should be zero by (87) 
and (88). 

5.8 Additional Regularity 

In order to have better properties of the Klein–Gordon form, and in particular, 
to guarantee that it defines an operator, it will be useful to introduce a family of 
assumptions more restrictive than Assumption 5.36. This family will depend on a 
parameter ρ ≥ 0.
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Assumption 5.6 (ρ) 

1. For any t ∈ I there exist 0 < c1 ≤ c2 such that 

. c1L0(0)1+ρ ≤ L0(t)
1+ρ ≤ c2L0(0)1+ρ

and I cl ) t *→ L0(0)−
1+ρ 

2 L0(t)
1+ρ L0(0)−

1+ρ 
2 ∈ B(K) is absolutely norm 

continuous. 
2. I cl ) t *→ L0(t) 

ρ 
2 α2(t)L0(t)

− ρ 
2 ∈ B(K) is absolutely norm continuous. 

3. I cl ) t *→ L0(t) 
ρ 
2 W(t)L0(t)

−1−ρ 
2 , L0(t)

− ρ 
2 W(t)L0(t)

−1+ρ 
2 ∈ B(K) are 

absolutely norm continuous and there exists a <  1 such that 

. ‖L(t)− ρ
2 α(t)−1W(t)L0(t)

−1+ρ
2 ‖ ≤ a,

‖L(t) ρ
2 α(t)−1W(t)L0(t)

−1−ρ
2 ‖ ≤ a.

Note that Assumption 5.36 coincides with Assumption 5.6(0). If 0 ≤ ρ′ ≤ ρ, 
then Assumption 5.6(ρ) implies Assumption 5.6(ρ′). 

Proposition 5.12 Suppose Assumption 5.6(ρ) holds. Then the following is true: 

1. For any t ∈ I cl and for |β| ≤  1 + ρ, the Hilbert spaces Kβ,t and Kβ,0 are 
compatible. Hence we can extend the scale of Hilbertizable spaces Kβ to |β| ≤  
1 + ρ 

2. We can extend the scale of Hilbertizable spaces Wλ to |λ| ≤  1 
2 + ρ. Besides, for 

any t ∈ I cl and such λ the Hilbert spaces Wλ,t are compatible with Wλ. 
3. For any−ρ− 1 

2 ≤ λ ≤ ρ− 1 
2 the function I ) t *→ B(t) : Wλ+1 →Wλ satisfies 

the assumptions of Theorem 3.11, and hence defines an evolution R(t, s) on Wλ, 
|λ| ≤  1 

2 + ρ. For −ρ − 1 
2 ≤ λ ≤ ρ − 1 

2 this evolution satisfies 

.
(
∂t + iB(t)

)
R(t, s)u = 0, u ∈Wλ+1. (89) 

Proof Assumption 5.6(ρ) implies immediately that the Hilbertizable spaces 
K±(1+ρ),t and K±(1+ρ),0 coincide. Therefore (1) follows by the Kato–Heinz 
inequality. 

Let us drop (t). We have  

. 



L
θ
2
0 0

0 L
−1+θ

2
0




[
W α2

L0 W ∗

] 

L
−1−θ

2
0 0

0 L
− θ

2
0



 =



L
θ
2
0 WL

−1−θ
2

0 L
θ
2
0 α2L

− θ
2

0

1 L
−1+θ

2
0 W ∗L

− θ
2

0



 .

(90) 

Equation (90) is bounded for θ = ρ and θ = −ρ. Hence by interpolation it is 
bounded for −ρ ≤ θ ≤ ρ. Hence B0 is bounded from Wθ+ 1 

2 
to Wθ− 1 

2 
.
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Let −ρ ≤ θ ≤ ρ. Equation (90) can be represented as 

. 

[
L

θ
2
0 αL

− θ
2

0 0
0 1

] 

L
θ
2
0 α−1WL

−1−θ
2

0 1

1 L
−1+θ

2
0 W ∗α−1L

− θ
2

0




[
1 0

0 L
θ
2
0 αL

− θ
2

0

]

The two extreme terms are invertible. Besides, 

. ‖L
θ
2
0 α−1WL

−1−θ
2

0 ‖ ≤ a < 1.

Hence the middle term is also invertible. This proves the invertibility of B0(t) as a 
map from Wθ+ 1 

2 
to Wθ− 1 

2 
. 

Let −ρ − 1 
2 ≤ θ ≤ ρ + 1 

2 . Then for some θ0 ∈ [− 1 
2 , 

1 
2 ] and n ∈ Z we have 

θ = n+ θ0. Then Wθ,t  = B0(t)
nWθ0,t . But as Hilbertizable spaces Wθ0,t = Wθ0 . 

We have just proved that B0(t)
n are bounded invertible in the sense Wθ0 →Wθ0+n 

for θ0 + n ≤ ρ + 1 
2 . Hence Wθ0+n,t = Wθ0+n. Hence (2) is true. 

(3) is proven in a similar way as Proposition 5.4. <=
Note that Assumption 5.6(ρ) is especially important for ρ = 1 

2 . Then (89) holds 
with λ = 0, so that B(t) can be interpreted as an (unbounded) pseudo-unitary 
generator on the Krein space W0 with the domain W1. 

5.9 The Abstract Klein–Gordon Operator 

Analysis of differential operators with variable coefficients of low regularity is a 
rather technical and complicated subject, even if these coefficients are scalar. In 
our case these coefficients have values in unbounded operarators, hence it is not 
surprising that defining Klein–Gordon operators with low regularity conditions is 
difficult and messy. 

For completeness, in the following theorems we give conditions which allow 
us to define abstract Klein–Gordon operators. Note that we do not attempt to be 
optimal. 

Proposition 5.13 Suppose Assumption 5.6( 1 
2 ) holds. Let • = ∨,∧,F,F. 

1. Let 

.f ∈ Cc(I,K 3
2
) ∩ C1

c (I,K 1
2
), α−2(−i∂t +W)f ∈ C1

c (I,K− 1
2
). (91) 

Then 

.G•Kf = f. (92)
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2. If the space of f satisfying (91) is dense in K, then N(G•) = {0} and R(G•) is 
dense. 

3. If in addition I ) t *→ L(t)−
1 
4
(
∂tα(t)

−2)L(t)−
1 
4 , L(t)−

1 
4
(
∂tW(t)

)
L(t)−

3 
4 ∈ 

B(K) are continuous, then (91) is equivalent to 

. f ∈ Cc(I,K 3
2
) ∩ C1

c (I,K 1
2
) ∩ C2

c (I,K− 1
2
).

Proof (1): By Proposition 3.13 (1) we know that if u ∈ Cc(I, W1) ∩ C1 
c (I,W0), 

then 

.E•(∂t + iB(t)
)
u = u. (93) 

f ∈ Cc(I, K 3 
2 
)∩C1 

c (I,K 1 
2 
) implies that α−2(−i∂t +W)f  ∈ Cc(I, K 1 

2 
). Therefore, 

.u :=
[

f

−α−2(−i∂t +W)f

]
∈ Cc(I,W1) ∩ C1

c (I,W0). (94) 

Hence we can apply (93) to u. We have  

. Q(−i∂t + B) =
[

L −i∂t +W ∗

−i∂t +W α2

]

=
[
1 (−i∂t +W ∗)α−2

0 1

] [−K 0
0 α2

] [
1 0

α−2(−i∂t +W) 1

]
.

For u given by (94) we have  

. Q(−i∂t + B)u =
[−Kf

0

]
.

We obtain 

. u = E•(∂t + iB(t)
)
u =

[−E•
12Kf

−E•
22Kf

]
,

which yields (92). 
By (92) the range of G• contains (91) contains. The same argument shows that 

the range of G•∗ contains (91). If the space of (91) is dense, we have 

. N(G•) = R(G•∗)⊥ = {0}.

This proves (2). 
(3) follows by checking that ∂tα−2∂t f and ∂tα−2Wf are in Cc(I,K− 1 

2 
). <=
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Thus, if I is finite, under the assumptions of Proposition 5.13 (3) we can define 
an unbounded closed operator K• in the sense of L2(I,K) with 0 belonging to its 
resolvent set. It corresonds to the quadratic form (68) with the appropriate boundary 
conditions. For instance, the boundary conditions of KF are 

. f ∈ D(KF) ⇒
[

f (t∓)
−α−2(−i∂t +W)f (t∓)

]
∈ Z(∓)

∓ ,

f ∈ D(KF) ⇒
[

f (t∓)
−α−2(−i∂t +W)f (t∓)

]
∈ Z(±)

∓ .

Clearly, the above construction is indirect. It does not mean that the expres-
sion (65) is well defined in the sense of the Hilbert space L2(I,K). Under more 
stringent conditions, such as those described in the following proposition, one can 
directly interpret (65) as an operator: 

Proposition 5.14 Suppose that Assumption 5.6(1) holds. In addition, assume that 
I cl ) t *→

(
∂tα

−2(t)
)
L0(t)

− 1 
2 ,

(
∂tW(t)

)
L0(t)

−1 ∈ B(K) are norm continuous 
families. Then K , as defined in (65), maps 

.Cc(I,K2) ∩ C1
c (I,K1) ∩ C2

c (I,K0) (95) 

into Cc(I,K0). Hence (95) can serve as a dense domain of the operator K . 

Proof We rewrite K as 

. K = 1
α2(t)

D2
t +W ∗(t)

1
α2(t)

Dt +
1

α2(t)
W(t)Dt +

(
∂t

i
α2(t)

)
Dt

+W ∗(t)
1

α2(t)
W(t)+

(
∂t

i
α2(t)

)
W(t)− i

α2(t)
∂tW(t)− L(t).

<=
Now in the I = R case we can strengthen Conjecture 5.10: 

Conjecture 5.15 Impose the assumptions of Conjecture 5.10 and Proposition 5.14, 
Then the operator K with the domain, say, (95) is essentially self-adjoint and its 
closure Ks.a. satisfies Conjecture 5.10. 

6 Bosonic Quantization 

In this section we describe the basics of quantization used in bosonic QFT. It 
involves two steps. First, we select a classical phase space, and we associate 
with it an algebra of Canonical Commutation Relations. Second, we choose a 
representation of this algebra.
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We will describe four formalisms used in Step 1 as summarized in the table in 
Sect. 1.11. We also describe how to define Fock representations, which is the most 
common realization of Step 2. 

Note that, unlike in the introduction and the next section, in this section we do 
not put “hats” on quantized operators to reduced the notational burden. 

6.1 Real (or Neutral) Formalism 

6.1.1 Canonical Commutation Relations 

Suppose that Y is a real vector space equipped with an antisymmetric form ω, i.e., 
(Y,ω)  is a pre-symplectic space. 

Let CCR(Y) denote the complex unital ∗-algebra generated by .(w), w ∈ Y, 
satisfying 

1. .(w)∗ = .(w), 
2. the map Y ) w *→ .(w) is linear, 
3. the canonical commutation relations hold, 

. 
[
.(v),.(w)

]
= i〈v |ωw〉, v, w ∈ Y.

Let W := CY be the complexification of Y and Q the corresponding Hermitian 
form, as described in (25): 

. (v |Qw) := i〈v |ωw〉, v, w ∈W.

We extend . to W, so that it is complex antilinear: 

. .(wR + iwI ) := .(wR)− i.(wI ), wR,wI ∈ Y.

Then we have, for all v, w ∈W, 

. .∗(w) := .(w)∗ = .(w),
[
.(v),.∗(w)

]
= (v |Qw).

6.1.2 Fock Representation 

Assume in addition that W is Krein. Let S• be an admissible anti-real involution 
on W, see Sect. 4.2. Let ((+)

• , Z(±)
• = ((+)

• W be the corresponding particle 
projection and space, see Sect. 2.8.
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It is well-known that the two-point function 

. ω•
(
.(v).∗(w)

)
= (((+)

• v |Q((+)
• w), v,w ∈W,

uniquely determines a centered pure quasi-free state on the algebra CCR(Y). 
To describe the corresponding GNS representation first note that the charge Q 

defines on Z(+)
• a positive definite scalar product 

.(z1 |z2) := (z1 |Qz2), z1, z2 ∈ Z(+)
• . (96) 

Hence for z ∈ Z(+)
• we can introduce the standard annihilation, resp. creation 

operators a•(z) and a∗•(z) acting on the bosonic Fock space 9s(Z(+)
• ), see e.g. [7]. 

The state ω• is given by the vacuum $• ∈ 9s(Z(+)
• ): 

. ω•( · ) = ($• | · $•),

and the representation is given by 

. .•(w) := a•(((+)
• w)+ a∗•((

(+)
• w),

.∗•(w) := a∗•((
(+)
• w)+ a•(((+)

• w), w ∈W.

Note that if z ∈ Z(+)
• , then 

. .•(z) = .∗•(z) = a•(z),

.•(z) = .∗•(z) = a∗•(z).

6.1.3 Two-Component Representation 

Let X be a real Hilbertizable space and X∗ is its dual. The pairing of X and X∗ will 
be denoted 〈· | ·〉. We equip X∗ ⊕ X with the symplectic form 

. (u2, v2)ω(u1, v1) = 〈u2 |v1〉 − 〈v2 |u1〉, (u1, v1), (u2, v2) ∈ X∗ ⊕ X.

Then Y := X∗ ⊕ X is a symplectic space and CY is a Krein space. 
Consider the ∗-algebra generated by φ(u), u ∈ X∗, π(v), v ∈ X satisfying 

1. φ(u)∗ = φ(u), π(v)∗ = π(v); 
2. the maps X∗ ) u *→ φ(u), X ) v *→ π(v) are linear; 
3. the CCR in the two-component form hold: 

.
[
φ(u1),φ(u2)

]
=

[
π(v1),π(v2)

]
= 0; u1, u2 ∈ X∗, v1, v2 ∈ X.

[
φ(u),π(v)

]
= i〈u |v〉, u ∈ X∗, v ∈ X.
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We can pass to the formalism of Sect. 6.1.1 by setting 

. .(v, u) := π(v)+ φ(u), u ∈ X∗, v ∈ X.

Indeed, 

. 
[
.(v2, u2),.(v1, u1)

]
= i

(
〈u2 |v1〉 − 〈v2 |u1〉

)
.

We can extend φ, π to CX∗ ) u *→ φ(u)  and CX ) v *→ π(v) by antilinearity. 
Then we can replace the symplectic form by the Hermitian form 

. 
(
(iv2, u2) |Q(iv1, u1)

)
= 〈u2 | iv1〉+ 〈iv2 |u1〉
= i

(
〈u2 |v1〉 − 〈v2 |u1〉

)
.

Every anti-real admisssible involution S• on CX∗ ⊕ CX determines a Fock state 
ω•. Let  

. ((+)
• =

[
(

(+)
•11 (

(+)
•12

(
(+)
•21 (

(+)
•22

]

.

be the corresponding “particle projection”. The conditions ((+)∗
• Q = Q((+)

• and

((+)
• + (

(+)
• = 1 yield 

. (
(+)∗
•22 = (

(+)
•11, (

(+)∗
•12 = (

(+)
•12, (

(+)∗
•21 = (

(+)
•21,

. (
(+)
•22 + (

(+)
•22 = (

(+)
•11 + (

(+)
•11 = 1, (

(+)
•12 + (

(+)
•12 = (

(+)
•21 + (

(+)
•21 = 0.

The two-point correlation functions of the state ω• are given by 

.ω•
(
π(v)π(v′)

)
=

〈
v |((+)

•21v
′〉, . (97a) 

ω•
(
φ(u)φ(u′)

)
=

〈
u |((+) 

•12u
′〉, . (97b) 

ω•
(
φ(u)π(v)

)
= i

〈
u |((+) 

•11v
〉
, . (97c) 

ω•
(
π(v)φ(u)

)
= −i

〈
v |((+) 

•22u
〉
= −i〈u |((+) 

•11v〉. (97d)
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6.2 Complex (or Charged) Formalism 

6.2.1 Charged Canonical Commutation Relations 

Suppose that W is a complex vector space equipped with a Hermitian form 

. (v |Qw), v,w ∈W.

Let CCR(W) denote the complex unital ∗-algebra generated by /(w) and
/∗(w), w ∈W, such that 

1. /∗(w) = /(w)∗, 
2. the map W ) w *→ /∗(w) is linear, 
3. the canonical commutation relations in the complex form hold: 

. 
[
/(v),/∗(w)

]
= (v |Qw),

[
/∗(v),/∗(w)

]
= 0, v, w ∈W.

We can pass from the complex to real formalism as follows. Set 

. .R(w) := 1√
2

(
/(w)+ /∗(w)

)
, .I(w) := 1

i
√

2

(
/(w)−/∗(w)

)
,

Then 

. 
[
.R(w2),.R(w1)

]
= i Im(w2 |Qw1),

[
.R(w2),.I(w1)

]
= 0,

[
.I(w2),.I(w1)

]
= i Im(w2 |Qw1).

Therefore, according to the real formalism of Sect. 6.1.1, the phase space is W⊕W 
considered as a real space, and on each W we put the symplectic form Im(· |Q·). 

6.2.2 Fock Representations 

Assume, in addition, that (W,Q)  is Krein. Let S• be an admissible involution on 
W and introduce ((±)

• , Z(±)
• := ((±)

• W as in Sect. 2.8. 
Then we have a unique centered pure quasi-free state on CCR(W) defined by 

.ω•
(
/(v)/∗(w)

)
= (v |Q((+)

• w),

ω•
(
/∗(v)/(w)

)
= −(w |Q((−)

• v),

ω•
(
/∗(v)/∗(w)

)
= ω•

(
/(v)/(w)

)
= 0.
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Let us describe explicitly the GNS representation of ω•. The space Z(+)
• is a 

Hilbert space with the scalar product (96). The space Z(−)
• has the scalar product 

.(z1 |z2) := −(z2 |Qz1) = −(z1 |Qz2), z1, z2 ∈ Z(−)
• , (98) 

and is also a Hilbert space. The state ω• is represented by the Fock vacuum ($ · $) 
in the doubled Fock space 

. 9s
(
Z(+)

• ⊕Z(−)
•

)
1 9s(Z(+)

• )⊗ 9s(Z(−)
• ).

Denote the creation and annihilation operators by a∗• and a•. The fields / in the 
GNS representation given by ω• will be denoted by /•. We have  

. /•(w) := a•(((+)
• w)+ a∗•((

(−)
• w),

/∗• (w) := a∗•((
(+)
• w)+ a•((

(−)
• w).

The operator d9(S•) plays the role of a charge: 

Proposition 6.1 We have a U(1) group of symmetries 

. eisd9(S•)/•(w)e−isd9(S•) = e−is/•(w),

eisd9(S•)/∗• (w)e−isd9(S•) = eis/∗• (w).

6.2.3 Two-Component Representations 

Suppose V is a complex Hilbertizable space and V∗ is its antidual. The pairing of 
V and V∗ is denoted (· | ·). We equip V∗ ⊕V with the Hermitian form 

. 
(
(v2, u2) |Q(v1, u1)) = (u2 |v1)+ (v2 |u1).

Then V∗ ⊕V is a Krein space. 
Consider the ∗-algebra generated by ψ(u), ψ∗(u), u ∈ V∗, η(v), η∗(v), v ∈ V 

satisfying 

1. ψ(u)∗ = ψ∗(u), η(v)∗ = η∗(v); 
2. the maps V∗ ) u *→ ψ(u), V ) v *→ η(v) are antilinear; 
3. the CCR in the complex version of the two-componenet form hold (we write only 

non-zero commutators): 

.
[
ψ(u), η∗(v)

]
= i(u |v),

[
ψ∗(u), η(v)

]
= i(v |u),
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for u ∈ V∗, v  ∈ V. 

To pass to the formalism of Sect. 6.2.1, we set  

. /(v, u) := iη(v)+ ψ(u),

/∗(v, u) := −iη∗(v)+ ψ∗(u), u ∈ V∗, v ∈ V.

Indeed, 

. 
[
/(v2, u2),/

∗(v1, u1)
]
= (u2 |v1)+ (v2 |u1).

Every admisssible involution S• on V∗ ⊕V determines a Fock state ω•. Let  

. ((±)
• =

[
(

(±)
•11 (

(±)
•12

(
(±)
•21 (

(±)
•22

]

.

be the corresponding “particle and antiparticle projection”. The conditions
((±)∗

• Q = Q((±)
• and ((+)

• + ((−)
• = 1 yield 

. (
(±)∗
•22 = (

(±)
•11, (

(±)∗
•12 = (

(±)
•12, (

(±)∗
•21 = (

(±)
•21,

. (
(+)
•22 + (

(−)
•22 = (

(+)
•11 + (

(−)
•11 = 1, (

(+)
•12 + (

(−)
•12 = (

(+)
•21 + (

(−)
•21 = 0.

The two-point correlation functions of the state ω• are given by 

.ω•
(
η(v)η∗(v′)

)
= ω•

(
η∗(v′)η(v)

)
=

(
v |((+)

•21v
′), . (99a) 

ω•
(
ψ(u)ψ∗(u′)

)
= ω•

(
ψ∗(u′)ψ(u)

)
=

(
u |((+) 

•12u
′), . (99b) 

ω•
(
ψ(u)η∗(v)

)
= i

(
u |((+) 

•11v
)
, ω•

(
η∗(v)ψ(u)

)
= −i

(
u |((−) 

•11v
)
, . 

(99c) 

ω•
(
η(v)ψ∗(u)

)
= −i

(
v |((+) 

•22u
)
, ω•

(
ψ∗(u)η(v)

)
= i

(
v |((−) 

•22u
)
, 
(99d) 

7 Klein–Gordon Equation and Quantum Field Theory on 
Curved Space-Times 

In this section we formulate the main results of this paper in the setting of QFT 
on curved spacetimes, more precisely, on a globally hyperbolic manifolds equipped 
with electromagnetic and scalar potentials. We describe the role various propagators 
play in the theory of quantum fields satisfying the Klein–Gordon equation.
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The usual presentations of this topic make the assumption that all coefficients 
in the Klein–Gordon equation are smooth. The results that we have obtained in the 
previous sections allow us to consider systems with much lower regularity. 

7.1 Half-Densities on a Pseudo-Riemannian Manifold 

Let M be a manifold. A half-density on M is an assignment of a complex function 
to every coordinate patch satisfying the following condition: if x *→ f (x)  and x′ *→ 
f ′(x′) are two such assignments, then 

. 

∣∣∣
∂x′

∂x

∣∣∣
1
2
f ′(x′) = f (x),

where
∣∣∣ ∂x′

∂x

∣∣∣ denotes the Jacobian of the change of coordinates. The space of square 

integrable half-densities will be denoted L2(M). Thus if we choose coordinates x 
and the support of a function f is contained in the corresponding coordinate patch, 
then 

.(f1 |f2) =
∫

f1(x)f2(x) dx, (100) 

where dx = dx1 · · · dxd is the Lebesgue measure. Note that the scalar product (100) 
is independent of coordinates. 

Suppose that M is a pseudo-Riemannian manifold with a metric tensor, which 
in coordinates x = [xµ] is given by the matrix g(x) = [gµν(x)]. Let  |g|(x) :=∣∣ det[gµν(x)]

∣∣. M has a distinguished density, which in the coordinates x is given 
by 
√|g|(x) dx. The space of scalar functions, square integrable with respect to√|g|(x) dx, is denoted L2(M,

√|g|). Obviously 

. L2(M,
√
|g|) ) f *→ |g| 1

4 f ∈ L2(M)

is a unitary map. 

7.2 Klein–Gordon Equation on Spacetime and the Conserved 
Current 

Suppose a pseudo-Riemannian manifold is equipped with a vector field [Aµ (x)], 
called the electromagnetic potential, and the scalar potential Y (x).
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In this and the following subsection we develop the basic formalism thinking of 
A, Y as smooth functions. In Sect. 7.4 we translate this fomalism to the setting of 
Sect. 5, which alows for low regularity. 

The Klein–Gordon operator, written first in the scalar and then in the half-density 
formalism in any local coordinates is 

. K := −|g|− 1
2 (Dµ − Aµ)|g|

1
2 gµν(Dν − Aν)− Y,

K := −|g|− 1
4 (Dµ − Aµ)|g|

1
2 gµν(Dν − Aν)|g|−

1
4 − Y.

For functions u, v ∈ C∞(M) introduce the current, which again we write first in 
the scalar, then in the half-density formalism: 

. jµ(x; u, v) :=− u(x)gµν(x)|g| 1
2 (x)

(
Dν − Aν(x)

)
v(x)

−
(
Dν − Aν(x)

)
u(x)gµν(x)|g| 1

2 (x)v(x),

jµ(x; u, v) :=− u(x)gµν(x)|g| 1
4 (x)

(
Dν − Aν(x)

)
|g|− 1

4 (x)v(x)

−
(
Dν − Aν(x)

)
|g|− 1

4 (x)u(x)gµν(x)|g| 1
4 (x)v(x).

We check that if u, v solve the Klein–Gordon equation, that is 

. Ku = Kv = 0,

then the current jµ (x; u, v) is conserved, that is 

. ∂µj
µ(x; u, v) = 0.

Let M be globally hyperbolic, see e.g. [2]. If $ ⊂ M , then J∨($) denotes the 
future shadow, and J∧($) the past shadow of $, that is, the set of all points in M 
that can be reached from $ by future/past directed causal paths. A set : ⊂ M is 
called space compact if there exists a compact $ ⊂ M such that : ⊂ J∨($) ∪ 
J∧($). Csc(M) denotes the set of continuous functions on M with a space compact 
support. 

Let Wsc denote the set of smooth space compact solutions to the Klein–Gordon 
equation. For u, v ∈Wsc, 

.(u |Qv) :=
∫

)
jµ(x; u, v) dsµ(x) (102) 

does not depend on the choice of a Cauchy surface ), where dsµ(x) denotes the 
natural measure on S times the normal vector. Equation (102) defines a Hermitian 
form on Wsc called the charge.
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7.3 Foliating the Spacetime 

Let us fix a diffeomorphism I ×) → M , where I is, as usual, [t−, t+] or R, and )

is a manifold. In other words, equip M with a time function t = x0 ∈ I such that all 
the leaves of the foliation )t = {t}×) are identified with a fixed manifold ). The  
generic notation for a point of ) will be /x. 

The restriction of g to the tangent space of )t defines a time-dependent family 
of metrics on ), denoted h(t) = h = [hij ]. We make the assumption that all h are 
Riemannian, or, what is equivalent, that the covector dt is always timelike. We set 
|h| = det h. In coordinates, the metric can be written as 

. gµν dxµ dxν = −α2 dt2 + hij (dxi + βi dt)(dxj + βj dt),

gµν∂µ∂ν = − 1
α2 (∂t − βi∂i )

2 + hij∂i∂j .

for some α(x) > 0 and [βi (x)]. We have |g| =  α2|h|. The Klein–Gordon operator 
in the half-density formalism can now be written 

. K = |g|− 1
4 (D0 − βiDi − A0 + βiAi)

|g| 1
2

α2 (D0 − βiDi − A0 + βiAi)|g|−
1
4

− |h|− 1
4 (Di − Ai)|h|

1
2 hij (Dj − Aj)|h|−

1
4 − Y

=
(
Dt +W ∗(t)

) 1
α2(t)

(
Dt +W(t)

)
− L(t), (103) 

where 

.L(t) := |g|− 1
4 (Di − Ai)|g|

1
2 hij (Dj − Aj)|g|−

1
4 + Y . (104a) 

= |h|− 1 
4

(
Di − 

i 
2α 

α,i − Ai

)
|h| 1 

2 hij
(
Dj + 

i 
2α 

α,i − Aj

)
|h|− 1 

4 + Y . 

(104b) 

W(t)  := βi Di − A0 + βi Ai + 
i 

4|g| |g|,0 − 
i 

4|g|β
i |g|,i (104c) 

The temporal component of the current, again in the half-density formalism, is 

.j0(x; u, v) = u(x)
1

α2(x)

(
D0 −W(x)

)
v(x)

+ 1
α2(x)

(
D0 −W(x)

)
u(x)v(x).



An Evolution Equation Approach to Linear Quantum Field Theory 93

We use the half-density formalism to define the spaces L2(M) and L2()). We  
define L2(I ) using the Lebesgue measure. We have 

.L2(M) 1 L2(I,)) = L2(I )⊗ L2()), (105) 

We treat ) as equipped with the metric h(t). The operator L(t) is a Hermitian 
operator on C∞c ()) in the sense of the Hilbert space L2()). We have written it in 
two ways: (104a) looks simpler, but the expression (104b) is manifestly covariant 
with respect to a change of coordinates on ). 

For brevity, we will write K = L2()). Note that K in (103) has the form of an 
abstract Klein–Gordon operator considered in Sect. 5. 

Choosing )t for the Cauchy surface we can rewrite (102) as 

. (u |Qv) =
∫

)
u(t, /x) 1

α2(t, /x)
(
D0 +W(t, /x)

)
v(t, /x) d/x

+
∫

)

(
D0 +W(t, /x)

)
u(t, /x) 1

α2(t, /x)v(t, /x) d/x, u, v ∈ K.

7.4 Classical Propagators 

After identifying M 1 I × ), (105) and (103) show that we are in the setting 
of Sect. 5 devoted to the abstract Klein Gordon operator. From now on we impose 
Assumption 5.36. We introduce the formalism of Sect. 5, such as the Hilbertizable 
spaces Kβ , β  ∈ [−1, 1] and Wλ, λ ∈ [− 1 

2 , 
1 
2 ], as in  (67) and (69), the generator of 

the evolution B(t) and the evolution itself R(t, s). In particular, the space W0 is a 
Krein space equipped with the form Q. 

It is easy to construct the classical propagators in this setting. First we define 
G•, • = ∨, ∧,PJ as operators Cc(I,K) → C(I,K) as in (73a). By the Schwartz 
kernel theorem they possess distributional kernels, which we denote G•(x, y) = 
G•(t, /x; s, /y), 

It is obvious that 

. suppG∧ ⊂ {(t, /x; s, /y) ∈ M ×M | t ≤ s},
suppG∨ ⊂ {(t, /x; s, /y) ∈ M ×M | t ≥ s}.

One can expect their support to be even smaller, more precisely, that they are 
causal: 

. suppG∧ ⊂ {(x, y) ∈ M ×M | x ∈ J∧(x)},
suppG∨ ⊂ {(x, y) ∈ M ×M | x ∈ J∨(x)},
suppGPJ ⊂ {(x, y) ∈ M ×M | x ∈ J (x)}.
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If g, A, Y are smooth, this is very well-known, proven in numerous sources. Under 
Assumption 5.36 this is presumably also true. Under slightly more restrictive 
assumptions it follows from Theorem E1 of [9], see also [23] for a different 
approach. 

7.5 Non-Classical Propagators 

If I is finite, we choose two admissible involutions S± on W0. 
If I = R, we assume that the spacetime is stationary for large times and assume 

that B± are stable. We set S± := sgn
(
B±

)
, which are automatically admissible 

involutions. 
With help of these admissible involutions, we define the non-classical propaga-

tors G (+) 
± , G  (−) ± , G

F, GF. 
If I is finite, the non-classical propagators can be interpreted as bounded 

operators on L2(M). If  GF, GF have zero nullspaces, then we define 

. KF := GF−1, KF := GF−1,

which can be treated as well-posed realizations of the Klein–Gordon operator 
satisfying KF∗ = KF. 

If I = R, then the non-classical propagators can be understood as, say, operators 
Cc(I, L2())) → C(I, L2())). 

Suppose we impose the assumption of Proposition 5.14. It is then clear that the 
operator K is Hermitian (or, as it is often termed, symmetric) on C∞c (M). One can 
ask about the existence of its self-adjoint extensions. This is the subject of following 
conjecture, which is essentially a spacetime version of Conjectures 5.6 and 5.15. 

Conjecture 7.1 For a large class of asymptotically stationary and stable Klein– 
Gordon operators the following holds: 

1. The operator K with the domain C∞c (M) is essentially self-adjoint in the sense 
of L2(M). Denote its unique self-adjoint extension by Ks.a.. 

2. In the sense of 〈t〉−s L2(M) → 〈t〉s L2(M), for s >  1 
2 , 

. s-lim
ε↘0

(Ks.a. − iε)−1 = GF,

s-lim
ε↘0

(Ks.a. + iε)−1 = GF.

Note that Conjecture 7.1 is true in the stable stationary case, see [8] and [9]. As 
proven by Vasy [33] and Nakamura–Taira [27–29], it is also true for some classes 
of asymptotically Minkowskian spacetimes. Kamiński described a counterexample 
to a certain strong version of this conjecture [24].
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7.6 Charged Fields 

Let us now describe the formalism of classical and quantum field theory in our 
setting. Note that the formalism described in the introduction used pointlike fields. 
In this section pointlike fields may be ill-defined because of insufficient smoothness. 
Therefore we prefer to use smeared fields. 

Recall that elements of W0 can be written as two component vectors: 

. w =
[
w1

w2

]
.

The space W0 is preserved by the dynamics R(t, s). We treat time t = 0 as the  
“reference time”. 

For any t ∈ I , u ∈ K− 1 
2 
, v ∈ K 1 

2 
we define the following functionals on W0: 

. 〈ψt (u) |w〉 =
∫

u(/x)
(
R(t, 0)w

)
1(/x) d/x,

〈ψ∗t (u) |w〉 =
∫

u(/x)
(
R(t, 0)w

)
1(/x) d/x,

〈ηt (v) |w〉 = −i
∫

v(/x)
(
R(t, 0)w

)
2(/x) d/x,

〈η∗t (v) |w〉 = i
∫

v(/x)
(
R(t, 0)w

)
2(/x) d/x.

From the symplectic structure associated with the charge form Q we derive the 
Poisson brackets between ψt ,ψ

∗
t , ηt , η

∗
t . Below we present only the non-zero cases: 

. 
{
ψt (u), η

∗
t (v)

}
=

∫
u(/x)v(/x) d/x,

{
ψ∗t (u), ηt (v)

}
=

∫
u(/x)v(/x) d/x.

The first step of quantization is the replacement of the Poisson bracket by i times 
the commutator. Thus we obtain the commutation relations 

. 
[
ψ̂t (u), η̂

∗
t (v)

]
= i

∫
u(/x)v(/x) d/x,

[
ψ̂∗t (u), η̂t (v)

]
= i

∫
u(/x)v(/x) d/x.

Then one chooses the in and the out Fock state. Recall that they are determined 
by two admissible involutions S±. From  S± we obtain two pairs of complementary 
projections (

(+) 
± ,(

(−) 
± . Following the recipe (99), ((+) 

± and (
(−) 
± are used to define
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the Fock states ω± = ($± | · $±). In the slab geometry case this is done using the 
fields ψ̂t± , ψ̂∗t± , η̂t± , η̂

∗
t± . In the unrestricted time case it is done using ψ̂t , ψ̂∗t , η̂t , η̂∗t 

with ±t >  T  . 
We can also smear the fields with spacetime functions. Suppose that, say, f ∈ 

Cc(I,K− 1 
2 
). Set 

. ψ[f ] :=
∫

ψt

(
f (t, · )

)
dt, ψ∗[f ] :=

∫
ψ∗t

(
f (t, · )

)
dt.

The Poisson bracket of the fields is known then as the Peierls bracket: 

.
{
ψ[f1],ψ∗[f2]

}
= −

∫∫
f1(x)G

PJ(x, y)f2(y) dx dy. (107) 

Similarly, we can smear the quantum fields: 

.ψ̂[f ] :=
∫

ψ̂t

(
f (t, ·)

)
dt, ψ̂∗[f ] :=

∫
ψ̂∗t

(
f (t, ·)

)
dt. (108) 

The commutator of fields is expressed by the Peierls bracket. 

.
[
ψ̂[f1], ψ̂∗[f2]

]
= −i

∫∫
f1(x)G

PJ(x, y)f2(y) dx dy. (109a) 

The vacuum expectation values of the products of fields are expressed by the 
positive/negative frequency bisolutions: 

.
(
$± | ψ̂[f1]ψ̂∗[f2]$±

)
=

∫∫
f1(x)G

(+)
± (x, y)f2(y) dx dy, . (109b)

(
$± | ψ̂∗[f2]ψ̂[f1]$±

)
=

∫∫
f1(x)G (−) ± (x, y)f2(y) dx dy. (109c) 

Let T{} denote the time-ordered product and and T{} the reverse time-ordered 
product. Assume in addition the Shale condition for ω+ and ω−, so that $+ and $− 
can be treated as vectors in the same representation. Then the vacuum expectation 
values of the time-ordered and reverse time-order products divided by the overlap 
of the vacua is expressed by the Feynman, resp. anti-Feynman inverses: 

.

(
$+ |T{ψ̂[f1]ψ̂∗[f2]}$−

)

($+$−)
= −i

∫∫
f1(x)G

F(t, s)f2(y) dx dy, . (110a)

(
$−T{ψ̂[f1]ψ̂∗[f2]}$+

)

($− |$+)
= i

∫∫
f1(x)G

F(t, s)f2(y) dx dy. (110b)
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Note, however, that as already mentioned in the introduction the RHS of (110) is 
well-defined also if the Shale condition is not satisfied. 

Here are identities that can be used to prove the above formulas: 

.ψt (u) = ψs

(
R(s, t)22u

)
+ iηs

(
R(s, t)12u

)
, . (111a) 

ψ∗t (u) = ψ∗s
(
R(s, t)22u

)
− iη∗s

(
R(s, t)12u

)
. (111b) 

They follow the definition of ψt and ψ∗t and from the pseudounitarity of R(s, t). 
Commuting ψs(v) with (111b) we obtain 

. {ψs(v),ψt (u)} = −i(v |R(s, t)12u)

= −
∫

v(/x)GPJ(s, /x; t, /y)u(/y) d/x d/y,

from which the formula for the Peierls bracket (107) follows. 
Clearly, the quantized version of (111) with all fields decorated with hats is also 

true. It implies (109a) 

Remark 7.2 In most physics literature one uses pointlike fields, denoted typically 
ψ̂∗(x), ψ̂(x), x ∈ M , (not to be confused with the spatially smeared fields 
ψ̂∗t (u), ψ̂t (u)). Formally, the smeared-out fields are given by 

. ψ̂[f ] :=
∫

f (x)ψ̂(x) dx,

ψ̂∗[f ] :=
∫

f (x)ψ̂∗(x) dx.

Smeared-out fields are more typical for the mathematics literature, since they 
can be interpreted as closed densely defined operators (at least in a linear QFT). 
Nevertheless, pointlike fields are convenient. We used them in the introduction. 
Note that identities (109a), (109b), (109c), (110a) and (110b) are equivalent to 
identities (4a), (18a), (18b), (19a) and (19b). 

7.7 Neutral Fields 

Suppose that the electromagnetic potential [Aµ] is absent. Then the Klein–Gordon 
operator 

. K := |g|− 1
4 ∂µ|g|

1
2 gµν∂ν |g|−

1
4 − Y.

is real. In particular, the spaces Kβ , Wλ can be equipped with the usual complex 
conjugation and their real subspaces Kβ,R, Wλ,R can be defined. Note that W0,R
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is a real Krein space equipped with the symplectic form 

. 〈v |ωw〉 := Im(v |Qw).

Also note that the evolution satisfies R(t, s) = R(t, s) and thus it can be restricted 
to W0,R. 

For any t ∈ I , u ∈ K− 1 
2 ,R

, v ∈ K 1 
2 ,R we define the following functionals on 

W0,R: 

. 〈φt (u) |w〉 =
∫

u(/x)
(
R(t, 0)w

)
1(/x) d/x,

〈πt (v) |w〉 = −i
∫

v(/x)
(
R(t, 0)w

)
2(/x) d/x.

From the symplectic structure given by the form ω we derive the Poisson brackets 
between φt ,πt . Below we present the only non-zero relation: 

. 
{
φt (u),πt (v)

}
=

∫
u(/x)v(/x) d/x.

The first step of quantization is the replacement of the Poisson bracket by i times 
the commutator. Thus we obtain the commutation relations 

. 
[
φ̂t (u), π̂t (v)

]
= i

∫
u(/x)v(/x) d/x.

Then one chooses the in and the out Fock state—as in the charged case. In 
addition, in the slab geometry case, we demand that the two admissible involutions 
S± on W0 are anti-real. (In the unrestricted time case this is automatic.) Thus the 
two pairs of complementary projections (

(+) 
± ,(

(−) 
± obtained from S± are real. 

We can also smear the fields with space-time functions. Suppose that, say, f ∈ 
Cc(I,K− 1 

2 ,R ). Set 

. φ̂[f ] :=
∫

φ̂t

(
f (t, ·)

)
dt.

Now we have the following identities: 

.
[
φ̂[f1], φ̂[f2]

]
= −i

∫∫
f1(x)G

PJ(x, y)f2(y) dx dy, . (112a)

(
$± | φ̂[f1]φ̂[f2]$±

)
=

∫∫
f1(x)G (+) 

± (x, y)f2(y) dx dy, . (112b)
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(
$+ |T{φ̂[f1]φ̂[f2]}$−

)

($+ |$−)
= −i

∫∫
f1(x)G

F(t, s)f2(y) dx dy, . (112c)

(
$− |T{φ̂[f1]φ̂[f2]}$+

)

($− |$+)
= i

∫∫
f1(x)G

F(t, s)f2(y) dx dy. (112d) 

As in the charged case, also here the Shale conditions is required for the LHS 
of (112c) and (112d) to be well-defined. 

Remark 7.3 In most physics literature one uses pointlike fields, denoted typically 
φ̂(x), x ∈ M . Formally, the smeared-out fields are given by 

. φ̂[f ] :=
∫

f (x)φ̂(x) dx.

for f ∈ C∞c (M, R), 
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7. Dereziński, J., Gérard, C.: Mathematics of Quantization and Quantum Fields. Cambridge 
Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2013) 
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100 J. Dereziński and D. Siemssen

11. Duistermaat, J.J., Hörmander, L.: Fourier integral operators. II. Acta Math. 128(1), 183–269 
(1972). https://doi.org/10.1007/BF02392165 

12. Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Oxford University 
Press, Oxford (2018) 

13. Fewster, C.J., Verch, R.: Dynamical locality and covariance: what makes a physical theory 
the same in all spacetimes? Ann. Henri Poincaré 13(7), 1613–1674 (2012). https://doi.org/10. 
1007/s00023-012-0165-0 

14. Fewster, C.J., Verch, R.: The necessity of the Hadamard condition. Classical Quantum Gravity 
30(23), 235027 (2013). https://doi.org/10.1088/0264-9381/30/23/235027 

15. Friedlander, F.G.: The Wave Equation on a Curved Space-Time. Cambridge University Press, 
Cambridge (1975) 

16. Fukuma, M., Sugishita, S., Sakatani, Y.: Propagators in de Sitter space. Phys. Rev. D 88, 
024041 (2013) 

17. Fulling, S.A.: Aspects of Quantum Field Theory in Curved Space-Time. London Mathematical 
Society Student Texts, vol. 17. Cambridge University Press, Cambridge (1989) 

18. Fulling, S.A., Narcowich, F.J., Wald, R.M.: Singularity structure of the two-point function in 
quantum field theory in curved spacetime, II. Ann. Phys. 136(2), 243–272 (1981). https://doi. 
org/10.1016/0003-4916(81)90098-1 

19. Gérard, C., Wrochna, M.: Hadamard property of the in and out states for Klein-Gordon fields 
on asymptotically static spacetimes. Ann. Henri Poincaré 18(8), 2715–2756 (2017). https://doi. 
org/10.1007/s00023-017-0573-2 

20. Gérard, C., Wrochna, M.: The massive Feynman propagator on asymptotically Minkowski 
spacetimes. Am. J. Math. 141(6), 1501–1546 (2019) 

21. Hollands, S.: Renormalized quantum Yang–Mills fields in curved spacetime. Rev. Math. Phys. 
20(9), 1033–1172 (2008). https://doi.org/10.1142/S0129055X08003420 

22. Hollands, S., Wald, R.M.: Local Wick polynomials and time ordered products of quantum 
fields in curved spacetime. Commun. Math. Phys. 223(2), 289–326 (2001). https://doi.org/10. 
1007/s002200100540 

23. Hörmann, G., Sanchez Sanchez, Y., Spreitzer, C., Vickers, J.A.: Green operators in low 
regularity spacetimes and quantum field theory. Classical Quantum Gravity 37(17), 175009 
(2020). https://doi.org/10.1088/1361-6382/ab839a 
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