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The (classical or quantum) charged field on a curved spacetime
with metric tensor gµν in the presence of an external electromagnetic
potential Aµ and an external scalar potential Y satisfies the Klein-
Gordon equation(

|g|−
1
4(i∂µ + Aµ)|g|

1
2gµν(i∂ν + Aν)|g|−

1
4 + Y

)
ψ = 0.

In other words, the field is annihlated by the Klein-Gordon operator

K := |g|−
1
4(i∂µ + Aµ)|g|

1
2gµν(i∂ν + Aν)|g|−

1
4 + Y.

I will discuss various propagators or two-point functions associated
with K.



My talk is divided into three parts:

1. Flat case.

2. Stationary case.

3. Generic case.

Part I. Flat case.
Let me start with the Minkowski space R1,3 without external po-

tentials. The Klein-Gordon operator is K := −�+m2. The follow-
ing propagators and 2-point functions should belong to the standard
knowledge of every student of Quantum Field Theory.



• the forward/backward propagator

G∨/∧(x, y) :=
1

(2π)4

∫
e−i(x−y)·p

p2 + m2 ± i0 sgn p0
dp,

• the Feynman/anti-Feynman propagator

GF/F(x, y) :=
1

(2π)4

∫
e−i(x−y)·p

p2 + m2 ∓ i0
dp,

• the Pauli–Jordan propagator

GPJ(x, y) :=
i

(2π)3

∫
e−i(x−y)·p sgn(p0)δ(p2 + m2) dp,

• the positive/negative frequency 2-point function

G(±)(x, y) :=
1

(2π)3

∫
e−i(x−y)·pθ(±p0)δ(p2 + m2) dp.



From the point of view of operator theory, G∨/∧, GF/F are inverses
of the Klein Gordon operator

KGf = GKf = f,

and G(±), GPJ are its bisolutions

KGf = GKf = 0.



The propagators express important quantities of QFT:

• the commutation relations

[ψ(x), ψ∗(y)] = −iGPJ(x, y),

• the vacuum expectation of products of fields

(Ω |ψ(x)ψ∗(y)Ω) = G(+)(x, y),

(Ω |ψ∗(x)ψ(y)Ω) = G(−)(x, y),

• the vacuum expectation of time ordered products of fields(
Ω
∣∣T(ψ(x)ψ∗(y)

)
Ω
)

= −iGF(x, y),(
Ω
∣∣T(ψ∗(x)ψ(y)

)
Ω
)

= −iGF(x, y).



Note the identities satisfied by the propagators:

GPJ = G∨ −G∧ (1)

= iG(+) − iG(−), (2)

GF −GF = iG(+) + iG(−), (3)

GF + GF = G∨ + G∧. (4)



The following facts are easy to see:

(1) the Klein-Gordon operator K = −� + m2 is essentially self-
adjoint on C∞c (R1,3),

(2) For s > 1
2, in the sense 〈t〉−sL2(R1,3) → 〈t〉sL2(R1,3), the

Feynman propagator is the boundary value of the resolvent of the
Klein-Gordon operator:

s-lim
ε↘0

(K ∓ iε)−1 = GF/F.

Here 〈t〉 denotes the so-called “Japanese bracket”

〈t〉 :=
√

1 + t2.



Part I. Stationary case.

To simplify the exposition we will assume that g00 = 1 and that
there are no time/space cross terms. (These restrictions can be
removed).

The spacetime is M = R× Σ.

K = −(i∂t + V )2 + L,

L = |g|−
1
4(i∂i + Ai)|g|

1
2gij(i∂j + Aj)|g|−

1
4 + Y,

where gij, V , ~A and Y do not depend on t.



It is natural to apply the evolution approach and to rewrite the
Klein-Gordon equation Ku = 0 as a 1st order equation for the
Cauchy data (

∂t + iB
)[u1(t)

u2(t)

]
= 0,

[
u1(t)
u2(t)

]
:=

[
u(t)

i∂tu(t)− V u(t)

]
, B :=

[
V 1l
L V

]
.

We obtain the evolution

R(t, s) := e−i(t−s)B.



Note that B preserves the charge form

(u|Qv) = (u1|v2) + (u2|v1)

given by the matrix

Q :=

[
0 1l
1l 0

]
.

If we assume that the Hamiltonian is positive, that is

H := BQ =

[
L V
V 1l

]
> 0,

there is also a natural Hilbert space, called the dynamical space
on which B is self-adjoint, and which becomes naturally the
1-particle space after quantization. It has the scalar product

(u|v)dyn := (|B|−
1
2u |H|B|−

1
2v).



We define the propagators in the evolution approach:

Pauli-Jordan bisolution EPJ(t, s) := R(t, s),

forward inverse E∨(t, s) := θ(t− s)R(t, s),

backward inverse E∧(t, s) := −θ(s− t)R(t, s),

pos./neg. freq. bisolution E(±)(t, s) := R(t− s)Π(∓),

Feynman/anti-Feynman inverseEF/F(t, s) := θ(t− s)R(t− s)Π(∓)

− θ(s− t)R(t− s)Π(±),

Here θ is the Heavyside function and Π(±) := 1lR±(B).



They act on functions t 7→ w(t) =

[
w1(t)
w2(t)

]
as follows:

(E•w)(t) :=

∫
E•(t, s)w(s) ds, • = PJ,∨,∧, (±),F/F.

We obtain also the propagators in the spacetime approach:

G• := −iE•12, • = PJ,∨,∧,F/F,

G(±) := E
(±)
12 , E• =

[
E•11 E

•
12

E•21 E
•
22

]
.

Essentially everything that was described in the flat case remains
valid in the stationary case.



Part III. Generic case.

As is well-known, for every globally hyperbolic spacetime one can
define the classical propagators G∧, G∨, GPJ.

To discuss the other propagators, which we call non-classical we will
additionally assume that the Klein-Gordon operator is asymptotically
stationary in the past and future.

We can partly show, and partly we conjecture, that the theory of
propagators in the asymptotically stationary case is very similar to
what was described for stationary spacetimes, even if it is much more
difficult technically.



We can rewrite the Klein-Gordon equation Ku = 0 as a 1st order
equation for the Cauchy data(

∂t + iB(t)
)[u1(t)

u2(t)

]
= 0,[

u1(t)
u2(t)

]
:=

[
u(t)

i∂tu(t)−W (t)u(t)

]
,

B(t) :=

[
W (t) 1l
L(t) W (t)

]
,

W (t) := V (t) +
i

4
|g|(t)−1∂t|g|(t).



We make some technical assumptions, among other things, the
operator L(t) should define equivalent norm for various times. The
Hilbertizable space of Cauchy data

W = L(t)
1
4L2(Σ)⊕ L(t)−

1
4L2(Σ)

equipped with the charge form given by the matrix

Q :=

[
0 1l
1l 0

]
.

becomes a Krein space. We define the pseudounitary evolution
R(t, s) generated by B(t), that is

∂tR(t, t′) = −iB(t)R(t, t′),
R(t, t) = 1l.



We assume that the Hamiltonian is positive, at least in the far
future and past:

H(±∞) := B(±∞)Q ≥ 0.

We introduce the in- and out-positive/negative frequency projection:

Π
(+)
± := 1lR+(B(±∞)),

Π
(−)
± := 1lR−(B(±∞)).

They lead to the in–vacuum and the out–vacuum:

(Ω± |ψ(x)ψ∗(y)Ω±) = G
(+)
± (x, y),

(Ω± |ψ∗(x)ψ(y)Ω±) = G
(−)
± (x, y).



The following lemma uses the structure of Krein spaces:
Lemma. For any s

lim
t→−∞

R(s, t) Ran Π
(+)
− , lim

t→+∞
R(s, t) Ran Π

(−)
+

is a pair of complementary subspaces.
With help of the above lemma we first define the Feynman and

anti-Feynman propagator EF/F in the evolution approach: in words,
it describes particles travelling forward in time and antiparticles trav-
elling backward in time. In the usual way, this leads to the Feynman

and anti-Feynman propagator GF/F in the spacetime approach.



In a somewhat different setting, the construction of GF was given
by A.Vasy et al and by Gérard-Wrochna. But it seems that the
naturalness and simplicity of the above construction was realized
only recently.

Here is the physical meaning of the Feynman propagator: it is the
expectation value of the time-ordered product of fields between the
in-vacuum and the out-vacuum:

GF(x, y) =

(
Ω+|T

(
φ̂(x)φ̂(y)

)
Ω−
)(

Ω+|Ω−
) .



The identities satisfied by the propagators in the generic case differ
from the stationary case:

GPJ = G∨ −G∧ (1)′

= iG(+) − iG(−), (2)′

GF −GF = iG
(+)
± + iG

(−)
± + smooth and “small” , (3)′

GF + GF = G∨ + G∧ + smooth and “small” . (4)′



Thus on asymptotically stationary spacetimes we have two natu-
ral vacuum states and a single natural Feynman propagator. They
are not defined locally—they depend globally on the whole space-
time. However, their singularities, and even more, the semiclassical
expansion around the diagonal, are given by the local data.

Conjecture.On a large class of asymptotically stationary spacetimes

(1) the operator K is essentially self-adjoint on C∞c (M),

(2) in the sense 〈t〉−sL2(M)→ 〈t〉sL2(M), where s > 1
2,

s-lim
ε↘0

(K − iε)−1 = GF.



In a recent paper of A. Vasy this conjecture is proven for asymptot-
ically Minkowskian spaces. It is also true if the spatial dimension is
zero (when the Klein-Gordon operator reduces to the 1-dimensional
Schrödinger operator). It is true as well on a large class of cos-
mological spacetimes. Presumably, one can prove it on symmetric
spacetimes.

Surprisingly, we have not found a trace of this question in the
older mathematical literature. Many respected mathematicians and
mathematical physicists react with disgust to this question, claiming
that it is completely non-physical.



However, in the physical literature there are many papers that take
the self-adjointness of the Klein-Gordon operator for granted. The
method of computing the Feynman propagator with external fields
and possibly on curved spacetimes based on the identity

lim
ε↘0

1

K − iε
= i

∞∫
0

e−itK dt (∗)

has even a name:

the Fock–Schwinger or Schwinger–DeWitt method.

Of course, without the self-adjointness of K, (∗) does not make
sense.



Perhaps some of the experts in the audience may be surprised that
the so-called Hadamard condition has not been mentioned in my talk
so far.

In words, a two-point function satisfies the Hadamard condition if
it is a positive definite bisolution of the Klein-Gordon equation whose
wave front set is the same as in the flat case. The state defined by
such a two-point function is called a Hadamard state.

Note that there are many Hadamard states. In particular, the in-
and out states, which we discussed, are Hadamard, as proven by
Gérard and Wrochna.



To my understanding, one can divide researchers interested in QFT
on curved spacetimes into two categories.

1. The Feynmanists work with a global spacetime and use the distin-
guished in- and out states and the distinguished Feynman propaga-
tor. This is probably common among phenomenologically minded
researchers.

2. The Hadamardists usually look at spacetimes locally and say that
the refererence state can be arbitrary as long as it satisfies the
Hadamard condition. Most researchers in the mathematical QFT
community belong to this category.



There is no contradiction between the Feynmanist and Hadamardist
philosophy. Nevertheless, the emphasis of both approaches is quite
different. My presentation tries to be a mathematical exposition of
the Feynmanist approach.

I am actually not very fond of the Hadamard condition, which
mathematically minded QFT-people like so much, because it is very
abstract and hides the fact that one can say much more about the
2-point function of physically natural vacuum states than just the
location of their wave front set.



THANK YOU FOR YOUR ATTENTION

(This is the end of the main part of my slides. Note that I have
some additional slides with “appendices”, which normally I do not
have time to cover in a talk.)



Appendix I. Evolution in Hilbertizable spaces

LetW be a Banach space. We say that a two-parameter family of
bounded operators

R× R 3 (t, s) 7→ R(t, s) ∈ B(W) (∗)
is a strongly continuous evolution family on W if for all r, s, t, we
have the identities

R(t, t) = 1l, R(t, s)R(s, r) = R(t, r).

and the map (∗) is strongly continuous.



If R(t, s) = R(t − s, 0) for all t, s, we say that the evolution is
autonomous. Setting R(t) := R(t, 0), we obtain a strongly con-
tinuous one-parameter group. As is well known, we can then write
R(t) = e−itB, where−iB is a certain unique, densely defined, closed
operator called the generator of R(t).

If W is a Hilbert space, then B is self-adjoint if and only if R is
unitary.



LetW be a topological vector space. We say that it is Hilbertizable
if it has a topology of a Hilbert space for some scalar product (· | ·)•
on W .

Let (· | ·)1, (· | ·)2 be two scalar products compatible with a Hilber-
tizable space W . Then there exist constants 0 < c ≤ C such that

c(w |w)1 ≤ (w |w)2 ≤ C(w |w)1.



Let {B(t)}t∈R be a family of densely defined, closed operators
on a Hilbertizable space W . Let V be another Hilbertizable space
densely and continuously embedded in W . The following theorem,
due essentially to Kato, gives sufficient conditions for the existence
of a (non-autononomous) evolution generated by {B(t)}t∈R
Theorem. Suppose that the following conditions are satisfied:



(a) V ⊂ DomB(t) so that B(t) ∈ B(V ,W) and t 7→ B(t) ∈
B(V ,W) is norm-continuous.

(b) For every t, scalar products (· | ·)W ,t and (· | ·)V ,t compatible
with W resp. V have been chosen.

(c)B(t) is self-adjoint in the sense of Wt and the part B̃(t) of B(t)
in Vt is self-adjoint in the sense of Vt.

(d) For C ∈ L1
loc and all s, t

‖v‖W ,s ≤ ‖v‖W ,t exp
∣∣∣∫ ts C(r) dr

∣∣∣,
‖w‖V ,s ≤ ‖w‖V ,t exp

∣∣∣∫ ts C(r) dr
∣∣∣.



Then there exists a unique family of bounded operators {R(t, s)}s,t
on W , preserving V , called the evolution generated by B(t), such
that:

(i) It is an evolution on W and V ,

(ii) For all v ∈ V and s, t,

i∂tR(t, s)v = B(t)R(t, s)v,

−i∂sR(t, s)v = R(t, s)B(s)v,

where the derivatives are in the strong topology of W .



Appendix II. Krein spaces

Suppose that a (complex) Hilbertizable space W is equipped with
a non-degenerate Hermitian form Q, sometimes called a charge form

W ×W 3 (v, w) 7→ (v|Qw) = (w|Qv) ∈ C.
Note that often one starts from a real space with a symplectic form
ω. Then a charge form appears naturally as the complexification of
iω.



An operator S• on (W , Q) will be called an admissible involution
if S2
• = 1l and there exists a scalar product (·|·)• compatible with

the structure of W such that

(v |Qw) = (v |S•w)•.

(W , Q) is called a Krein space if it possesses an admissible involu-
tion.



Every admissible involution S• defines a pair of projections

the positive projection Π
(+)
• :=

1

2
(1l + S•),

the negative projection Π
(−)
• :=

1

2
(1l− S•).

Theorem. Let S1, S2 be a pair of admissible involutions on a Krein
space (W , Q). Then we have two direct sum decompositions:

W = Ran Π
(+)
1 ⊕ Ran Π

(−)
2

= Ran Π
(−)
1 ⊕ Ran Π

(+)
2 .



Let us sketch the proof. Set K := S2S1. Then K is posi-
tive with respect to ( · | · )1 and ( · | · )2. Hence we can define

c := Π
(+)
1

1l−K
1l+KΠ

(−)
1 . Then the projections corresponding to the

above direct sum decompositions are

Λ
(+)
12 =

[
1l c
0 0

]
, Λ

(−)
21 =

[
0 −c
0 1l

]
;

Λ
(−)
12 =

[
0 0
c∗ 1l

]
, Λ

(+)
21 =

[
1l 0
−c∗ 0

]
.

where we use the direct sum Ran Π
(+)
1 ⊕ Ran Π

(−)
1 .



Appendix III. Construction of the Feynman propagator.

Let (W , Q) be a Krein space. A bounded invertible operator R on
W will be called pseudounitary (or symplectic) if

(Rv |QRw) = (v |Qw).

In the following theorem we describe generators of pseudounitary
evolutions.



Proposition. Suppose that B is an operator on W with domain
containing a densely and continuously embedded Hilbertizable space
V . We assume that B is a generator of a group on W , its part B̃
in V is a generator of a group on V , and(

Bv | Qw
)

=
(
Bw|Qv

)
, v, w ∈ V . (∗)

Then e−itB, t ∈ R, is pseudounitary on (W , Q).
An operator B satisfying the above conditions is called a pseudouni-

tary generator. The quadratic form (*) is called the Hamiltonian
quadratic form.



Let B be a densely defined operator onW . We say that it is stable
if there exists an admissible involution S• such that B is self-adjoint
for (·|·)•, KerB = {0} and

S• = sgn(B).

Every stable operator is a pseudounitary generator, and its Hamil-
tonian form is positive:(

v | BS•v) =
(
Bv | Qv

)
≥ 0.



Let R 3 t 7→ B(t) ∈ B(V ,W) satisfy the assumptions of the
theorem about almost unitary evolutions. Assume also that B(t) is
infinitesimally symplectic on (W , Q) for all t. Then the evolution
R(t, s) is symplectic.

Assume in addition that B(±∞) := s-lim
t→±∞

B(t) exist and are

stable. Set

Π
(+)
± := 1lR+

(
B(±∞)

)
, Π

(−)
± := 1lR−

(
B(±∞)

)
,

S± := sgn
(
B(±∞)

)
= Π

(+)
± − Π

(−)
± .

which as we know are admissible involutions.



Then we can introduce the in/out positive frequency bisolutions

E
(+)
± , and the in/out negative frequency bisolutions E

(−)
± .

E
(+)
± (t, s) := lim

τ→±∞
R(t, τ )Π

(+)
± R(τ, s),

E
(−)
± (t, s) := lim

τ→±∞
R(t, τ )Π

(−)
± R(τ, s).

Lemma. For any s

lim
t→−∞

R(s, t) Ran Π
(+)
− , lim

t→+∞
R(s, t) Ran Π

(−)
+ ,

lim
t→−∞

R(s, t) Ran Π
(−)
− , lim

t→+∞
R(s, t) Ran Π

(+)
+

are two pairs of complementary subspaces.



With help of the above lemma we define two pairs of projections
onto these subspaces:

Λ
(+)
+−(s), Λ

(−)
+−(s),

Λ
(+)
+−(s), Λ

(−)
−+(s).

Now we can define the Feynman and anti-Feynman propagators in
the evolution approach

EF(t, s) := θ(t− s)R(t, s)Λ
(+)
+−(s)− θ(s− t)R(t, s)Λ

(−)
+−(s),

EF(t, s) := θ(t− s)R(t, s)Λ
(−)
−+(s)− θ(s− t)R(t, s)Λ

(+)
−+(s).



Set S±(t) := lim
τ→±∞

R(t, τ )S±R(τ, t).

Υ(t) :=
1

4

(
2 + S−(t)S+(t) + S+(t)S−(t)

)
.

We have the identities(
EF − EF)(t, s)− 1

2

(
E

(+)
+ + E

(−)
+ + E

(+)
− + E

(−)
−
)
(t, s)

=
1

8
R(t, s)Υ(s)−1[S+(s)− S−(s), [S+(s), S−(s)]

]
,(

EF + EF − E∨ − E∧
)
(t, s)

=
1

4
R(t, s)Υ(s)−1[S−(s), S+(s)].



These identities simplify in some important situations. Suppose
that for any (and hence for all) t

S−(t)S+(t) = S+(t)S−(t).

Then

EF + EF = E∨ + E∧,

EF − EF =
1

2

(
E

(+)
+ + E

(−)
+ + E

(+)
− + E

(−)
−
)
.



If the evolution is autonomous, then E
(+)
± , E

(−)
± collapse to two

bisolutions

E
(+)
+ = E

(+)
− =: E(+),

E
(−)
+ = E

(−)
− =: E(−).

We then have

EF + EF = E∨ + E∧,

EF − EF = E(+) + E(−).



Appendix IV. Attempt to define a distinguished
self-adjoint extension of the Klein-Gordon operator

We will try to construct the resolvent of K. For z ∈ C with
Im z ≥ 0, let us perturb the generator B(t) by considering

Bz(t) :=

[
W (t) 1l

L(t)− z W (t)

]
= B(t)−

[
0 0
z 0

]
.

Suppose that the evolution family for Bz(t) is denoted Rz(t, s).



For small Im z we could expect that the following subspaces are
complementary:

lim
t→−∞

Rz(s, t) Ran 1lR+
(
B(t)

)
, lim

t→+∞
Rz(s, t) Ran 1lR−

(
B(t)

)
We define the corresponding pair of complementary projections:

Λ
(+)z
−+ (s), Λ

(−)z
+− (s).

Define the operator EF,z by its integral kernel

EF,z(t, s)

:=θ(t− s)Rz(t, s)Λ(−)z
+− (s)− θ(s− t)Rz(t, s)Λ(+)z

−+ (s).



SetGF,z(t, s) := E
F,z
12 (t, s), as an operator on L2(M) = L2(R, L2(Σ)).

One can check that Gz satisfies the resolvent identity:

GF,z(t, s)−GF,w(t, s) = (z − w)

∫
GF,z(t, τ )GF,w(τ, s)dτ.

We hope that

GF,z =
1

z −Ksa,

where Ksa is a distinguished self-adjoint realization of the Klein-
Gordon operator K. Unfortunately, it is not clear whether GF,z is
bounded.


