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BASIC ABSTRACT SCATTERING THEORY

We are given two self-adjoint operators H0 and

H = H0 + V .

The Møller (or wave) operators (if they exist) are defined

as

S± := s− lim
t→±∞

eitH e−itH0 .

They satisfy S±H0 = HS± and are isometric.
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Scattering operator

Scattering operator is introduced as

S = S+∗S−.

It satisfies H0S = SH0.

If RanS+ = RanS−, then it is unitary.
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Alternative scattering operator

In the old literature, sometimes one can find a scattering

operator of a different kind

S̃ = S+S−∗,

which satisfies S̃H = HS̃. Both scattering operators are

closely related:

S̃∗ = S−SS−∗.
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Standard interpretation of quantum mechanics

Let ρ ≥ 0, Trρ = 1, be the density matrix representing a

state prepared at time t−.

Let A = A∗ represent an observable measured at time t+.

Expectation of the measurement equals

Tr A ei(−t++t−)H ρ ei(−t−+t+)H .
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Physical interpretation of scattering operator

At time t− the state e−it−H0 ρ eit−H0 is prepared.

The experimentalist measures at time t+ the observable

eit+H0 A e−it+H0 .

For t− → −∞, t+ → ∞, the expectation of the

measurement converges to

TrASρS∗.
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Scattering cross-sections in abstract setting I

Assume that the observable A commutes with H0.

Let P be a projection commuting with H0. Assume that

the experimentalist prepares a state ρ such that PρP = ρ

(but he does not control ρ more closely).

Let σ1 < σ2 be numbers such that

σ1P ≤ PSAS∗P ≤ σ2P.

(We choose P small enough so that σ2 − σ1 is small).
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Scattering cross-sections in abstract setting II

Then

σ1 ≤ lim inf
t−→−∞, t+→∞

Tr A ei(t+−t−)H ρ e−i(t+−t−)H

≤ lim sup
t−→−∞, t+→∞

Tr A ei(t+−t−)H ρ e−i(t+−t−)H ≤ σ2.

Thus for any ε > 0, there exists T such that for

t− ≤ −T, T ≤ t+, the expectation value of the

measurement lies between σ1 − ε and σ2 + ε.
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Problem with eigenvalues

It is easy to see that if the standard Møller operators

exist and H0Ψ = EΨ, then HΨ = EΨ.

In practice, the standard formalism of scattering theory

is usually applied to Hamiltonians H0 which have only

absolutely continuous spectrum.

In quantum field theory, typically, both H0 and H have

ground states, and these ground states are different.

Thus, standard scattering theory is not applicable.

Instead, one can sometimes try other approaches.
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Abelian Møller operators

Abelian Møller operators are defined as

S±
Ab := s− lim

ε↘0
2ε

∫ ∞

0

e−2εt e±itH e∓itH0 dt.

They satisfy S±
AbH0 = HS±

Ab, but do not have to be

isometric.

If the standard Møller operator exists, then so do the

Abelian Møller operators, and they coincide.
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Adiabatic Møller operators

Switch on the interaction adiabatically:

Uε(0) = 1,
d

dt
Uε(t) = iUε(t)(H0 + e−ε|t| V ).

One can introduce the adiabatic Møller operators

S±
ad := w− lim

ε↘0
lim
t→±∞

Uε(t) e−itH0 .

One expects that S±
Ab = S±

ad = S±
ur. (Subscript ur stands

for unrenormalized)
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Renormalization of Møller operators

Suppose that the vacuum amplitude operators

Z± := S±∗
ur S

±
ur has a trivial kernel. Then we can define

the renormalized Møller operators

S±
rn := S±

ur(Z
±)−1/2.

They also satisfy S±
rnH0 = HS±

rn and are isometric.

If RanS+
rn = RanS−

rn, then the renormalized scattering

operator

Srn = S+∗
rn S

−
rn

is unitary and H0Srn = SrnH0.
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Dyson series

for unrenormalized Møller operators

Set V (t) = eitH0 V e−itH0 . Expanding in formal power

series we obtain

S+
Ab = lim

ε↘0

∞
∑

n=0

∫

∞>tn>···>t1>0

in e−εtn V (tn) · · · V (t1)dtn · · · dt1,

S+
ad = lim

ε↘0

∞
∑

n=0

∫

∞>tn>···>t1>0

in e−ε(tn+···+t1) V (tn) · · · V (t1)dtn · · · dt1.
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Dyson series for unrenormalized

scattering operators

For Sur := S+∗
ur S

−
ur, after performing the ε↘ 0 limit we

get

S+
ur =

∞
∑

n=0

∫

∞>tn>···>t1>−∞

inV (tn) · · · V (t1)dtn · · · dt1.

After expanding each term in Feynman diagrams, this

formal expansion is the usual starting point for analysis

of scattering amplitudes in quantum field theory.
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In our lectures, after a brief outline of scattering for

Schrödinger operators, (the best known example of

scattering theory), we will discuss scattering for QFT

with localized interactions. We will see that it is quite

different from the Schrödinger case.
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Physical and asymptotic spaces I

Our starting point will be a physical Hilbert space H and

Hamiltonian H.

Our aim will be to guess the asymptotic Hamiltonians

H±as and Hilbert spaces H±as as well as Møller operators

S± : H±as → H, which should be isometric (preferably

unitary), and intertwine the asymptotic and physical

Hamiltonians, i.e. HS± = S±H±as.

Of course, these conditions do not determine asymptotic

spaces, Hamiltonians and Møller operators completely.

One needs to use physical intuition to give a natural

definitions.
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Physical and asymptotic spaces II

One way to define Møller operators is to introduce a

natural identification operators J± : H±as → H such that

S± := s− lim
t→∞

eitH J± e−itH±as

The usual scattering operator S = S+∗S− maps H−as

into H+as.

The alternative scattering operator S̃ = S+S−∗ acts on

the physical space H.
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Art of scattering theory

There is no single set-up of scattering theory. Special

set-ups are used e.g. for

1. many-body Schrödinger operators: Enss, Sigal-Soffer,

Graf, D.

2. local relativistic QFT: Haag-Ruelle,

3. classical waves.

They will not be discussed here.
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SCATTERING THEORY

FOR 2-BODY SCHRÖDINGER OPERATORS

Assume that

H0 = −∆,

H = −∆ + V (x).

We say that the potential V (x) is short range if

|V (x)| ≤ C(1 + |x|)−1−µ, µ > 0.

Then one can show that S± := s− limt→±∞ eitH e−itH0

exist and their ranges are Ran1c(H).
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The T -matrix

Introduce the T -operator

S = 1 + iT.

Let ξ be the momentum variable. Let ξ̂ = ξ|ξ|−1 be the

angular variable. In the momentum representation, the

T -operator has the distributional kernel

T (ξ+, ξ−) = δ(|ξ+| − |ξ−|)T (|ξ+|, ξ̂+, ξ̂−).

The scattering cross-section at the energy λ2/2, incoming

angle ξ̂− and outgoing angle ξ̂+ is defined as

σ(λ, ξ̂+, ξ̂−) := |T (λ, ξ̂+, ξ̂−)|2.
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Measuring scattering cross-sections I

Suppose that we prepare a state concentrated around the

momentum around ξ− and measure the probability of

finding the particle of momentum around ξ+, where the

energies are the same: |ξ−|2/2 = |ξ+|2/2. If the scattering

amplitude is well behaved (sufficiently continuous) then

the probability of the measurement is proportional to

σ(|ξ+|, ξ̂+, ξ̂−).
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Measuring scattering cross-sections II

Let us make it more precise. Let D denote the

momentum operator. Suppose that we want to measure

the observable a(D).

Fix the incoming angle η− ∈ Sd−1. Let us assume that

ξ̂− 7→ T (|ξ+|, ξ̂+, ξ̂−) is continuous at ξ̂− = η̂−, uniformly

for ξ+ ∈ supp a. Prepare a state whose density matrix

has the form

ρ(ξ−, ξ
′
−) = ρen(|ξ−|, |ξ′−|)ρan(ξ̂−, ξ̂

′
−).
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Measuring scattering cross-sections III

Then for any ε > 0, there exists δ > 0 such that if

ρan(ξ̂−, ξ̂
′
−) is supported in the set

|ξ̂− − η̂−| ≤ δ, |ξ̂′− − η̂−| ≤ δ,

then the expectation value of the measurement differs

from
∫

a(ξ+)σ(|ξ+|, ξ̂+, η̂−)ρen(|ξ+|, |ξ+|)|ξ+|d−1dξ+

×
∫

ρan(ξ̂−, ξ̂
′
−)dξ̂−dξ̂′−.

by at most ε.
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Long-range potentials

Suppose that the potential satisfies V = Vl + Vs where Vs

is short-range and

|∂αxVl| ≤ Cα(1 + |x|)−|α|−µ, µ > 0.

We then say that the potential is long range.

It includes the physically relevant Coulomb potential

V (x) = z|x|−1. One can show that for such potentials

standard Møller operators do not exit. This is one of

manifestations of the infra-red problem.
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Cross-sections for long-range potentials

In many quantum mechanics textbooks one approximates

long-range potentials by a sequence of short-range

potentials, e.g., the Coulomb potential by the Yukawa

potentials Vµ = z e−µ|x| |x|−1. For short-range potentials

one can construct Møller and scattering operators, which

leads to scattering cross-sections

σµ(λ, ξ̂1, ξ̂2).

Then one shows that there exist

lim
µ↘0

σµ(λ, ξ̂1, ξ̂2),

which is interpreted as the scattering cross-section for V .
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Modified Møller operators

There exist better approaches to long-range scattering.

One can define modified Møller operators for long-range

potentials. For instance, for an appropriate

S(t, ξ) =
tξ2

2
+ corrections

there exists

S±
lr := s− lim

t→±∞
eitH e−iS(t,D) .

It is isometric, S±
lrH0 = HS±

lr and RanS±
lr = Ran1c(H).
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Freedom of definition

However, in general there is no canonical choice of S±
lr . If

we have two modified Møller operator S±
lr,1 and S±

lr,2, then

there exists a phase ψ± such that

S±
lr,1 = S±

lr,2 eiψ±(D) .

This arbitrariness disappears in scattering cross-sections,

which are canonically defined.
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Asymptotic momenta

For long-range potentials, there exists a self-adjoint

operator D± such that, for any g ∈ Cc(R
d),

g(D±) = s− lim
t→∞

eitH g(D) e−itH 1c(H).

Unlike modified Møller operators, asymptotic momenta

are canonically defined. Modified Møller operators can be

introduced as isometric operators satisfying

g(D±) = S±
lr g(D)S±∗

lr .
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SECOND QUANTIZATION

1-particle Hilbert space: Z.

Symmetrization/antisymmetrization projections

Θs :=
1

n!

∑

σ∈Sn

Θ(σ),

Θa :=
1

n!

∑

σ∈Sn

sgnσΘ(σ).

n-particle bosonic/fermionic space: ⊗n
s/aZ := Θs/a ⊗n Z.

Bosonic/fermionic Fock space: Γs/a(Z) :=
∞
⊕
n=0

⊗n
s/aZ.

Vacuum vector: Ω = 1 ∈ ⊗0
s/aZ = C.
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Creation and annihilation operators

For z ∈ Z we define the creation operator

a∗(z)Ψ :=
√
n+ 1z ⊗s/a Ψ, Ψ ∈ ⊗n

s/aZ,

and the annihilation operator a(z) := (a∗(z))∗.

Traditional notation: identify Z with L2(Ξ) for some

measure space (Ξ, dξ). If z equals a function

Ξ 3 ξ 7→ z(ξ), then

a∗(z) =

∫

z(ξ)a∗ξdξ, a(z) =

∫

z(ξ)aξdξ.
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Field and Weyl operators

For f ∈ Z we introduce field operators

φ(f) :=
1√
2
(a∗(f) + a(f)),

and Weyl operators

W (f) := eiφ(f) .

For later reference note that

(Ω|W (f)Ω) = e−‖f‖2/4 .
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Wick quantization

Let b ∈ B
(

⊗n
s/aZ,⊗m

s/aZ
)

with the integral kernel

b(ξ1, · · · ξm, ξ′n, · · · , ξ′1). The Wick quantization of the

polynomial b is the operator

B =

∫

b(ξ1, · · · ξm, ξ′n, · · · , ξ′1)

a∗(ξ1) · · · a∗(ξm)a(ξ′n) · · · a(ξ′1)dξ1, · · · ξndξ′1 · · · dξ′m.

For Φ ∈ ⊗k+m
s/a Z, Ψ ∈ ⊗k+n

s/a Z, it is defined by

(Φ|BΨ) =

√

(n+ k)!(m+ k)!

k!
(Φ|b⊗ 1⊗kZ Ψ).
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Second quantization

For an operator q on Z we define the operator Γ(q) on

Γs/a(Z) by

Γ(q)
∣

∣

∣

⊗n
s/a

Z
= q ⊗ · · · ⊗ q.

Similarly, for an operator h we define the operator dΓ(h)

by

dΓ(h)
∣

∣

∣

⊗n
s/a

Z
= h⊗ 1(n−1)⊗ + · · · 1(n−1)⊗ ⊗ h.

Traditional notation: If h is the multiplication operator

by h(ξ), then dΓ(h) =
∫

h(ξ)a∗ξaξdξ.

Note the identity Γ(eith) = eitdΓ(h).
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NONRELATIVISTIC QED

Free photons

Let L2
tr(R

3,R3) describe divergenceless (transversal)

square integrable vector fields on R
3. Free photons are

described by the Hilbert space Hph := Γs(L
2
tr(R

3,R3))

and the Hamiltonian

Hph =
∑

s

∫

a∗s(ξ)|ξ|as(ξ)dξ.

where es(ξ) · ξ = 0, es(ξ) · es′(ξ) = δs,s′ are two

polarization vectors.
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Vector potential

The vector potential is the operator given by

A(x) =
∑

s

(2π)−3

∫

es(ξ)a
∗
s(ξ)

eixξ

√

2|ξ|
dξ + hc

Actually, we will need to replace it by the smeared

vector potential

Aρ(x) =
∑

s

(2π)−3

∫

ρ(ξ)es(ξ)a
∗
s(ξ)

eixξ

√

2|ξ|
dξ + hc

where ρ ∈ Cc(R
3) is a cutoff equal 1 for |ξ| < Λ. (In what

follows we drop the subscript ρ).
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N-body matter Hamiltonians

n identical particles of charge z, mass m,

Bose/Fermi statistics, in a vector potential A(x) and in a

scalar potential V (x), are described by the Hilbert space

Γns/a(L
2(Rd)) and the Hamiltonian

Hn =
n

∑

i=1

(

1

2m
(Di − zA(xi))

2 + zV (xi)

)

+
∑

1≤i<j≤n

z2

4π
|xi − xj|−1.
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2nd-quantized matter Hamiltonians

Matter can be described in the 2nd quantized formalism,

with the Hilbert space H = Γs/a(L
2(Rd)) and the

Hamiltonian

H =
∞
⊕
n=0

Hn

=

∫

b∗(x)

(

1

2
(D − zA(x))2 + zV (x)

)

b(x)dx

+
1

2

z2

4π

∫ ∫

b∗(x)b∗(y)|x− y|−1b(y)b(x)dxdy.
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Matter interacting with photons

Suppose we have a number of species of particles. The

total Hilbert space is ⊗
j
Hj ⊗Hph and the total

Hamiltonian is

H =
∑

j

∫

b∗j(x)

(

1

2mj

(D − zjA(x))2 + zjV (x)

)

bj(x)dx

+
1

2

∑

j,k

zjzk
4π

∫ ∫

b∗j(x)b
∗
k(y)|x− y|−1bk(y)bj(x)dxdy

+
∑

s

∫

a∗s(ξ)|ξ|as(ξ)dξ.
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Single particle interacting with photons

A single particle interacting with radiation is described

by a Hilbert space L2(Rd) ⊗Hph and the Hamiltonian

(sometimes called the Pauli-Fierz Hamiltonian)

H =
1

2m

(

(D − zA(x))2 + zV (x)
)

+
∑

s

∫

a∗s(ξ)|ξ|as(ξ)dξ.

It is an example of a Hamiltonian where a small system

(a particle) interacts with a large quantum environment

(photons).
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SCATTERING FOR HAMILTONIANS

OF QUANTUM FIELD THEORY

Typical Hamiltonians of QFT have (at least formally) the

form

Hλ :=

∫

h(ξ)a∗(ξ)a(ξ)dξ

+ λ

∫

∑

n,m

vn,m(ξ1, · · · ξm, ξ′n, · · · , ξ′1)

a∗(ξ1) · · · a∗(ξm)a(ξ′n) · · · a(ξ′1)dξ1, · · · ξmdξ′1 · · · dξ′n

where e.g. h(ξ) =
√

ξ2 +m2 describes the 1-particle

energy. The polynomials should be even in fermionic

variables.
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Localized interactions

Assume that vn,m(ξ1, · · · ξm, ξ′n, · · · , ξ′1) are smooth and

decay fast in all directions. This is a simplifying

assumption, which is not satisfied in most interesting

theories. Nevertheless, there are physically relevant

examples, where this assumption is fulfilled, besides we

can use it as an introductory step before studying more

relevant translation invariant systems.
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Self-adjointness

We do not worry too much about the self-adjointness of

Hλ. If we do not know how to do otherwise, we work

with formal power series.

In fact, in the case of fermions there is no problem, since

the perturbation is bounded. In the case of bosons, the

self-adjointness is OK if the perturbation is of degree 1 or

2 but small enough. Otherwise it can be proven only

under special assumptions (e.g. for P (φ)2 interactions).
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Literature

Scattering operator was used in QFT from the very

beginning. It was present already in the work of

Schwinger, Tomonaga, Feynman and Dyson

Much of mathematical literature about scattering in QFT

is old and often not very satisfactory. Let us mention

1. K.O. Friedrichs: “Perturbations of spectra in Hilbert

spaces” 1965

2. K. Hepp: “La theorie de la renormalisation” 1969

3. A. S. Xvarc: “Matematiqeskie osnovy kvantovo$i

teorii pol� ” 1975
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Interactions that do not polarize the vacuum

Suppose that vn,0 = v0,n = 0. Then Ω is an eigenvector of

both H0 and H. Then standard wave operators exist, at

least formally.

Unfortunately, physically realistic Hamiltonians often

polarize the vacuum.
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Ground states for localized interactions

One can show, at least formally, that Hλ possesses a

ground state HλΩλ = EλΩλ,

Ωλ =
∞

∑

n=0

λnΩn,

Eλ =
∞

∑

n=0

λnEn.
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Møller operators for localized interactions

Unrenormalized Møller operators exist, at least as formal

power series

S±
ur = s− lim

ε↘0
2ε

∫ ∞

0

e−2εt e±itH e∓it(H0−E) dt

=

∞
∑

n=0

λnS±
ur,n.

Z = S−∗
ur S

−
ur = S+∗

ur S
+
ur is proportional to identity and

equals Z = |(Ωλ|Ω)|2. The renormalized Møller operators

S±
rn := S±

urZ
−1/2 are formally unitary and so is the

renormalized scattering operator Srn := S+∗
rn S

−
rn.
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Asymptotic fields for localized interactions

Lehman-Symanzik-Zimmermann introduce an alternative

approach based on asymptotic fields

a±λ (f) := lim
t→±∞

eitH a(e−ith f) e−itH ,

a∗±λ (f) := lim
t→±∞

eitH a∗(e−ith f) e−itH ,

(at least as formal power series). They satisfy the usual

CCR. Asymptotic annihilation operators kill the

perturbed ground state

a±λ (f)Ωλ = 0
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Møller operator

from asymptotic fields

The (renormalized) Møller operators can be defined with

help of asymptotic fields

S±
rn,λa

∗(f1) · · · a∗(fn)Ω = a∗±λ (f1) · · · a∗±λ (fn)Ωλ

They are formally unitary and intertwine the CCR:

S±
rn,λa

∗(f) = a∗±λ (f)S±
rn,λ,

S±
rn,λa(f) = a±λ (f)S±

rn,λ.

Note that there is no need for renormalization.
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Scattering operator

from asymptotic fields

The (renormalized) scattering operators can be defined

with help of asymptotic fields, even skipping Møller

operators, as the unique (up to a phase factor) unitary

operators satisfying

S̃rn,λa
∗−
λ (f) = a∗+λ (f)S̃rn,λ,

S̃rn,λa
−
λ (f) = a+

λ (f)S̃rn,λ.
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Translation-invariant interactions

Basic Hamiltonians of QFT have a translation-invariant

interaction, and their scattering theory (even just formal)

is more complicated. On the level of the interactions this

is expressed by a delta function:

vn,m(ξ1, · · · ξm, ξ′n, · · · , ξ′1)
= ṽn,m(ξ1, · · · ξm, ξ′n, · · · , ξ′1)

δ(ξ1 + · · · + ξm − ξ′n − · · · − ξ′1),
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SCATTERING THEORY

OF VAN HOVE HAMILTONIANS

Let ξ 7→ h(ξ) ∈ [0,∞[ describe the energy and ξ 7→ z(ξ)

the interaction. Van Hove Hamiltonian is a self-adjoint

operator formally defined as

H =

∫

h(ξ)a∗ξaξdξ +

∫

z(ξ)aξdξ +

∫

z(ξ)a∗ξdξ.

To avoid the ultraviolet problem we will always assume
∫

h≥1

|z(ξ)|2dξ <∞.
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Van Hove Hamiltonian

Infrared case A

Let
∫

h<1

|z(ξ)|2
h(ξ)2

dξ < ∞.

Introduce the dressing operator

U := exp
(

−a∗(z
h

) + a(
z

h
)
)

.

and the ground state energy

E := −
∫ |z(ξ)|2

h(ξ)
dξ.
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Van Hove Hamiltonian

Infrared case A continued

Let

H0 =

∫

h(ξ)a∗ξaξdξ.

In Case A, the operator H is well defined and, up to a

constant, is unitarily equivalent to H0:

H − E = UH0U
∗

Therefore H has the spectrum [E,∞[ and

Ψ = exp

(

−
∫ |z(ξ)|2

2h(ξ)2
dξ

)

exp

(
∫

a∗(ξ)
z(ξ)

h(ξ)
dξ

)

Ω.

is its unique ground state.
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Van Hove Hamiltonian

Infrared case B

Let
∫

h<1

|z(ξ)|2
h(ξ)

dξ < ∞;

∫

h<1

|z(ξ)|2
h(ξ)2

dξ = ∞.

Then H is well defined, has the spectrum [E,∞[, but has

no bound states.
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Van Hove Hamiltonian

Infrared case C

Let
∫

h<1

|z(ξ)|2dξ < ∞;

∫

h<1

|z(ξ)|2
h(ξ)

dξ = ∞.

Then H is well defined, but spH =] −∞,∞[.
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Unrenormalized Møller operators

for Van Hove Hamiltonians

Assume that h has an absolutely continuous spectrum

(as an operator on L2(Ξ)) and Case A or B:
∫ |z(ξ)|2

h(ξ)
dξ < ∞.

Then there exists

S±
ur := s− lim

ε↘0
ε

∫ ∞

0

e−εt eitH e−it(H0+E) dξ.

We have S±
ur = UZ, where

Z = exp

(

−
∫ |z(ξ)|2

h2(ξ)
dξ

)

.
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Renormalized Møller and scattering operators

for Van Hove Hamiltonians

In Case A, the vacuum renormalization constant is

nonzero and we can renormalize S±
ur, obtaining the

dressing operator:

S±
rn := S±

urZ
−1/2 = U.

The scattering operator is (unfortunately) trivial:

S = S+∗
rn S

−
rn = 1.

58



Asymptotic fields

for Van Hove Hamiltonians

It is easy to see that in Case A, B and C, for

f ∈ Domh−1, there exist asymptotic fields:

a±(f) := lim
t→±∞

eitH a(e−ith f) e−itH = a(f) + (f |h−1z),

a∗±(f) := lim
t→±∞

eitH a∗(e−ith f) e−itH = a∗(f) + (z|h−1f).

This allows us to compute that the scattering operator

(S̃ = 1) even in Case B and C. In Case A the asymptotic

representation of the CCR is Fock but in Case B and C it

is not.
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SPECTRAL PROPERTIES

OF PAULI-FIERZ HAMILTONIANS

Let K be a Hilbert space with a self-adjoint operator K

describing the small system. Typical example of K is a

Schrödinger operator. Usually, we will assume that K

has discrete eigenvalues, which is the case if

K = −∆ + V (x) with lim|x|→∞ V (x) = ∞. The full

Hilbert space will be H := K ⊗ Γs(L
2(Rd)).
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Generalized spin-boson

or Pauli-Fierz Hamiltonians

We will discuss at length a class of Hamiltonians, which

is often used in physics and mathematics literature to

ilustrate basic properties of a small system interacting

with bosonic fields.

Let ξ 7→ v(ξ) ∈ B(K).

We take, e.g. h(ξ) :=
√

ξ2 +m2, m ≥ 0.

Set H := H0 + V where

H0 = K ⊗ 1 + 1 ⊗
∫

h(ξ)a∗(ξ)a(ξ)dξ,

V =

∫

v(ξ) ⊗ a∗(ξ)dξ + hc.
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Spectrum of Pauli-Fierz Hamiltonians

Theorem D.-Gérard Assume that (K + i)−1 is compact

and
∫

(1 + h(ξ)−1)‖v(ξ)‖2dξ <∞.

Then H is self-adjoint and bounded from below.

If E := inf spH, then spessH = [E +m,∞[.
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Ground state of Pauli-Fierz Hamiltonians

Theorem Bach-Fröhlich-Sigal, Arai-Hirokawa, Gérard.

If in addition
∫

(1 + h(ξ)−2)‖v(ξ)‖2dξ <∞,

then H has a ground state (the infimum of its spectrum

is an eigenvalue).
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Embedded point spectrum

of Pauli-Fierz Hamiltonians

One does not expect that H has point spectrum

embedded in its continuous spectrum. In fact, one can

often prove for a small nonzero coupling constant that

the spectrum of Hλ := H + λV in ]E +m,∞[ is purely

absolutely continuous, e.g. Bach-Fröhlich-Sigal-Soffer.

In particular, if m = 0, this means that the only

eigenvalue of Hλ is at the bottom of its spectrum. It

often can be proven to be nondegenerate.
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SCATTERING THEORY OF PAULI-FIERZ

HAMILTONIANS I

In the case of Pauli-Fierz Hamiltonians the usual

formalism of scattering in QFT does not apply, because

of the presence of the small system.

It is convenient to use a version of the LSZ formalism

and start with asymptotic fields.

I will follow the formalism of D-Gerard.

Fröhlich-Griesemer-Schlein use a slightly different setup.

Set Z1 := Domh−1/2 ⊂ L2(Rd).
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Basic theorem

Theorem D.-Gérard. Let for f from a dense subspace
∫ ∞

0

∥

∥

∥

∥

∫

eith(ξ) f(ξ)v(ξ)dξ + hc

∥

∥

∥

∥

dt <∞.

1. for f ∈ Z1 there exists

W±(f) := s− lim
t→±∞

eitH 1⊗W (e−ith f) e−itH ;

2. W±(f1)W
±(f2) = e−iIm(f1|f2)W±(f1 + f2), f1, f2 ∈ Z1;

3. R 3 t 7→W±(tf) is strongly continuous;

4. eitHW±(f) e−itH = W±(eith f);

5. if HΨ = EΨ, then (Ψ|W±(f)Ψ) = e−‖f‖2/4 ‖Ψ‖2.
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Asymptotic fields for Pauli-Fierz Hamiltonians

We introduce asymptotic fileds

φ±(f) :=
d

idt
W±(tf)

∣

∣

∣

t=0

and asymptotic creation/annihilation operators

a∗±(f) :=
1√
2
(φ(f) + iφ(if)),

a±(f) :=
1√
2
(φ(f) − iφ(if)).
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Asymptotic vacua for Pauli-Fierz Hamiltonians

Two equivalent definitions:

K±
0 :=

{

Ψ : (Ψ|W±(f)Ψ) = e−‖f‖2/4 ‖Ψ‖2
}

=
{

Ψ : a±(f)Ψ = 0
}

.

The last item of the previous theorem can be

reformulated as

Hp(H) ⊂ K±
0 ,

where Hp(H) denotes the span of eigenvectors of H.
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Asymptotic Fock representation

Define

H±
[0] := Spancl

{

W±(f)Ψ : Ψ ∈ K±
0 , f ∈ Z1

}

.

Then H±
[0] is the smallest space containing the asymptotic

vacua and invariant wrt asymptotic creation operators.
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Asymptotic completeness

for massive Pauli-Fierz Hamiltonians

Theorem Assume that m > 0. Then

1. Hoegh-Kroehn, D.-Gérard. H±
[0] = H, in other words,

the asymptotic representations of the CCR are Fock.

2. D.-Gérard. K±
0 = Hp(H), in other words, all the

asymptotic vacua are linear combinations of

eigenvectors.
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Conjectures about asymptotic completeness

for massless Pauli-Fierz Hamiltonians

Conjectures. D.-Gérard. Assume that h(ξ) = |ξ| and
∫

(1 + h(ξ)−2)‖v(ξ)‖2dξ <∞.

Then

1. H±
[0] = H,

2. K±
0 = Hp(H).

Conjecture is true if dimK = 1 (i.e. for van Hove

Hamiltonians). It is also true if v(ξ) = 0 for |ξ| < ε,

ε > 0, (as remarked by Fröhlich-Griesemer-Schlein).
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Asymptotic Hamiltonian

for the asymptotic Fock sector

The operator K±
0 := H

∣

∣

∣

K±

0

describes the energies of

asymptotic vacua (bound state energies, if asymptotic

completeness is true).

Define the asymptotic space H±as
0 := K±

0 ⊗ Γs(L
2(Rd))

and the asymptotic Hamiltonian

H±as
0 := K±

0 ⊗ 1 + 1 ⊗
∫

h(ξ)a∗(ξ)a(ξ)dξ.
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Møller operators for the asymptotic Fock sector

There exists a unitary operator

S±
0 : H±as

0 → H±
[0] ⊂ H

called the Møller operator (for the asymptotic Fock

sector) such that

S±
0 Ψ ⊗ a∗(f1) · · · a∗(fn) Ω

= a∗±(f1) · · · a∗±(fn) Ψ, Ψ ∈ K±
0 .
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Intertwining properties of Møller operators

We have

S±
0 1 ⊗ a∗(f) = a∗±(f)S±

0 ,

S±
0 1 ⊗ a(f) = a±(f)S±

0 ,

S±
0 H

±as
0 = HS±

0 .
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Scattering operators

for the asymptotic Fock sector

Define

S00 = S+∗
0 S−

0 .

It satisfies S00H
−as
0 = H+as

0 S00.

If H+
[0] = H−

[0], then S00 is unitary on H+as
0 = H−as

0 .
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Relaxation to the ground state I

In practice, one often expects (and sometimes one can

prove) that H only absolutely continuous spectrum

except for a unique ground state Ψgr. Thus

w− lim
|t|→∞

eitH = |Ψgr)(Ψgr|.

If in addition asymptotic completeness holds, then the

asymptotic space is H±as
0 = Γs(Z).
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Relaxation to the ground state II

Introduce the C∗-algebra

A := B(K) ⊗ CCR(Z)

where CCR(Z) = Spancl{W (f) : f ∈ Z}.
Theorem Assume asymptotic completeness and the

absence of bound states except for a unique ground state.

Let A ∈ A. Then

w− lim
|t|→∞

eitH A e−itH = |Ψgr)(Ψgr| (Ψgr|AΨgr).
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REPRESENTATIONS OF THE CCR

Let Y be a real vector space equipped with an

antisymmetric form ω. (Usually we assume that ω is

symplectic, i.e. is nondegenerate). Let U(H) denote the

set of unitary operators on a Hilbert space H. We say

that

Y 3 y 7→W π(y) ∈ U(H)

is a representation of the CCR over Y in H if

W π(y1)W
π(y2) = e−

i
2
y1ωy2 W π(y1 + y2), y1, y2 ∈ Y .
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Regular representations of the CCR

Let Y 3 y 7→W π(y) be a representation of the CCR.

Clearly,

R 3 t 7→W π(ty) ∈ U(H)

is a 1-parameter group. We say that a representation of

the CCR ) is regular if this group is strongly continuous

for each y ∈ Y .
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Field operators

Assume that y 7→W π(y) is a regular representation of

the CCR.

φπ(y) := −i
d

dt
W π(ty)

∣

∣

∣

t=0
.

φπ(y) will be called the field operator corresponding to

y ∈ Y . We have Heisenberg canonical commutation

relation

[φπ(y1), φ
π(y2)] = iy1ωy2.
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Creation/annihilation operators

Let Z be a complex vector space with a scalar product

(·|·). It has a symplectic form Im(·|·) Suppose that

Z 3 f 7→W π(f) ∈ U(H)

is a regular representation of the CCR. For f ∈ Z we

introduce creation/annihilation operators

aπ∗(f) :=
1√
2
(φπ(f) + iφπ(if)), aπ(f) :=

1√
2
(φπ(f) − iφπ(if)).

They satisfy the usual relations

[aπ(f1), a
π(f2)] = 0, [aπ∗(f1), a

π∗(f2)] = 0,

[aπ(f1), a
π∗(f2)] = (f1|f2).
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Fock representation of the CCR

Consider the creation/annihilation operators acting on

the Fock space Γs(Zcpl). Then φ(f) := 1√
2
(a∗(f) + a(f))

are self-adjoint and

Z 3 f 7→ exp iφ(f)

is a regular representation of the CCR called the Fock

representation. The vacuum Ω is characterized by either

of the following equivalent equations:

a(f)Ω = 0, f ∈ Z;

(Ω| eiφ(f) Ω) = e−
1
4
(f |f), f ∈ Z.
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Coherent representation of the CCR I

Let g be an antilinear functional on Z (not necessarily

bounded), that is g ∈ Z∗. Then

Z 3 f 7→Wg(f) := W (f) eiRe(g|f) ∈ U(Γs(Zcpl))

is a regular representation of the CCR called the

[g]-coherent representation. The corresponding

creation/annihilation operators are

ag(f) = a(f) +
1√
2
(f |g),

a∗g(f) = a∗(f) +
1√
2
(g|f).
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Coherent representation of the CCR II

The vector Ω is characterized by either of the following

equations:

ag(f)Ω =
1√
2
(f |g)Ω,

(Ω|Wg(f)Ω) = e−
1
4
(f |f)+iRe(f |g) .

The representation f 7→Wg(f) is unitarily equivalent to

the Fock representation iff g is a bounded functional

g ∈ Zcpl. More generally, Wg1 is equivalent to Wg2 iff

g1 − g2 ∈ Zcpl.
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Coherent sectors of a CCR representation I

Suppose that

Z 3 f 7→W π(f) ∈ U(H)

is a representation of the CCR (e.g. obtained by

asymptotic limits, so that π = ±). Let g be be an

antilinear functional on Z. How can we find all

subrepresentations of W π equivalent to a multiple of the

[g]-coherent representation?
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Coherent sectors of a CCR representation II

Define

Kπ
g := {Ψ ∈ H : aπ(f)Ψ =

√
2(g|f)Ψ}

= {Ψ ∈ H : (Ψ|W π(f)Ψ) = ‖Ψ‖2 e−
1
4
(f |f)+iRe(f |g)},

Hπ
[g] := Spancl

{

aπ∗(f1) · · · aπ∗(f1)Ψ : Ψ ∈ Kπ
g , fi ∈ Z

}

= Spancl
{

W π(f)Ψ : Ψ ∈ Kπ
g , f ∈ Z

}

.
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Coherent sectors of a CCR representation III

We define an isometric operator Sπg : Kπ
g ⊗ Γs(Zcpl) → H

by

Sπg Ψ ⊗ a∗g(f1) · · · a∗g(fn)Ω
= aπ∗(f1) · · · aπ∗(fn)Ψ,

Sπg Ψ ⊗Wg(f)Ω

= W π(f)Ψ.
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Coherent sectors of a CCR representation IV

Theorem.

1. Hπ
[g] is an invariant subspace for W π.

2. Sπg : Kπ
g ⊗ Γs(Zcpl) → Hπ

[g] is unitary.

3. Sπg 1 ⊗Wg(f) = W π(f) Sπg .

4. If U is unitary such that U1 ⊗Wg(f) = W π(f) U,

then RanU ⊂ Hπ
[g].

Thus on

⊕
[g]∈Z∗/Zcpl

Hπ
[g] ⊂ H

the representation W π is well understood – it is of the

coherent type.
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Covariant CCR representations

Let h be a self-adjoint operator on Zcpl and H a

self-adjoint operator on H. We say that (W π, h,H) is a

covariant representation of the CCR iff

eitHW π(f) e−itH = W π(eith f), f ∈ Z.

Example. Fock representation, (W,h, dΓ(h)):

eitdΓ(h)W (f) e−itdΓ(h) = W (eith f).

89



Covariant coherent CCR representations

Let g ∈ h−1Zcpl. Set z = 1√
2
hg. Introduce the van Hove

Hamiltonian

dΓg(h) := dΓ(h) + a∗(z) + a(z) + (z|h−1z).

Then (W g, h, dΓg(h)) is covariant:

eitdΓg(h)Wg(f) e−itdΓg(h) = Wg(e
ith f).

This is obvious for g ∈ Zcpl, because then

dΓg(h) = W (ig)dΓ(h)W (−ig),

Wg(f) = W (ig)W (f)W (−ig).
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Restricting covariant representation

to a Fock sector

Suppose that Z 3 f 7→W π(f) ∈ U(H) is a

representation of the CCR covariant for h,H:

eitHW π(f) e−itH = W π(eith f).

It is easy to restrict it to the Fock sector:

Theorem. Kπ
0 and Hπ

[0] are eitH-invariant. Let

Kπ
0 := H

∣

∣

∣

Kπ
0

and on Kπ
0 ⊗ Γs(Zcpl) set

Hπ
0 = Kπ

0 ⊗ 1 + 1 ⊗ dΓ(h).

Then HSπ0 = Sπ0H
π
0 .
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Restricting covariant representation

to a coherent sector I

Theorem. Let g ∈ h−1/2Z. Then Hπ
[g] is eitH-invariant

and there exists a unique operator Kπ
g on Kπ

g such that if

on Kπ
g ⊗ Γs(Zcpl) we set

Hπ
g := Kπ

g ⊗ 1 + 1 ⊗ dΓg(h),

then HSπg = SπgH
π
g .
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Restricting covariant representation

to a coherent sector II

Thus restricted to Hπ
[g], the covariant representation

(W π, h,H) is unitarily equivalent to

(

1 ⊗W g, 1 ⊗ h,Kπ
g ⊗ 1 + 1 ⊗ dΓg(h)

)

.

In particular, if g 6∈ Zcpl, then the Hamiltonian does not

have a ground state inside this sector. Nevertheless,

inside this sector, we have good control on the dynamics!
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SCATTERING THEORY OF PAULI-FIERZ

HAMILTONIANS II

Below we reformulate the basic theorem.

Theorem Under the same assumptions as before

1. for f ∈ Z1 there exists

W±(f) := s− lim
t→±∞

eitH 1⊗W (e−ith f) e−itH ;

2. Z1 3 f 7→W±(f) are representations of the CCR.

3. These representations are regular.

4. (W±, h,H) are covariant.

5. The Fock sector of W± contains all eigenvectors of H.
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Asymptotic g-coherent subspace

Let g ∈ Z∗. Then one can define

K±
g := {Ψ ∈ H : (Ψ|W±(f)Ψ) = ‖Ψ‖2 e−

1
4
(f |f)+iRe(f |g)},

H±
[g] := Spancl

{

W±(f)Ψ : Ψ ∈ Kπ
g , f ∈ Z

}

,

as well as the asymptotic Hilbert spaces

H±as
g := K±

g ⊗ Γs(Zcpl)

asymptotic Hamiltonians

H±as
g := K±

g ⊗ 1 + 1 ⊗ dΓ(h).
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g-coherent Møller operators I

The Møller operators S±
g : H±as

g → H±
[g] ⊂ H intertwine

field operators and the Hamiltonians:

S±
g 1 ⊗ a∗g(f) = a∗±(f)S±

g ,

S±
g 1 ⊗ ag(f) = a±(f)S±

g ,

S±
g H

±as
g = HS±

g .

One can define scattering operator between sectors g1

and g2:

Sg2,g1 := S+∗
g2
S−
g1
.
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g-coherent Møller operators II

Define the g-coherent identifier J±
g : H±as

g → H by

J±
g Ψ ⊗Wg(f)Ω = 1⊗W (f) Ψ.

Then we can introduce Møller operators using this

identifier:

S±
g = s− lim

t→±∞
eitH J±

g e−itH±as
g .

97



Incoming/outgoing coherent subspaces

In the physical space we can distinguish the space where

asymptotic CCR are coherent:

H±
[coh] := ⊕

g∈Z∗/Zcpl

H±
[g] ⊂ H.

We also introduce the corresponding asymptotic spaces

H±as
coh := ⊕

g∈Z∗/Zcpl

H±as
g .
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Coherent Møller and scattering operators

We have the Møller operators S±
coh : H±as

coh → H±
[coh]

S±
coh := ⊕

g∈Z∗/Zcpl

S±
g .

intertwining the asymptotic and the physical Hamiltonian

S±
cohH

±as
coh = HS±

coh.

Finally, we have an object that is perhaps the most

interesting physically: the coherent scattering operator

Scoh : H−as
coh → H+as

coh

Scoh := S+∗
cohS

−
coh.
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Soft bosons I

Assume that all asymptotic fields are g-coherent for some

unbounded g. Typically one can expect that all the

unboundedness of g is concentrated at the zero energy,

that is for any ε > 0, ‖1[ε,∞[(h)g‖ <∞. By modifying g

we can assume that 1[ε,∞[(h)g = 0. The one-particle

space can be split as Z = Z≤ε ⊕Z>ε, where

Z≤ε := 1[0,ε](h)Z, Z>ε := 1]ε,∞[(h)Z.

Then the Fock space splits as

Γs(Z) ' Γs(Z≤ε) ⊗ Γs(Z>ε),

and the vacuum splits as Ω = Ω≤ε ⊗ Ω>ε.
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Soft bosons II

The projection

P±
≤ε := S±

g 1⊗|Ω>ε)(Ω>ε| S±∗
g

projects onto the particle with a cloud of soft bosons of

frequency less than ε. It is canonically defined and can

serve as a substitute of the ground state. In case of the

infrared problem
⋂

ε>0

RanP±
≤ε = {0}.

If the infra-red problem is absent, then
⋂

ε>0

RanP±
≤ε = CΨgr.
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CONCLUSION

There exists a flexible mathematical formalism to

describe scattering theory for second-quantized

Hamiltonians with localized interactions. It can often

describe quite difficult situations, involving e.g. an

infrared catastrophe. Its key ingredient is the concept of

representations of the CCR or CAR.

The situation is much more difficult for

translation-invariant Hamiltonians. Rigorous results are

very limited (many-body Schrödinger operators Enss,

Sigal, Soffer, Graf, D., Haag-Ruelle theory, Compton

scattering at weak coupling and small energy

Fröhlich-Griesemer-Schlein).
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