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BASIC ABSTRACT SCATTERING THEORY

We are given two self-adjoint operators H, and
H=Hy,+YV.

The Moller (or wave) operators (if they exist) are defined

as
SE .= s— lim et g7itHo

t—+o0

They satisfy STHy, = HS* and are isometric.



Scattering operator

Scattering operator is introduced as
S =55,

It satisfies HyS = SHy.
If RanS™ = RanS~, then it is unitary.



Alternative scattering operator

In the old literature, sometimes one can find a scattering

operator of a different kind
S =5Ts™,

which satisfies SH = HS. Both scattering operators are

closely related:

~

ST=5"855"".



Standard interpretation of quantum mechanics

Let p > 0, Trp = 1, be the density matrix representing a

state prepared at time t_.
Let A = A* represent an observable measured at time ¢_.

Expectation of the measurement equals

TI, Aei(—t+—|—t_)Hpei(—t_—|—t+)H .



Physical interpretation of scattering operator

At time t_ the state e7-Ho pett-Ho ig prepared.

The experimentalist measures at time ¢, the observable
eit_|_H0 Ae—it+H0.

For t_ — —o0, t,. — o0, the expectation of the

measurement converges to

Tr ASpS™.



Scattering cross-sections in abstract setting I

Assume that the observable A commutes with H.

Let P be a projection commuting with H,. Assume that
the experimentalist prepares a state p such that PpP = p

(but he does not control p more closely).

Let 01y < 09 be numbers such that
o1 P < PSAS*P < g,P.

(We choose P small enough so that o5 — o7 is small).



Scattering cross-sections in abstract setting 11

Then

liminf  Tr Aelt+—t-)H D o~ i(t+—t-)H

t_——00, t4—00

< limsup TIr Aellt+—t-)H pe_i(t+_t‘)H < 0s.

t_——00, t4—00

VAN

01

Thus for any € > 0, there exists 1" such that for
t_ < =T, T <ty the expectation value of the

measurement lies between o7 — € and oy + €.



Problem with eigenvalues

It is easy to see that if the standard Mgller operators
exist and HyW = EV, then HV = EV.

In practice, the standard formalism of scattering theory
is usually applied to Hamiltonians Hy which have only

absolutely continuous spectrum.

In quantum field theory, typically, both Hy and H have
oround states, and these ground states are different.
Thus, standard scattering theory is not applicable.

Instead, one can sometimes try other approaches.
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Abelian Mgller operators

Abelian Mgller operators are defined as

©, @)
S:Atb = §— 1im 2¢ o 2¢t oFtH (FitHo g4
6\0 O

They satisty ijbHO =H Sfb, but do not have to be

1Isometric.

If the standard Mgller operator exists, then so do the
Abelian Mgller operators, and they coincide.
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Adiabatic Mgller operators

Switch on the interaction adiabatically:

d
d?

One can introduce the adiabatic Mgller operators

U.0) =1, —U(t) =1iU(t)(Hy+ e V).

ST :=w—lim lim U./t)e "o
e\ 0 t—=Fo0

One expects that S5, = S = SE. (Subscript ur stands

for unrenormalized)
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Renormalization of Mgller operators

Suppose that the vacuum amplitude operators
Z* := ST*S= has a trivial kernel. Then we can define

the renormalized Mgller operators
S:I: = S:l: (Zi)_1/2.
They also satisfy ST Hy = HSZ and are isometric.

If RanSt = Ran$

rn’

then the renormalized scattering

operator
Sin = S;;*S;l
is unitary and HyS,, = SimHo.
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Dyson series

for unrenormalized Mgller operators

Set V(t) = etHo VV e7itHo  Expanding in formal power

series we obtain

o
ST = lim
Ab 0
CNY T Joo>tn > >t >0

e~ V(4,) - V(t)dt, - - iy,

O
S;rd — limE /
0
e\ 00>ty > >t1 >0

n=0

i e n T HO (¢ )V (ty)dty, - - - diy.
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Dyson series for unrenormalized

scattering operators

For Sy, := S1*S_

ur?

after performing the ¢ \ 0 limit we

get

S+

o0
ur E /
OS>ty > >11>—00

n=0

"V (t,) - V(t)dt,, - - dty.

After expanding each term in Feynman diagrams, this
formal expansion is the usual starting point for analysis

of scattering amplitudes in quantum field theory.
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In our lectures, after a brief outline of scattering for
Schrodinger operators, (the best known example of
scattering theory), we will discuss scattering for QFT
with localized interactions. We will see that it is quite

different from the Schrodinger case.
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Physical and asymptotic spaces I

Our starting point will be a physical Hilbert space 'H and

Hamiltonian H.

Our aim will be to guess the asymptotic Hamiltonians
H*2 and Hilbert spaces H** as well as Mgller operators
S* . H** — 'H, which should be isometric (preferably
unitary), and intertwine the asymptotic and physical
Hamiltonians, i.e. HS*T = STH*%.

Of course, these conditions do not determine asymptotic
spaces, Hamiltonians and Mgller operators completely.
One needs to use physical intuition to give a natural

definitions.
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Physical and asymptotic spaces 11

One way to define Mgller operators is to introduce a

natural identification operators J* : H*® — H such that

. : s +as
SE .— g— lim e'tf J* e itH

t—o00

The usual scattering operator S = S™*S~ maps H ™

into H™2s.

The alternative scattering operator S = S*TS5~* acts on

the physical space H.
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Art of scattering theory

There is no single set-up of scattering theory. Special

set-ups are used e.g. for

1. many-body Schrodinger operators: Enss, Sigal-Soffer,
Graf, D.

2. local relativistic QFT: Haag-Ruelle,
3. classical waves.

They will not be discussed here.
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SCATTERING THEORY
FOR 2-BODY SCHRODINGER OPERATORS

Assume that
Hy = —-A,
H = -A+V(x).
We say that the potential V(x) is short range if

V(@) < CA+[z))77" >0

Then one can show that ST := s— lim,_, 4., et e~ 1tHo

exist and their ranges are Ranl.(H).
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The T-matrix

Introduce the T-operator

S =1+1T.

Let € be the momentum variable. Let & = £1€]71 be the
angular variable. In the momentum representation, the

T-operator has the distributional kernel

T(g—i—af—) — 5(‘€—|—|_ ‘€—|)T(‘€+‘7é—|—aé—)

The scattering cross-section at the energy A\?/2, incoming

angle é_ and outgoing angle é+ is defined as

o\ &p &) = TN 6 6
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Measuring scattering cross-sections I

Suppose that we prepare a state concentrated around the
momentum around £_ and measure the probability of
finding the particle of momentum around &, where the
energies are the same: |€_]%/2 = |£,]?/2. If the scattering
amplitude is well behaved (sufficiently continuous) then

the probability of the measurement is proportional to

U(‘f%—‘aé—ﬂé—)’
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Measuring scattering cross-sections II

Let us make it more precise. Let D denote the

momentum operator. Suppose that we want to measure

the observable a(D).

Fix the incoming angle n_ € S%!. Let us assume that
§_ v T(|&4], €4, €) is continuous at € = #_, uniformly
for £, € suppa. Prepare a state whose density matrix

has the form

(e 1) = pen(lE-], €L pan(E-, EL).
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Measuring scattering cross-sections III

Then for any € > 0, there exists 0 > 0 such that if
Pan(E_, ") is supported in the set

‘é—_ﬁ—|§57 ’é/—_ﬁ—|§57

then the expectation value of the measurement differs

from

/ al€0)o([Ex ], Evs i) penl[Ex ], 1€ D)1 e
9 / pan (6, € )AE_dE"
by at most e.
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Long-range potentials

Suppose that the potential satisfies V' = V| + V; where V;

1s short-range and
95V < Co(1+ [z) 171 >0,

We then say that the potential is long range.
It includes the physically relevant Coulomb potential

V(x) = z|z|~'. One can show that for such potentials
standard Mgller operators do not exit. This is one of

manifestations of the infra-red problem.
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Cross-sections for long-range potentials

In many quantum mechanics textbooks one approximates
long-range potentials by a sequence of short-range
potentials, e.g., the Coulomb potential by the Yukawa
potentials V,, = z e ##l|z|~1. For short-range potentials
one can construct Mgller and scattering operators, which

leads to scattering cross-sections

O-M()\a éla 52)

Then one shows that there exist

}LI\‘I% O-/L()\a éla éQ)a

which is interpreted as the scattering cross-section for V.
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Modified Mgller operators

There exist better approaches to long-range scattering.
One can define modified Mgller operators for long-range

potentials. For instance, for an appropriate

2
S(t, &) = % + corrections

there exists

+ : itH _—iS(t,D)
Sh, = s—thm e e .
—4o00

It is isometric, ST Hy = HS;: and RanS; = Ranl.(H).
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Freedom of definition

However, in general there is no canonical choice of Slf. If
we have two modified Mgller operator S .1 and Slr ,, then

there exists a phase 9* such that

Slrl — Sr2elwi(D) :

This arbitrariness disappears in scattering cross-sections,

which are canonically defined.
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Asymptotic momenta

For long-range potentials, there exists a self-adjoint
operator DT such that, for any g € C.(R?),

g(D¥) =s— lim " g(D)e ™ 1.(H).

t—o00

Unlike modified Mgller operators, asymptotic momenta
are canonically defined. Modified Mgller operators can be

introduced as isometric operators satistying

g(D*) = Sirg(D)Sy™.

29



SECOND QUANTIZATION

1-particle Hilbert space: Z.
Symmetrization /antisymmetrization projections

n-particle bosonic/fermionic space: ®! /aZ = Oy Q" Z.

Bosonic/fermionic Fock space: I'y/,(Z) 1= D Q" Z

i s/a“""

Vacuum vector: 2 =1 &€ ®S/aZ = C.
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Creation and annihilation operators

For z € Z we define the creation operator
a*(2)V:i=vVn+12Q,, ¥, VeE®,Z,

and the annihilation operator a(z) := (a*(z))".

Traditional notation: identify Z with L?(Z) for some

measure space (=,d¢). If z equals a function
=3 & 2(£), then

() = [ (©azae alz) = [ =€acd
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Field and Weyl operators

For f € Z we introduce field operators

For later reference note that

QW (f)Q) = e I717/1.
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Wick quantization

Let be B ( g/aZ, ®:}a2) with the integral kernel

b(&1, -+ &Em, &L, -+ &), The Wick quantization of the

polynomial b is the operator
B = /b(flafm,&/wafi)
a*(&1) -+ a*(§m)a(&y,) - a(§)dér, - - §udy - - dE,.

For & € @fgmz, S @fgnz, it is defined by

(B|BU) = V<”+k])€!!(m+k)!(q>\b®1§kqf).
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Second quantization

For an operator ¢ on Z we define the operator I'(q) on
Fs/a(Z) by

['(q)

®:“/aZ

Similarly, for an operator h we define the operator dI'(h)
by

—hl1rDe . 1-D® o
Q2
Traditional notation: If h is the multiplication operator

by h(€), then dT(h) = [ h(€)agaede.
Note the identity I'(e'") = eitdl'(h),

dT(h)
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NONRELATIVISTIC QED

Free photons

Let L2 (R%, R?) describe divergenceless (transversal)

square integrable vector fields on R?. Free photons are
described by the Hilbert space H,y, := I's(LE(R?, R?))
and the Hamiltonian

-3 [ ax(©)lélae

where e5(€) - € =0, e5(€) - e (§) = 05,9 are two

polarization vectors.
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Vector potential

The vector potential is the operator given by

eixﬁ'

Alz) = S (2m)3 / s (€)% () ——=dE + he

5 2¢]

Actually, we will need to replace it by the smeared

vector potential

Aa) = 3220 [ ple)e€)ar(e)—dt + he

5 2|¢]

where p € C.(R?) is a cutoff equal 1 for |£| < A. (In what
follows we drop the subscript p).
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N-body matter Hamiltonians

n identical particles of charge z, mass m,

Bose/Fermi statistics, in a vector potential A(z) and in a

scalar potential V' (x), are described by the Hilbert space

Fg/a(LQ(]Rd)) and the Hamiltonian

= 3 (o s )
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2nd-quantized matter Hamiltonians

Matter can be described in the 2nd quantized formalism,
with the Hilbert space H = Iy, (L*(RY)) and the

Hamiltonian

H

o H"
n=0

Q/N()(&D—%A(D-+AK)>M@¢E

*m//b* )b* ()] — y] ™ b(y)b(a)dady.
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Matter interacting with photons

Suppose we have a number of species of particles. The
total Hilbert space 1s ® H; ® H,, and the total
J

Hamiltonian is

Z / 50 (33D = 5A@) +5V@) ) b
=/ / b5 @b )l — 1 el (o)l

+Z / &)élas(€)
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Single particle interacting with photons

A single particle interacting with radiation is described

by a Hilbert space L?(R%) ® Hpy, and the Hamiltonian
(sometimes called the Pauli-Fierz Hamiltonian)

H = i((D—zA(x))qu(x))

2m
+Z / &)l€las(€)

It is an example of a Hamiltonian where a small system
(a particle) interacts with a large quantum environment
(photons).
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SCATTERING FOR HAMILTONIANS
OF QUANTUM FIELD THEORY

Typical Hamiltonians of QFT have (at least formally) the

form

Hy = / h(E)a” (€)a(€)de

+ )\/Zvn,m(fla"'fmag;w'” 7€1)
a*(§1) - a*(§m)a(y,) - - a(§))dEr, - - §ndE) -+ - dE,

where e.g. h(€) = /€2 + m?2 describes the 1-particle

energy. The polynomials should be even in fermionic

variables.
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Localized interactions

Assume that vy, (&1, - - Emy &L, -+, &) are smooth and
decay fast in all directions. This is a simplifying
assumption, which is not satisfied in most interesting
theories. Nevertheless, there are physically relevant
examples, where this assumption is fulfilled, besides we
can use it as an introductory step before studying more

relevant translation invariant systems.
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Self-adjointness

We do not worry too much about the self-adjointness of
H,. If we do not know how to do otherwise, we work

with formal power series.

In fact, in the case of fermions there is no problem, since
the perturbation is bounded. In the case of bosons, the
self-adjointness is OK if the perturbation is of degree 1 or
2 but small enough. Otherwise it can be proven only

under special assumptions (e.g. for P(¢), interactions).
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Literature

Scattering operator was used in QF'T from the very
beginning. It was present already in the work of

Schwinger, Tomonaga, Feynman and Dyson

Much of mathematical literature about scattering in QFT

is old and often not very satistactory. Let us mention

1. K.O. Friedrichs: “Perturbations of spectra in Hilbert
spaces” 1965

2. K. Hepp: “La theorie de la renormalisation” 1969

3. A. C. llIpapm: “MareMaTudeckre OCHOBLI KBAHTOBOA

Teopuu moasa ’ 1975
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Interactions that do not polarize the vacuum

Suppose that v, o = vg,, = 0. Then () is an eigenvector of
both Hy and H. Then standard wave operators exist, at

least formally.

Unfortunately, physically realistic Hamiltonians often

polarize the vacuum.
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Ground states for localized interactions

One can show, at least formally, that H) possesses a
ground state H,(, = F,(),,

@)

Q= » A"Q,,

n=0

B, = i)\”En.
n=0
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Mogller operators for localized interactions

Unrenormalized Mgller operators exist, at least as formal

power series

e\0
- i \"SE
n=0

Z =S8_*S_ = S*ST is proportional to identity and

o
Sfr — s—lim 26/ o~ 2et oHtH (Fit(Ho—E) g4
0

equals Z = |(2,|Q)]?. The renormalized Mgller operators
SE .= S Z71/2 are formally unitary and so is the

renormalized scattering operator Sy, := St*S_.
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Asymptotic fields for localized interactions

introduce an alternative

approach based on asymptotic fields

a;\l:(f) — tl}inoo eitH a(e—ith f) e—itH7
a;:l:(f) . tli)inoo eitH CL* (e—ith f) e—itH7

(at least as formal power series). They satisfy the usual
CCR. Asymptotic annihilation operators kill the
perturbed ground state

ay (f)h =0

48



Mogller operator

from asymptotic fields

The (renormalized) Mgller operators can be defined with
help of asymptotic fields

n/\@ (f1) o ad (f) = af\i(fl)“'&f\i(fn)ﬂ/\

They are formally unitary and intertwine the CCR:

Sean@(f) = a3=(f)Smns
Senalf) = a5 (/)Sun

Note that there is no need for renormalization.
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Scattering operator

from asymptotic fields

The (renormalized) scattering operators can be defined
with help of asymptotic fields, even skipping Mgller
operators, as the unique (up to a phase factor) unitary

operators satistying

~ ~

mady (f) = a7 (f)Smn,
mAdy (f) ay (f)Semx.

50



Translation-invariant interactions

Basic Hamiltonians of QFT have a translation-invariant
interaction, and their scattering theory (even just formal)
is more complicated. On the level of the interactions this

is expressed by a delta function:

Un,m(fla"'fmagqlw"' 751)
— 6n,m(€17"'€m7§7’17°“ 751)
5(51_|_..._|_§m_§?’1_..._§1)7
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SCATTERING THEORY
OF VAN HOVE HAMILTONIANS

Let £ — h(&) € |0, 00| describe the energy and £ — z(§)
the interaction. Van Hove Hamiltonian is a self-adjoint

operator formally defined as

H = /h(ﬁ)azagdﬁJr/E(f)agdﬁ—l—/z(ﬁ)aZdﬁ.

To avoid the ultraviolet problem we will always assume

/ 2(6)[2d€ < oo
h>1
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Van Hove Hamiltonian

Infrared case A

Let

)P
/ TG

Introduce the dressing operator
¥ 2
U = exp (—a )+ a(h)) .

and the ground state energy
2(9)
b= —/ dé.
h(¢)
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Van Hove Hamiltonian
Infrared case A continued

Let
Hy = /h(ﬁ)a’gagdﬁ.

In Case A, the operator H is well defined and, up to a
constant, is unitarily equivalent to Hy:

H—-FE=UHyU"

Therefore H has the spectrum [E, oco| and

U = exp <— ;L(%idg> exp ( / a*(g)%cm) Q.

is its unique ground state.
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Van Hove Hamiltonian

Infrared case B

Let

2O |
/m he) &S

2O
/m TGRS

Then H is well defined, has the spectrum |E, oo|, but has

no bound states.
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Van Hove Hamiltonian

Infrared case C

Let

/ LA < oo
h<1

SO, _
/ he) T

Then H is well defined, but spH =| — oo, o0|.
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Unrenormalized Mgller operators
for Van Hove Hamiltonians

Assume that h has an absolutely continuous spectrum
(as an operator on L*(Z)) and Case A or B:

|Z |2

dé <

Then there exists

©.@)
Sffr = s—lime o€ oltH omit(Ho+E) dé€.
E\O O

We have S= = UZ, where

oo 555)
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Renormalized Mgller and scattering operators

for Van Hove Hamiltonians

In Case A, the vacuum renormalization constant is

nonzero and we can renormalize S*

ur?’

obtaining the

dressing operator:
S i=SaZ P =U.
The scattering operator is (unfortunately) trivial:

S =S58 =1.
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Asymptotic fields

for Van Hove Hamiltonians

It is easy to see that in Case A, B and C, for
f € Domh ™, there exist asymptotic fields:

a*(f) = lim_ " afe ™ et = a(f) + (flh'2),

a*:l:(f) . tl}inoo eitH a*(e—ith f) e—itH _ a*(f) + (Z‘h_lf)

This allows us to compute that the scattering operator
(S =1) even in Case B and C. In Case A the asymptotic
representation of the CCR is Fock but in Case B and C it

1S not.
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SPECTRAL PROPERTIES
OF PAULI-FIERZ HAMILTONIANS

Let IC be a Hilbert space with a self-adjoint operator K
describing the small system. Typical example of K is a
Schrodinger operator. Usually, we will assume that K
has discrete eigenvalues, which is the case if

K = —A 4 V(z) with lim|; . V(z) = co. The full
Hilbert space will be H := K @ I's(L*(R%)).
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Generalized spin-boson
or Pauli-Fierz Hamiltonians

We will discuss at length a class of Hamiltonians, which
is often used in physics and mathematics literature to

ilustrate basic properties of a small system interacting
with bosonic fields.

Let £ — v(€) € B(K).
We take, e.g. h(€) := /€2 +m?2, m > 0.
Set H := Hy + V where

Hy - Kol+le / h(E)a* (€)a(€)de.

Vo= [u© @ a(©de e

61



Spectrum of Pauli-Fierz Hamiltonians

Theorem Assume that (K +1)~! is compact

and
/ (14 h(E) ) o(©)]*de < oo.

Then H is self-adjoint and bounded from below.
If £ :=infspH, then sp. H = [E + m,00].
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Ground state of Pauli-Fierz Hamiltonians

Theorem Bach-Frohlich-Sigal, Arai-Hirokawa, Gérard.
If in addition

/ (14 1)) Ju(©)|2de < oo,

then H has a ground state (the infimum of its spectrum

is an eigenvalue).
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Embedded point spectrum

of Pauli-Fierz Hamiltonians

One does not expect that H has point spectrum
embedded in its continuous spectrum. In fact, one can
often prove for a small nonzero coupling constant that
the spectrum of Hy := H + AV in |F + m, 00| is purely

absolutely continuous,

In particular, if m = 0, this means that the only
eigenvalue of H, is at the bottom of its spectrum. It

often can be proven to be nondegenerate.
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SCATTERING THEORY OF PAULI-FIERZ
HAMILTONIANS I

In the case of Pauli-Fierz Hamiltonians the usual
formalism of scattering in QFT does not apply, because

of the presence of the small system.

It is convenient to use a version of the LLSZ formalism

and start with asymptotic fields.

[ will follow the formalism of

use a slightly different setup.
Set Z; := Domh~1/2 C L?(R%).
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Basic theorem

Theorem . Let for f from a dense subspace

[1f oo

1. for f € Z; there exists

dt < .

W:I:(f) — s— lim eltH 1®W( —ith f) —1tH

t— 100

WH(fW*(fo) = e I WE(fy 4 fo), fi, fa € 20;
R >t — WE(tf) is strongly continuous;

oitH Wlt(f) o—itH _ Wi(eith F);
if HU = EV, then (U|WE(£)T) = e MIF/4 T2,

A o
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Asymptotic fields for Pauli-Fierz Hamiltonians

We introduce asymptotic fileds

d

S = WHE)|

and asymptotic creation/annihilation operators

A (f) = (¢(f) +ie(if)),

o e

a(f) = (¢(f) —ie(if)).



Asymptotic vacua for Pauli-Fierz Hamiltonians
Two equivalent definitions:
K = {0 s (WE()w) = VI )P
= {U : a" (/)T =0}.

The last item of the previous theorem can be

reformulated as

HP(H) C ]C(j)_La
where H,(H) denotes the span of eigenvectors of H.
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Asymptotic Fock representation

Define
Hig = Span® {W*(f)¥ : U e Ky, fe Zi}.

Then H[jg] is the smallest space containing the asymptotic

vacua and invariant wrt asymptotic creation operators.
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Asymptotic completeness

for massive Pauli-Fierz Hamiltonians
Theorem Assume that m > 0. Then

1. H[jg] = 'H, in other words,
the asymptotic representations of the CCR are Fock.

2. K5 = H,(H), in other words, all the
asymptotic vacua are linear combinations of

eligenvectors.
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Conjectures about asymptotic completeness

for massless Pauli-Fierz Hamiltonians

Conjectures. D.-Gérard. Assume that h(&) = || and

/ (14 1) 2) [u(©)]d€ < oo,

Then
1. Ho] = H,
2. K =H,(H).

Conjecture is true if dim K = 1 (i.e. for van Hove
Hamiltonians). It is also true if v(§) = 0 for [£] < e,

e > 0, (as remarked by Frohlich-Griesemer-Schlein).
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Asymptotic Hamiltonian

for the asymptotic Fock sector

The operator KSE = H|  describes the energies of
’CO

asymptotic vacua (bound state energies, if asymptotic
completeness is true).

Define the asymptotic space H;™ := K ® I'(L?(R%))

and the asymptotic Hamiltonian

Hf = Kf@l+lg / h(€)a* (€)al€)de.
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Mogller operators for the asymptotic Fock sector

There exists a unitary operator
Sy Hp™ — Hig C'H

called the Mgller operator (for the asymptotic Fock

sector) such that

SEV @ a*(fi) - a*(f) O
= o= (f1)---a(f,) U, UeKs.
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Intertwining properties of Mgller operators

We have

Sol@a'(f) = a*(f)S,
Solealf) = a™(f)Sy,
So Hy™ = HSy.
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Scattering operators

for the asymptotic Fock sector

Define
Soo = Si*S; .
It satisfies SOQHO_aS = H(_)FaSSOQ.

If HFS] = Hy, then Spg is unitary on Ha® = Hg™.
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Relaxation to the ground state I

In practice, one often expects (and sometimes one can
prove) that H only absolutely continuous spectrum

except for a unique ground state Wg,. Thus

w— lim ™ = |, ) (V.

[t|—o0

If in addition asymptotic completeness holds, then the

asymptotic space is Hy™ = I'y(Z2).
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Relaxation to the ground state 11

Introduce the C*-algebra
A .= B(K) ® CCR(Z)

where CCR(Z) = Span®{W (f) : f € Z}.

Theorem Assume asymptotic completeness and the

absence of bound states except for a unique ground state.
Let A € . Then

w— lim e™ Ae ™ = |0, )(Vy| (Vy|AT,,).

[t| =00
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REPRESENTATIONS OF THE CCR

Let ) be a real vector space equipped with an
antisymmetric form w. (Usually we assume that w is
symplectic, i.e. is nondegenerate). Let U(H) denote the
set of unitary operators on a Hilbert space H. We say
that

Yoy— Wiy e UR)
is a representation of the CCR over YV in 'H if

W™ (y)) W™ (ya) = e 3992 W7 (y; + 1), y1,52 € V.
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Regular representations of the CCR

Let YV 2 y — W7™(y) be a representation of the CCR.
Clearly,
R>t— WT(ty) € U(H)

is a l-parameter group. We say that a representation of
the CCR ) is regular if this group is strongly continuous
for each y € ).
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Field operators

Assume that y — W™ (y) is a regular representation of

the CCR.

d

" (y) = —iEWW(ty)

¢™ (y) will be called the field operator corresponding to

t=0

y € Y. We have Heisenberg canonical commutation

relation
D" (Y1), 9" (y2)] = iy1wys.
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Creation/annihilation operators

Let Z be a complex vector space with a scalar product
(+|). It has a symplectic form Im(-|-) Suppose that

Z5 f=W'(f) e U(H)

is a regular representation of the CCR. For f € Z we
introduce creation/annihilation operators

a” (f) = —=(¢"(f) +i0"(if)),  a"(f) == —=(0"(f) —i9"(if)).

Sl

\f

They satisty the usual relations

@™ (fr),a"(f2)] =0, [a™(f1),a™ (f2)] =0
a™(f1),a™ (f2)] = (falf2).
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Fock representation of the CCR

Consider the creation/annihilation operators acting on

the Fock space I's(ZP!). Then ¢(f) := % (a*(f) +a(f))

are self-adjoint and

Z > [ expig(f)

is a regular representation of the CCR called the Fock
representation. The vacuum () is characterized by either

of the following equivalent equations:

a(f)2 =0,  feZ
QN Q) = e iU fez
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Coherent representation of the CCR 1

Let g be an antilinear functional on Z (not necessarily
bounded), that is g € Z*. Then

Z 5 f —> Wg(f) — W(f) eiRe(9|f) c U(FS(Zcpl))

is a regular representation of the CCR called the
lg]-coherent representation. The corresponding

creation/annihilation operators are

1

ag(f) = a(f)+ T(flg),

S
Q@ %
/N
~~
N——"
I

a*(f) + (g\f)

%\
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Coherent representation of the CCR 11

The vector €2 is characterized by either of the following

equations:

ag(f)Q2 = (f‘g)

—1(fIf)+iRe(flg)

Sl

('D
rlklr—\

(W, () =

The representation f +— W, (f) is unitarily equivalent to
the Fock representation iff g is a bounded functional

g € ZP. More generally, W,, is equivalent to W, iff

g1 — g2 € Z°PL
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Coherent sectors of a CCR representation I

Suppose that
Z3 f—W'(f) e U(H)

is a representation of the CCR (e.g. obtained by
asymptotic limits, so that m = +). Let g be be an
antilinear functional on Z. How can we find all
subrepresentations of W™ equivalent to a multiple of the

|g|-coherent representation?
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Coherent sectors of a CCR representation 11

Define

KT = {WeH : a(f)¥ = V2(glf)V}
= {(VEeH : (UWT()¥) = WP etV TR}

= Spand{a”*(fl)---a”*(fl)\lf Ve kg, fiEZ}
= Span® {W™(f)V : VeK], feZ}.
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Coherent sectors of a CCR representation I1I

We define an isometric operator ST : KT ® I'i(Z?) — H
by

STU@a(f)- - a(fn)2
= T (f) - (fa) .

S5 W@ Wy( )0
- W)W
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Coherent sectors of a CCR representation IV
Theorem.
1. Hfg] is an invariant subspace for WT.
ST K; @T(ZP) — H, is unitary.
S; 1@ W,(f) = W7(f) 5.

If U is unitary such that Ul @ W,(f) = W™(f) U,
then RanU C H,.

= W N

Thus on

. H@]CH

[gleZ*/ZeP!
the representation W7 is well understood — it is of the
coherent type.
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Covariant CCR representations

Let h be a self-adjoint operator on Z°°! and H a
self-adjoint operator on ‘H. We say that (W™, h, H) is a

covariant representation of the CCR ift

eitH Wﬂ'(][‘) e—itH _ Ww(eith f)’ f c Z.

Example. Fock representation, (W, h,dI'(h)):

eitdF(h) W(f) e—itdI‘(h) _ W(eith f)
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Covariant coherent CCR representations

Let g € h"1ZPl Set z = %hg. Introduce the van Hove

Hamiltonian
dl,(h) := dT(h) + a*(2) + a(z) + (2]h~'2).
Then (W9, h,dI',(h)) is covariant:
eitdI‘g(h) Wg(f) e—itdI‘g(h) _ Wg(eith f)

This is obvious for g € Z°!, because then

dr,(h) = W (ig)dT(h)W (—ig),
Wo(f) = Wg)W ()W
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Restricting covariant representation

to a Fock sector

Suppose that Z > f+— W7(f) € U(H) is a
representation of the CCR covariant for h, H:

eitH Ww(f) e—itH _ Wﬂ'(eith f)
It is easy to restrict it to the Fock sector:

Theorem. Kf and Hp, are e _invariant. Let

K :=H - and on K7 ® I';(Z°P!) set
0

Hi =K ®1+1xdl'(h).
Then HST = SFH.
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Restricting covariant representation

to a coherent sector 1

Theorem. Let g € h™'/2Z. Then HT, s e _invariant
and there exists a unique operator K7 on K7 such that if
on K7 @ I'(ZP') we set

HT := KT ®1+1®dl,(h),

then HS;T — S;TH;T.
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Restricting covariant representation

to a coherent sector 11

Thus restricted to Hfg], the covariant representation

(W™ h, H) is unitarily equivalent to

(1eW910h K; @1+ 1@dly(h)).

In particular, if ¢ € ZP!, then the Hamiltonian does not
have a ground state inside this sector. Nevertheless,

inside this sector, we have good control on the dynamics!
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SCATTERING THEORY OF PAULI-FIERZ
HAMILTONIANS II

Below we reformulate the basic theorem.

Theorem Under the same assumptions as before

1. for f € Z; there exists

WE(f) :=s— lim ™ 1W (e ™ f)e ™,

t—+o0

2. Z1 3 f+— W=(f) are representations of the CCR.
3. These representations are regular.
4. (W=, h, H) are covariant.

5. The Fock sector of W¥ contains all eigenvectors of H.
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Asymptotic g-coherent subspace

Let g € Z*. Then one can define

K = {(WeH : (PWEIV) = || 0|2 e 1UINFRAI9))

g
Hi = Span® {WH(f)¥ : W eKy, feZ},
as well as the asymptotic Hilbert spaces

H;I:a,s — ]C;'I R FS(ZC]DI)
asymptotic Hamiltonians

+as . +
HE = KX ©1+1@dl(h).
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g-coherent Mgller operators I

The Mgller operators Sgi : H;tas — H[j;] C ‘H intertwine

field operators and the Hamiltonians:

+ * *x 1 +
SHL@al(f) = a*(f)sE,
Sjl®ag(f) = ai(f)Sj,
SFH™ = HS/.
One can define scattering operator between sectors g,

and ga:
Sgrgr =SS
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g-coherent Mogller operators 11

Define the g-coherent identifier J gi ; Hgia’s — H by
JgjE UW,(f)Q2=1W(f) V.

Then we can introduce Mgller operators using this

identifier:

St —s— lim e

it = oitHG™
g t—+oo g
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Incoming/outgoing coherent subspaces

In the physical space we can distinguish the space where

asymptotic CCR are coherent:

HE — »  H-Y CH.
coh] ooz

We also introduce the corresponding asymptotic spaces

+as . +as
Hcoh L @ Hg .
gez*/chl
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Coherent Mgller and scattering operators

We have the Mgller operators S=, : HZ — H[foh]

coh coh

+ . +

Sto= @ S
gez*/Zcpl

intertwining the asymptotic and the physical Hamiltonian

SELHES = HS*

coh™"c coh"

Finally, we have an object that is perhaps the most

interesting physically: the coherent scattering operator

Scoh . H—as — H—|—as

coh coh

Seon := ST¥ S

coh™~coh-

99



Soft bosons 1

Assume that all asymptotic fields are g-coherent for some
unbounded ¢. Typically one can expect that all the
unboundedness of g is concentrated at the zero energy,
that is for any € > 0, || 1 o0[(h)g|| < co. By modifying g
we can assume that 1j j(h)g = 0. The one-particle
space can be split as Z2 = Z.. ® Z.., where

Zee i =1pg(h) 2, Zsei=Licoo(h) 2.
Then the Fock space splits as
I'(Z2) = Ts(Z<c) ® Ts(25),
and the vacuum splits as () = (2« ® Q<.
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Soft bosons 11

The projection
PZ =55 18|Q50)(Qse] S

projects onto the particle with a cloud of soft bosons of
frequency less than €. It is canonically defined and can
serve as a substitute of the ground state. In case of the
infrared problem

ﬂ RanPZ, = {0}.

e>0

If the infra-red problem is absent, then

() RanPZ, = Cy,.

e>0
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CONCLUSION

There exists a flexible mathematical formalism to
describe scattering theory for second-quantized
Hamiltonians with localized interactions. It can often
describe quite difficult situations, involving e.g. an
infrared catastrophe. Its key ingredient is the concept of
representations of the CCR or CAR.

The situation is much more difficult for
translation-invariant Hamiltonians. Rigorous results are
very limited (many-body Schrodinger operators

, Haag-Ruelle theory, Compton
scattering at weak coupling and small energy

).
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