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Abstract

We study one-dimensional Schrödinger operators defined as closed operators that are exactly
solvable in terms of the Gauss hypergeometric function. We allow the potentials to be complex.
These operators fall into three groups. The first group can be reduced to the Gegenbauer equation,
up to an affine transformation, a special case of the hypergeometric equation. The two other groups,
which we call hypergeometric of the first, resp. second kind, can be reduced to the general Gauss
hypergeometric equation. Each of the group is subdivided in three families, acting to on the Hilbert
space L2] − 1, 1[, L2(R+) resp. L2(R). Motivated by geometric applications of these families, we
call them spherical, hyperbolic, resp. deSitterian. All these families are known from applications in
Quantum Mechanics: e.g. spherical hypergeometric Schrödinger operators of the first kind are often
called trigonometric Pöschl-Teller Hamiltonians. For operators belonging to each family we compute
their spectrum and determine their Green function (the integral kernel of their resolvent). We also
describe transmutation identities that relate these Green functions. These identities interchange
spectral parameters with coupling constants across different operator families. Finally, we describe
how these operators arise from separation of variables of (pseudo-)Laplacians on symmetric manifolds.
Our paper can be viewed as a sequel to [DL], where closed realizations of one-dimensional Schrödinger
operators solvable in terms Kummer’s confluent equation were studied.
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1 Introduction

One-dimensional Schrödinger operators are operators of the form

L := −∂2
x + V (x), (1.1)

where V (x) is the potential, which in this paper is allowed to be complex-valued. Our paper is devoted to
several families of operators of the form (1.1), interpreted as closed operators on L2(]a, b[) for appropriate
−∞ ≤ a < b ≤ +∞, which can be reduced to the (Gauss) hypergeometric equation(

z(1− z)∂2
z + (c− (a+ b+ 1)z)∂z − ab

)
f(z) = 0, (1.2)

and whose Green functions can be expressed in terms of the (Gauss) hypergeometric function.
We will also consider operators of the form (1.1) that can be reduced to the Gegenbauer equation.(

(1− w2)∂2
w − 2(1 + α)w∂w + λ2 −

(
α+ 1

2

)2)
g(w) = 0. (1.3)

The Gegenbauer equation is up to an affine transformation a special case of the hypergeometric equation.
Its special property is the mirror symmetry.

Our paper can be viewed as the sequel to [DL], where one of the authors (JD) together with Jinyeop
Lee studied a similar problem for the confluent equation. We will mostly use the same terminology and
methods. We try to make the present paper reasonably self-contained, however the reader is encouraged
to consult [DL], especially concerning the general theory of closed realizations of operators of the form
(1.1).

In the remaining part of the introduction we give a summary of the results of our paper. In the later
section these results will be discussed in detail.

1.1 3×3 families of hypergeometric Hamiltonians

Abusing the terminology, for the sake of brevity, we will use the term Hamiltonian for one-dimensional
Schrödinger operators. We study three categories of Hamiltonians:

(1) Those reducible to the Gegenbauer equation; they will depend on a single complex parameter, and
can be viewed as a subclass of hypergeometric Hamiltonians, both of the first and second kind.

(2) Those reducible to the hypergeometric equation by the substitution z = sin2 r
2 (or similar); they

will be called hypergeometric of the first kind; they will depend on two complex parameters.

(3) Those reducible to the hypergergeometric equation by the substitution z = 1
1+e2r (or similar); they

will be called hypergeometric of the second kind; they will depend on two complex parameters.

Within each category we will consider 3 families, which differ by the choice of the interval ]a, b[. This
interval can be viewed as a subset of the complex plane. We will always assume that the endpoints are
singular points of the equation. For each of 3 × 3 = 9 cases, for a set of parameters with a nonempty
interior the operator L, defined originally on C∞c ]a, b[, possesses a unique closed realization in the sense of
L2]a, b[. This realization depends holomorphically on parameters, and extends to a holomorphic family of
closed operators on a larger domain. We will call it the basic family of closed realizations of L. For some
special ranges of parameters there exist other closed realizations of L with mixed boundary conditions—we
will not consider them in this paper.

For each operator L• from those families we will find its spectrum, denoted σ(L•). In all cases with
real potentials, these operators will be self-adjoint (so that σ(L•) ⊂ R). More generally, the resolvent set
(the complement of the spectrum) of these operators will be nonempty. For z in the resolvent set we will
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find the resolvent, that is (L• − z)−1, which we will usually denote 1
L•−z . The Green function of L• − z,

that is integral kernel of the resolvent 1
L•−z , will be denoted 1

(L•−z) (x, y), with x, y ∈]a, b[. We will find

expressions of Green functions of Hamiltonians from all 3×3 families in terms of the Gamma function
and the Gauss hypergeometric function.

These 9 families were discovered in the early days of Quantum Mechanics by physicists trying to find
exactly solvable models for various quantum systems. In the literature they are usually named after the
researchers who discovered them. Instead of the traditional names, we will prefer to use different names:
spherical, hyperbolic and deSitterian. In the spherical case ]a, b[ is ] − 1, 1[, in the hyperbolic case it is
]0,+∞[=: R+, and in the deSitterian case it is R.

Our names indicate a major geometric application of these families: spherical, hyperbolic, resp.
deSitterian Gegenbauer Hamiltonians appear when we separate variables for the (pseudo-)Laplacian on
the sphere, on the hyperbolic space, resp. on the deSitter space.

1.2 Review of 9 families

Let us briefly review the 9 families described in the paper, referring the reader to the main text for
precise statements. We will write Aun for the domain of uniqueness, that is, the set of parameters (a
subset of C or C×C) for which there exists a unique closed realization of a given differential expression.
This realization in all cases depends holomorphically on its parameters, and extends to a larger domain,
denoted Ahol. Asa will indicate the set of parameters for which the operator is self-adjoint. Note that
the operators are essentially self-adjoint on C∞c ]a, b[ if and only if the parameter belongs to Asa ∩ Aun.

1. Gegenbauer Hamiltonians

(a) Spherical Gegenbauer Hamiltonian, L2]0, π[:

Ls
α := −∂2

r +

(
α2 − 1

4

)
1

sin2 r
, (1.4)

Aun = {Reα ≥ 1}, Ahol = {Reα > −1}, Asa =]− 1,+∞[.

(b) Hyperbolic Gegenbauer Hamiltonian, L2(R+):

Lh
α := −∂2

r +

(
α2 − 1

4

)
1

sinh2 r
, (1.5)

Aun = {Reα ≥ 1}, Ahol = {Reα > −1}, Asa =]− 1,+∞[.

(c) DeSitterian Gegenbauer Hamiltonian, L2(R):

LdS
α := −∂2

r −
(
α2 − 1

4

)
1

cosh2 r
, (1.6)

Aun = Ahol = C, Asa = R.

2. Hypergeometric Hamiltonians of the first kind:

(a) Spherical hypergeometric Hamiltonian of the first kind, L2]0, π[:

Ls
α,β := −∂2

r +

(
α2 − 1

4

)
1

4 sin2 r
2

+

(
β2 − 1

4

)
1

4 cos2 r
2

, (1.7)

Aun = {Reα,Reβ ≥ 1}, Ahol = {Reα,Reβ > −1}, Asa =]− 1,+∞[×]− 1,+∞[.
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(b) Hyperbolic hypergeometric Hamiltonian of the first kind, L2(]0,∞[):

Lh
α,β := −∂2

r +

(
α2 − 1

4

)
1

4 sinh2 r
2

−
(
β2 − 1

4

)
1

4 cosh2 r
2

, (1.8)

Aun = {Reα ≥ 1} × C, Ahol = {Reα > −1} × C, Asa =]− 1,+∞[×R.

(c) DeSitterian hypergeometric Hamiltonian of the first kind, L2(R),

LdS
α,β := −∂2

r −
(
α2 − 1

4

)
1

cosh2 r

(
1

2
+

i sinh r

2

)
−
(
β2 − 1

4

)
1

cosh2 r

(
1

2
− i sinh r

2

)
, (1.9)

Aun = Ahol = C× C, Asa = {α = β}.

3. Hypergeometric Hamiltonians of the second kind:

(a) Spherical hypergeometric Hamiltonian of the second kind, L2]0, π[:

Ks
τ,µ := −∂2

u + τ
cosu

sinu
+

(
µ2

4
− 1

4

)
1

sin2 u
, (1.10)

Aun = C× {Reµ ≥ 2}, Ahol = C× {Reµ > −2} \ {(0,−1)}, Asa = R×]− 2,+∞[.

(b) Hyperbolic hypergeometric Hamiltonian of the second kind, L2(]0,∞[):

Kh
κ,µ := −∂2

u + κ
coshu

sinhu
+

(
µ2

4
− 1

4

)
1

sinh2 u
, (1.11)

Aun = C× {Reµ ≥ 2}, Ahol = C× {Reµ > −2} \ {(0,−1)}, Asa = R×]− 2,+∞[.

(c) DeSitterian hypergeometric Hamiltonian of the second kind, L2(R),

KdS
κ,µ := −∂2

u − κ
sinhw

coshw
−
(
µ2

4
− 1

4

)
1

cosh2 w
, (1.12)

Aun = Ahol = C× C, Asa = R× R.

Gegenbauer Hamiltonians are special cases of both hypergeometric Hamiltonians of the first and
second type. In fact, we have the following coincidencies:

Ls
α =Ls

α,α = Ks
0,2α; (1.13)

Lh
α =Lh

α,α = Kh
0,2α; (1.14)

LdS
α =LdS

α,α = KdS
0,2α. (1.15)

Let us also list the following identities that we prove:

Ks
τ,−1 = Ks

τ,1, τ 6= 0, (1.16)

Kh
κ,−1 = Kh

κ,1. κ 6= 0. (1.17)

These identities imply that (0,−1) are singularities of the functions (τ, µ) 7→ Ks
τ,µ and (κ, µ) 7→ Kh

κ,µ.
Going back to (1.13) and (1.14), note that

Ls
α = Ks

0,2α, (1.18)

Lh
α = Kh

0,2α, (1.19)
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are the identities for holomorphic functions only for α 6= − 1
2 , because of the above mentioned singularity.

Thus the identities

Ls
− 1

2
= Ks

0,−1, (1.20)

Lh
− 1

2
= Kh

0,−1. (1.21)

should be used as definitions of Ks
0,−1 and Kh

0,−1.

1.3 Transmutations of Green functions

Green functions of distinct Hamiltonians from the above list are linked by identities, which we find quite
curious. We call them transmutation identities, since the spectral parameter undergoes a change into
a coupling constant and the other way around. They follow from various identities satisfied by the
hypergeometric function and are similar to the transmutation identities for Hamiltonians related to the
confluent equation described in [DL].

Here is the list of transmutation identities considered in our paper. In each case, first we indicate the
change of variables involved in a given transmutation. Then we describe two versions of the identity for
Green functions.

Proposition 1.1. Gegenbauer spherical — Gegenbauer deSitterian:

]0, π[3 r 7→ q ∈ R, cot r = sinh q; (1.22)

sin
1
2 r

1

(Ls
λ − α2)

(r, r′) sin
1
2 r′ =

1

(LdS
α − λ2)

(q, q′) , (1.23)

1

(Ls
λ − α2)

(r, r′) = cosh
1
2 q

1

(LdS
α − λ2)

(q, q′) cosh
1
2 q′. (1.24)

Proposition 1.2. 1st kind spherical — 1st kind hyperbolic:

]0, π[3 r 7→ q ∈ R+, tan
r

2
= sinh

q

2
; (1.25)(

cos
r

2

)− 1
2 1(

Ls
α,β + µ2

4

) (r, r′)
(

cos
r′

2

)− 1
2

=
1(

Lh
α,µ + β2

4

) (q, q′) , (1.26)

1(
Ls
α,β + µ2

4

) (r, r′) =
(

cosh
q

2

)− 1
2 1(

Lh
α,µ + β2

4

) (q, q′)
(

cosh
q′

2

)− 1
2

. (1.27)

Proposition 1.3. 2nd kind hyperbolic — 2nd kind deSitterian

R+ 3 u 7→ w ∈ R, e2u = 1 + e2w; (1.28)

(1− e−2u)−
1
2

1(
Kh

ν− β22 ,µ
+ ν + β2

2

) (u, u′)(1− e−2u′)−
1
2 =

1(
KdS

ν+µ2

2 ,β
+ ν − µ2

2

) (w,w′), (1.29)

1(
Kh

ν− β22 ,µ
+ ν + β2

2

) (u, u′) = (1 + e−2w)−
1
2

1(
KdS

ν+µ2

2 ,β
+ ν − µ2

2

) (w,w′) (1 + e−2w′)−
1
2 . (1.30)
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Proposition 1.4. 1st kind spherical — 2nd kind deSitterian

]0, π[3 r 7→ u ∈ R, cos r = tanhu; (1.31)

sin
1
2 r

1(
Ls
α,β + µ2

4

) (r, r′) sin
1
2 r′ =

1(
KdS
κ,µ + δ

) (u, u′) , (1.32)

1(
Ls
α,β + µ2

4

) (r, r′) = cosh
1
2 u

1(
KdS
κ,µ + δ

) (u, u′) cosh
1
2 u′, (1.33)

δ =
α2 + β2

2
, κ =

α2 − β2

2
. (1.34)

Proposition 1.5. 1st kind hyperbolic — 2nd kind hyperbolic

R+ 3 r 7→ u ∈ R+, cosh r = cothu; (1.35)

sinh
1
2 r

1(
Lh
α,β + µ2

4

) (r, r′) sinh
1
2 r′ =

1(
Kh
κ,µ + δ

) (u, u′) , (1.36)

1(
Lh
α,β + µ2

4

) (r, r′) = sinh
1
2 u

1(
Kh
κ,µ + δ

) (u, u′) sinh
1
2 u′, (1.37)

δ =
α2 + β2

2
, κ =

α2 − β2

2
. (1.38)

Proposition 1.6. 1st kind deSitterian — 2nd kind spherical

R 3 r 7→ u ∈]0, π[, sinh r = − cotu; (1.39)

cosh
1
2 r

1(
LdS
α,β + µ2

4

) (r, r′) cosh
1
2 r′ =

1(
Ks
τ,µ + δ

) (u, u′) , (1.40)

1(
LdS
α,β + µ2

4

) (r, r′) = sin
1
2 u

1(
Ks
τ,µ + δ

) (u, u′) sin
1
2 u′, (1.41)

δ =
α2 + β2

2
, τ =

i(α2 − β2)

2
. (1.42)

1.4 Geometric applications

The main original application of hypergeometric Hamiltonians was Quantum Mechanics, as we describe
in Subsection 1.6. However, probably the most important context where hypergeometric Hamiltonians
appear is geometry, more precisely, the theory of symmetric spaces and Lie groups. In fact, when we
separate variables for invariant differential operators, e.g. (pseudo-)Laplacians, on symmetric (pseudo-
)Riemannian spaces we often obtain some forms of hypergeometric Hamiltonians.

This fact plays an important role in Quantum Field Theory on curved spacetimes, where Green
functions of the d’Alembertian on deSitter and anti-deSitter spaces appear naturally; see e.g. [DeGa].

This geometric interpretation is especially striking for Gegenbauer Hamiltonians. In the following list
we show how they arise after separation of variables of various d-dimensional (pseudo-)Laplacians and
restriction to d− 1-dimensional spherical harmonics of degree l. In all cases α = d

2 − 1 + l:
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1. ∆s
d, Laplacian on unit sphere Sd, reduces to spherical Gegenbauer Hamiltonian Ls

α:

(sin r)
d−1
2

(
−∆s

d

)
(sin r)−

d−1
2 +

(
d−1

2

)2
= −∂2

r +

(
d−2

2

)2 − 1
4 −∆s

d−1

sin2 r
. (1.43)

2. ∆h
d, Laplacian on hyperbolic space Hd, reduces to hyperbolic Gegenbauer Hamiltonian Lh

α:

(sinh r)
d−1
2

(
−∆h

d

)
(sinh r)−

d−1
2 −

(
d−1

2

)2
=− ∂2

r +

(
d−2

2

)2 − 1
4 −∆s

d−1

sinh2 r
. (1.44)

3. 2dS
d , d’Alembertian on de Sitter space dSd, reduces to deSitterian Gegenbauer Hamiltonian LdS

α :

(cosh r)
d−1
2 2dS

d (cosh r)−
d−1
2 −

(
d−1

2

)2
=− ∂2

r −
(
d−2

2

)2 − 1
4 −∆s

d−1

cosh2 r
. (1.45)

All three types of hypergeometric Hamiltonians of the 1st kind have natural geometric interpretations
as well. In the following list we show how they arise from separtion of variables in a (pseudo-)Laplacian
on a (pseudo-)sphere in “double spherical coordinates”. In all three examples the coordinates in the
ambient pseudo-Euclidean space are partitioned into two groups.

In the first two cases, these groups are of dimension p and q, and then spherical coordinates are
considered within each group. After restriction to products of spherical harmonics of degree l and j a
hypergeometric Hamiltonian arises, expressed in the relative variable. We have α = p

2−1+l, β = q
2−1+j.

The third case is somewhat different: p = q is the dimension of holomorphic and antiholomorphic
(complex) spherical coordinates. The spherical harmonics are not the usual ones: they are holomorphic
and antiholomorphic harmonics on the complex p− 1-dimensional sphere.

1. ∆s
p+q−1, Laplacian on unit sphere Sp+q−1, reduces to spherical hypergeometric Hamiltonian of 1st

kind Ls
α,β :(

sin
r

2

) p−1
2
(

cos
r

2

) q−1
2 (−∆s

p+q−1

)(
sin

r

2

)− p−1
2
(

cos
r

2

)− q−1
2

+
(
p+q−2

2

)2
(1.46)

=4

(
− ∂2

r +

(
p−2

2

)2 − 1
4 −∆s

p−1

4 sin2 r
2

+

(
q−2

2

)2 − 1
4 −∆s

q−1

4 cos2 r
2

)
. (1.47)

2. ∆p−1,q, pseudo-Laplacian on the hyperboloid Hp−1,q, reduces to hyperbolic hypergeometric Hamil-
tonian of 1st kind Lh

α,β :(
cosh

r

2

) p−1
2
(

sinh
r

2

) q−1
2 (−∆p−1,q

)(
cosh

r

2

)− p−1
2
(

sinh
r

2

)− q−1
2 −

(
p+q−2

2

)2
(1.48)

=4

(
− ∂2

r −
(
p−2

2

)2 − 1
4 −∆s

p−1

4 cosh2 r
2

+

(
q−2

2

)2 − 1
4 −∆s

q−1

4 sinh2 r
2

)
. (1.49)

3. ∆p−1,p, pseudo-Laplacian on the hyperboloid Hp−1,p, reduces to deSitterian hypergeometric Hamil-
tonian of 1st kind LdS

α,β :(
cosh r)

p−1
2

(
∆p−1,p

)
(cosh r)−

p−1
2 − (p− 1)2 (1.50)

=4

(
− ∂2

r −
(
−∆s,C

p−1 + (p−1
2 )2 − 1

4

)
2(1 + i sinh r)

−
(
−∆s,C

p−1 + (p−1
2 )2 − 1

4

)
2(1− i sinh r)

)
. (1.51)
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Unfortunately, we have not found a direct geometric interpretation of hypergeometric Hamiltonians
of the second kind.

Remark 1.7. We use the geometric interpretation of Gegenbauer Hamiltonians as the main justification
for our names of types: spherical, hyperbolic and deSitterian. For coherence, we extend these names to
hypergeometric Hamiltonians of both kinds. The names “spherical” and “hyperbolic” seem quite non-
controversial, and are used in the literature in similar contexts. The name “deSitterian” is our invention.
Its justification is somewhat weaker and based only on the Gegenbauer Hamiltonian: the connection of
deSitterian hypergeometric Hamiltonians of the first kind and de Sitter spaces is less obvious.

1.5 Boundary conditions

For some potentials the operator L initially defined on C∞c ]a, b[ possesses many closed realizations. These
realizations L• differ only by the behavior of elements of their domain near the endpoints—in other words,
they differ by boundary conditions. The need for boundary conditions depends on the behavior of the
potential V near these endpoints.

Let us consider e.g. the right endpoint b. There are two possibilities:

1. One does not need to impose boundary conditon at b. This will be denoted νb(L) = 0.

2. There is a 1-parameter family of boundary conditions at b. This is denoted νb(L) = 2.

Analogous definitions are valid for the other endpoint a.
The 9 families considered in this paper illustrate Hamiltonians with various kinds of behaviors of

the potential near endpoints. Let us list the behaviors encountered among these 9 families. We restrict
ourselves to the right endpoint b, an analogous list applies to the left endpoint a. Our description is
somewhat informal; for rigorous statements we refer to [DL].

1. Short range potential. b = +∞ and V (x) is integrable near +∞. Then νb(L) = 0. Moreover,
eigenfunctions in D(L•) with eigenvalue −k2, Re(k) > 0 behave as e−kx with Re(k) > 0.

2. Shifted short range potential. b = +∞ and V (x) is a constant plus integrable near +∞. Same
as before, except that the eigenfunctions ∼ e−kx have energy −k2 + V (+∞).

3. Bessel type. b is finite and

V (x) ∼
(
m2 − 1

4

) 1

(x− b)2
. (1.52)

Then νb(L) = 2 iff |Re(m)| < 1, otherwise νb(L) = 0. The behavior of elements of D(L•) near b is

|x − b| 12 +m for Re(m) ≥ 1, a linear combination of |x − b| 12 +m and |x − b| 12−m for 0 ≤ Rem < 1,

m 6= 0 and a linear combination of |x − b| 12 and |x − b| 12 ln |x − b| for m = 0. Note that m = 1
2

corresponds to the Dirichlet b.c. and m = − 1
2 to the Neumann b.c.

The families of operators considered in this paper will always have only “homogeneous” or “basic”
boundary conditions given by |x − b| 12 +m, with Rem > −1. Thus in particular for |Rem| < 1,
m 6= 0, each differential expression will have two closed realizations. We will not consider mixed
boundary conditions, which are discussed e.g. in. [GTV, DeGe, DeRi].

4. Whittaker type. b is finite and

V (x) ∼
(
m2 − 1

4

)
1

(x− b)2
− β

|x− b|
. (1.53)
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The conditions are essentially the same as in the Bessel type, with one difference. For 1
2 ≤ Rem < 1,

(β,m) 6=
(
0, 1

2

)
the behavior of functions in the domain of closed realizations of L are linear

combinations of |x− b| 12 +m and |x− b| 12−m
(

1− β|x−b|
1−2m

)
.

In the families of operators considered in this paper we will only consider “basic” boundary condi-

tions given by |x− b| 12 +m
(

1− β|x−b|
1−2m

)
, with Rem > −1. See e.g. [DL, DeRi]

Potential Boundary type at a Boundary type at b

Spherical of the first kind Bessel Bessel
Hyperbolic of the first kind Bessel Short range potential
Desitterian of the first kind Short range potential Short range potential

Spherical of the second type Whittaker Whittaker
Hyperbolic of the second type Whittaker Short range potential
Desitterian of the second type Shifted short range potential Shifted short range potential

1.6 Comparison with literature and historic remarks

One can roughly divide mathematical literature related to the topic of this paper into two parts: algebraic
and functional-analytic.

In algebraic papers one considers differential expressions without a Hilbert space setting and with-
out asking for self-adjointness or closedness. Functional analytic papers treat differential operators as
unbounded operators on a certain Hilbert space, usually self-adjoint, sometimes only closed.

Needless to say, the algebraic literature is vast. In fact, the hypergeometric equation is one of the most
classic subjects of mathematics, with history going back about three centuries. From this category one
should mention [CKS, DW] which contain an algebraic analysis of all 9 families of Schrödinger operators
solvable in terms of the hypergeometric function.

1-dimensional Schrödinger operators are naturally a special case of Sturm-Liouville operators, whose
history goes back to [Lio]. There exists large contemporary literature about self-adjoint or closed real-
izations of Sturm-Liouville operators, see e.g. [GeZin, GTV, DuSch, EE]. In our paper we use mostly
[DeGe], which is summarized in Section 2 of [DL].

Each Sturm-Liouville operator can appear in many equivalent forms, often with distinct names. By a
unitary transformation, called the Liouville transformation, essentially each of them can be transformed
into a Schrödinger operator, often called its Liouville form [Lio].

For instance, in the literature one often considers the Sturm-Liouville operator called the Jacobi
operator,

−(1− x)−α(1 + x)−β∂x(1− x)α+1(1 + x)β+1∂x, (1.54)

which acts on the Hilbert space L2
(
]−1, 1[, (1−x)α(1+x)β) see e.g. [GPLS] and [Koo]. Its eigenfunctions

are the famous Jacobi polynomials. By a simple transformation the Jacobi operator is unitarily equivalent
to trigonometric Pöschl-Teller Hamiltonian (which we call spherical hypergeometric Hamiltonian of the
first kind).

Another common differential operator is the Legendre operator

(1 + x2)∂2
x − 2x∂x + µ(µ+ 1)− α2

1− x2
. (1.55)

Acting on the Hilbert space L2
(
] − 1, 1[,

√
1− x2

)
, used in the study of spherical harmonics. It is also

equivalent to the trigonometric Pöschl-Teller Hamiltonian with α = β. Needless to say, spherical har-
monics possess a very large literature.

The trigonometric Pöschl-Teller Hamiltonian itself is also often studied, see e.g. [FS].
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The Scarf Hamiltonian with α = β (which we call the deSitterian Gegenbauer Hamiltonian) has also
a large literature because of its special properties: for certain values of parameters it is reflectionless.

An interesting review of various exactly solvable Schrödinger operators is contained in [Everitt]. It
does not, however, contain all 9 families that we consider.

To our knowledge, a complete analysis of all 9 families interpreted as closed operators, including the
formulas for the integral kernels of their resolvents and the computation of their spectra, seems to appear
for the first time in the literature. The transmutation formulas described in our paper are probably new.
They are analogous to the transmutation formulas for Hamiltonians related to the confluent equation
[DL]. Another novelty of our paper are the identities (1.16) and (1.17). They are analogous to an
identity for the Whittaker operators described in [DeRi].

Let us briefly outline the history of these Hamiltonians in physics here. In the physics community,
the study of Schrödinger operators exactly solvable in terms of hypergeometric functions started in the
1930’s when physicists studied biatomic and polyatomic molecules dynamics and the exact solution to the
Schrödinger equation. The main reason these physicists considered such Hamiltonians was often due to
the limitations of the perturbation method. Therefore, various kinds of exactly solvable Hamiltonians were
suggested which fit the experimental data. That was the primary motivation behind the Hamiltonians
proposed by Morse [Mor], Rosen-Morse [MoR], Eckart [Eck], and Manning-Rosen [MaR].

The second motivation for this line of research seems to be the search for exact solutions to the
Schrödinger equation. In the work of Eckart [Eck] and Rosen-Morse [MoR], it is clearly noted that these
potentials are new exactly solvable potentials, although their main motivation was still the study of
polyatomic molecules. It seems that for Pöschl and Teller [PT], the motivation leaned more towards the
fact that their proposed potential was exactly solvable—they even referred to it as exakt integrierbar
(exactly integrable).

The case of the Scarf Hamiltonian (1.9) is a bit different. In the original paper, Scarf did not consider
the Hamiltonian in (4.46). We traced this naming to [CKS], where authors refered to it as the hyperbolic
Scarf, or Scarf II. However, the origin of this naming is unclear to us.

The uniform study of the Schrödinger equation of hypergeometric type was started by Bose [Bos] and
continued by Natanzon [Nat], Ginocchio [Gin], and Milson [Mil]. For a more systematic study and a
detailed history of the topic, we refer to [DW]. In a separate line of research, the study of these potentials
appeared in the factorization method of Infeld and Hull [HI], and later in the context of supersymmetric
quantum mechanics and the so-called shape invariance [CKS, Cot].

Table C presents a comparison of the various names used in the literature and our suggested termi-
nology.

The geometric interpretation of hypergeometric Hamiltonians is closely related to the analysis of
hypergeometric equation based on Lie groups and Lie algebras, which possess large literature [M1, V,
Wa, D2]. The interpretation of the deSitterian hypergeometric Hamiltonian of the 1st kind in terms of
complex spheres in 1.50 seems to be new.

1.7 Plan of the paper

In Sect. 2 we recall the definitions of hypergeometric and Gegenbauer function (the latter, following the
conventions of [DGR]), and we sketch the Liouville method that allows us to transform a Sturm-Liouville
operator into a 1-dimensional Schrödinger operator.

The core of the paper are the sections 3, 4 and 5, where the 3×3 families of Hamiltonians are introduced
and studied. For each member of each family its spectrum and Green functions are computed. We also
prove various identities that we already listed in the introduction, including the transmutation identities.

Section 6 is devoted to 1-dimensional Laplacians with various boundary conditions. We explain why
they are special cases of hypergeometric Hamiltonians.

In Sect. 7 we describe how Gegenbauer Hamiltonians and hypergeometric Hamiltonians of the first
kind arise when we separate variables in (pseudo-)Laplacians on some symmetric spaces.
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In Appendix A we collect identities about hypergeometric and Gegenbauer functions that we use in
our paper.

In Appendix B we give a very concise account of the theory of closed realizations of 1d Schrödinger
operators. This account is incomplete and not fully rigorous—the reader should consult Sect. 2 of [DL]
for a more detailed and rigorous exposition, or [DeGe], where a complete theory with proofs is given. Of
course, the topic is classic and contained in other texts such as [DuSch, EE, DeGe].

In our paper we try to use notation and conventions that make our formulas, especially for Green
functions, as simple, elegant and symmetric as possible. This often motivates us to introduce our con-
ventions, different from the standard ones. In particular, we do not use the standard conventions for
associated Legendre functions, which could be used for Gegenbauer Hamiltonians. For readers used to
associated Legendre functions, in Appendix C we recall their definitions and compare them with the
special functions that we use.

2 Preliminaries

2.1 Hypergeometric equation

The hypergeometric equation is given by the hypergeometric operator

F(a, b; c; z, ∂z) := z(1− z)∂2
z + (c− (a+ b+ 1)z)∂z − ab, (2.1)

where a, b, c are arbitrary complex parameters. One of solutions of the hypergeometric equation is the
famous hypergeometric function F (a, b; c; z). It is usually convenient to apply to F (a, b; c; z) the so-called
Olver’s normalization, which yields the function

F(a, b; c; z) :=
F (a, b; c; z)

Γ(c)
=

∞∑
j=0

(a)j(b)j
Γ(c+ j)j!

zj . (2.2)

The hypergeometric equation is closely related to the so-called Riemann equation, that is the class of
equations on the Riemann sphere C ∪ {∞} having 3 regular singular points. Suppose these points are
z1, z2, z3, and the corresponding indices are ρ1, ρ̃1, resp. ρ2, ρ̃2, resp. ρ3, ρ̃3. Then we have the constraint

ρ1 + ρ̃1 + ρ2 + ρ̃2 + ρ3 + ρ̃3 = 1. (2.3)

Without limiting the generality we can put z3 at ∞. The corresponding Riemann equation is given by
the Riemann operator

P

 z1 z2 ∞
ρ1 ρ2 ρ3 z, ∂z
ρ̃1 ρ̃2 ρ̃3


:= ∂2

z −
(
ρ1 + ρ̃1 − 1

z − z1
+
ρ2 + ρ̃2 − 1

z − z2

)
∂z

+
ρ1ρ̃1(z1 − z2)

(z − z1)2(z − z2)
+

ρ2ρ̃2(z2 − z1)

(z − z2)2(z − z1)
+

ρ3ρ̃3

(z − z1)(z − z2)
. (2.4)

Here is the relation between the hypergeometric operator and the Riemann operator:

F(a, b; c; z, ∂z) = z(1− z)P

 0 1 ∞
0 0 a z, ∂z

1− c c− a− b b


= z(1− z)∂2

z + (c− (a+ b+ 1)z)∂z − ab.

(2.5)
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Note that the symmetries of the hypergeometric equation are better visible if we replace a, b, c with
α, β, µ:

α = c− 1 β = a+ b− c, µ = a− b;
a = 1+α+β−µ

2 , b = 1+α+β+µ
2 , c = 1 + α;

(2.6)

so that the hypergeometric equation has the form

F
(
α+β+µ+1

2 , α+β−µ+1
2 ; 1 + α; z, ∂z

)
F (z) = 0. (2.7)

2.2 Gegenbauer equation

The Gegenbauer equation is essentially the special case of the hypergeometric equation with the symmetry
w → −w and the singular points put at −1, 1,∞. It is given by the Gegenbauer operator

Gα,λ(w, ∂w) := (1− w2)∂2
w − 2(1 + α)w∂w + λ2 −

(
α+ 1

2

)2
. (2.8)

Here is its relationship to the Riemann operator:

Gα,λ(w, ∂w) = (1− w2)P

 −1 1 ∞
0 0 α+ λ+ 1

2 w, ∂w
−α −α α− λ+ 1

2

 . (2.9)

Following [DGR], we introduce two special solutions of the Gegenbauer equation

Sα,λ(w) =
1

Γ(α+ 1)
F

(
1

2
+ α+ λ,

1

2
+ α− λ;α+ 1;

1− w
2

)
, (2.10)

Zα,λ(w) =
(w ± 1)−

1
2−α−λ

Γ(λ+ 1)
F
(1

2
+ α+ λ,

1

2
+ λ; 2λ+ 1;

2

1± w

)
. (2.11)

2.3 Liouville transformation

An operator of the form
−∂2

r + V (r) (2.12)

will be called a (1-dimensional) Schrödinger operator.
Let us briefly describe how to transform a 2nd order equation(

p(z)∂2
z + q(z)∂z + r(z)

)
u(z), (2.13)

into an eigenvalue equation of a certain Schrödinger operator. Consider the operator

p(z)∂2
z + q(z)∂z + r(z), (2.14)

that defines the equation (2.13). We first multiply (2.14) from the left by a function f , from the right by
a function g, obtaining

f(z)
(
p(z)∂2

z + q(z)∂z + r(z)
)
g(z). (2.15)

We choose f, g in such a way, that (2.15) has the form

−t(z)∂2
z −

1

2
t′(z)∂z + v(z), (2.16)
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for some function z 7→ t(z). Then we change the variable z into r, such that(
dz

dr

)2

= t(z). (2.17)

We obtain
−∂2

r + v
(
z(r)

)
. (2.18)

More details can be found in [DW].
Operators of the form (2.14) are often called Sturm-Liouville operators and the transformation that

leads from (2.14) to (2.18)—a Liouville transformation.
For brevity, we will usually use the term Hamiltonian instead of (one-dimesional) Schrödinger oper-

ator. Thus e.g. the hypergeometric operator means the operator (2.1), whereas hypergeometric Hamilto-
nians will be various Schrödinger operators obtained by transforming the hypergeometric equation.

3 Gegenbauer Hamiltonians

Let us transform the Gegenbauer operator (2.8) as follows:

−(1− w2)
α
2 + 1

4Gα,λ(w, ∂w)(1− w2)−
α
2−

1
4

= −(1− w2)P

 −1 1 ∞
α
2 + 1

4
α
2 + 1

4 λ w, ∂w
−α2 + 1

4 −α2 + 1
4 −λ



= −(1− w2)∂2
w + w∂w +

(
α2 − 1

4

)
1

1− w2
− λ2. (3.1)

Thus if we set

Lα := −(1− w2)∂2
w + w∂w +

(
α2 − 1

4

)
1

1− w2
, (3.2)

and G(w) solves the Gegenbauer equation, then(
Lα − λ2

)
(1− w2)

α
2 + 1

4G(w) = 0. (3.3)

We have reinterpreted the Gegenbauer equation as the eigenequation of a certain operator Lα with
the eigenvalue λ2. It is natural to interpret this operator as acting on functions on an interval contained
in C, whose endpoints are singularities of the Gegenbauer equation. In each of these cases we perform
the Liouville transformation, which yields a 1-dimensional Hamiltonian. We will consider three cases:

1. w ∈] − 1, 1[. This leads to an operator on L2]0, π[, which we call the spherical Gegenbauer Hamil-
tonian.

2. w ∈]1,∞[. This leads to an operator on L2(R+), which we call the hyperbolic Gegenbauer Hamilto-
nian.

3. w ∈ iR. This leads to an operator on L2(R), which we call the deSitterian Gegenbauer Hamiltonian.
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i∞

−i∞

-1 1 ∞

Desitterian

Spherical

Hyperbolic

Figure 1: Gegenbauer equation on the w plane. The hyperbolic Hamiltonian acts on the interval
marked with a dotted line, the spherical Hamiltonian—with a thick line and the deSitterian

Hamiltonian—with a dashed line.

3.1 Spherical case

For r ∈]0, π[, in (3.1) set

w = cos r, which solves w′ = −(1− w2)
1
2 . (3.4)

This leads to the Schrödinger equation (
Ls
α − λ2

)
φ(r) = 0, (3.5)

where

Ls
α := −∂2

r +

(
α2 − 1

4

)
1

sin2 r
. (3.6)

It has the mirror symmetry r → π− r. It is obtained when we separate variables of the Laplacian on the
sphere in any dimensions, see e.g. Subsect. 7.1. Hence our name “spherical”.

Let us define the function on ]0, π[

Ps
α,λ(r) :=

( sin r

2

)α+ 1
2

Sα,λ(cos r). (3.7)

It has the following asymptotic behaviour near 0:

Ps
α,λ(r) ∼ 1

Γ(1 + α)

(r
2

) 1
2 +α

. (3.8)

The following four functions solve the eigenequation (3.5):

Ps
α,λ(r), Ps

−α,λ(r), Ps
α,λ(π − r), Ps

−α,λ(π − r). (3.9)

The following symmetries hold

Ps
α,λ(r) = Ps

α,−λ(r), Ps
α,λ(π − r) = Ps

α,−λ(π − r). (3.10)

The following theorem describes the basic family of closed realizations of Ls
α on L2]0, π[.
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Theorem 3.1. For Reα ≥ 1 there exists a unique closed operator Ls
α in the sense of L2]0, π[, which

on C∞c ]0, π[ is given by (3.6). The family α 7→ Ls
α is holomorphic and possesses a unique holomorphic

extension to Reα > −1. It has only discrete spectrum:

σ(Ls
α) = σd(Ls

α) =

{(
k + α

)2
: k ∈ N0 +

1

2

}
. (3.11)

Outside of the spectrum its resolvent is

1

(Ls
α − λ2)

(x, y) =Γ

(
α− λ+

1

2

)
Γ

(
α+ λ+

1

2

)
×

{
Ps
α,λ(x)Ps

α,λ(π − y), if 0 < x < y < π;

Ps
α,λ(y)Ps

α,λ(π − x), if 0 < y < x < π.
(3.12)

Proof. Ps
α,λ(r) and Ps

−α,λ(r) can be used as a basis of solutions of (3.5). The connection formula found
using (A.23) is

Ps
α,λ(π − r) = −cosπλ

sinπα
Ps
α,λ(r) +

π

sinπα

1

Γ( 1
2 + α+ λ)Γ( 1

2 + α− λ)
Ps
−α,λ(r). (3.13)

From

Ps
−α,λ(r) ∼ 1

Γ(1− α)

(r
2

) 1
2−α

, (3.14)

we obtain

W(Ps
−α,λ,Ps

α,λ) =
sinπα

π
. (3.15)

This yields the Wronskians

W
(
Ps
α,λ(π − r),Ps

α,λ(r)
)

=
1

Γ
(
α− λ+ 1

2

)
Γ
(
α+ λ+ 1

2

) (3.16)

W
(
Ps
α,λ(π − r),Ps

−α,λ(r)
)

=
cos(πλ)

π
. (3.17)

For Re α > −1 the integral kernel (3.12) is square integrable, and hence it defines a Hilbert-Schmidt
operator. It depends analytically on α. Hence it defines a holomorphic family of operators. For Re α ≥ 1,
r

1
2−α is not L2-integrable. Hence for such α (3.6) possesses a unique closed realization.

The singularities of the Gamma function yield the discrete spectrum. 2

3.2 Hyperbolic case

In (3.1), for r ∈ R+ we set

w = cosh r, which solves w′ = (w2 − 1)
1
2 . (3.18)

This leads to the Schrödinger equation (
Lh
α + λ2

)
φ(r) = 0, (3.19)

where

Lh
α := −∂2

r +

(
α2 − 1

4

)
1

sinh2 r
. (3.20)
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It is obtained when we separate variables of the Laplacian on the hyperbolic space of any dimensions,
see e.g. Subsect. 7.2. Hence our name “hyperbolic”.

Let us define functions on R+

Ph
α,λ(r) :=

( sinh r

2

)α+ 1
2

Sα,λ(cosh r), (3.21)

Qh
α,λ(r) :=

(sinh r)α+ 1
2

2λ
Zα,λ(cosh r). (3.22)

They have the following asymptotic behavior:

Ph
α,λ(r) ∼ 1

Γ(1 + α)

(r
2

) 1
2 +α

, r ∼ 0; (3.23)

Qh
α,λ(r) ∼ 1

Γ(1 + λ)
e−λr, r → +∞. (3.24)

The following four functions solve the eigenequation (3.19):

Ph
α,λ(r), Ph

−α,λ(r), Qh
α,λ(r), Qh

α,−λ(r). (3.25)

The following symmetries are obvious:

Ph
α,λ(r) = Ph

α,−λ(r), Qh
α,λ(r) = Qh

−α,λ(r). (3.26)

The following theorem describes the basic family of closed realizations of Lh
α on L2[0,∞[.

Theorem 3.2. For Reα ≥ 1 there exists a unique closed operator Lh
α in the sense of L2(R+), which

on C∞c (R+) is given by (3.20). The family α 7→ Lh
α is holomorphic and possesses a unique holomorphic

extension to Reα > −1. Here is its discrete spectrum and spectrum:

σd(Lh
α) =

{
−
(1

2
+ α

)2}
, −1 < Reα < −1

2
; (3.27)

σd(Lh
α) = ∅, −1

2
< Reα; (3.28)

σ(Lh
α) = [0,+∞[∪σd(Lh

α). (3.29)

Outside of the spectrum, for Reλ > 0, its resolvent is

1

(Lh
α + λ2)

(x, y) =
Γ
(

1
2 + α+ λ

)
√
π

×

{
Ph
α,λ(x)Qh

α,λ(y) if 0 < x < y <∞;

Qh
α,λ(x)Ph

α,λ(y) if 0 < y < x <∞.
(3.30)

Proof. Consider Ph
α,λ(r) and Ph

−α,λ(r) as a basis of solutions of (3.19). The connection formula is

Qh
α,λ(r) = −

√
π

sinπα Γ
(

1
2 − α+ λ

)Ph
α,λ(r) +

√
π

sinπα Γ
(

1
2 + α+ λ

)Ph
−α,λ(r). (3.31)

Similarly as in the spherical case, we obtain

W(Ph
−α,λ,Ph

α,λ) =
sinα

π
. (3.32)
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This yields the Wronskians

W
(
Qh
α,λ(r),Ph

α,λ(r)
)

=

√
π

Γ
(

1
2 + α+ λ

) .
For Reα > −1 and Reλ > 0 the functions Ph

α,λ(r) resp. Qh
α,λ(r), are square integrable at the endpoints.

We check that under these conditions the integral kernel 3.30 defines a bounded operator, depending
analytically on α.

For Reα ≥ 1, r
1
2−α is not square integrable near 0. Therefore, for such α (3.20) possesses a unique

closed realization.
Looking for singularities of the Gamma function we find the discrete spectrum:

σd(Lh
α) =

{
−
(
n+

1

2
+ α

)2 ∣∣∣∣n ∈ N0, Re

(
n+

1

2
+ α

)
< 0

}
. (3.33)

It is easy to see that this coincides with (3.28) 2

3.3 DeSitterian case

For r ∈ R, in (3.1) we set

w = −i sinh r, which solves w′ = (w2 − 1)
1
2 . (3.34)

This leads to the Schrödinger equation (
LdS
α + λ2

)
φ(r) = 0, (3.35)

where

LdS
α := −∂2

r −
(
α2 − 1

4

)
1

cosh2 r
. (3.36)

It has the mirror symmetry r → −r. It is obtained when we separate variables in the d’Alembertian on
the deSitter space of any dimension, see Subsect. 7.3. Hence our name “deSitterian”.

The following theorem describes all closed realizations of LdS
α on L2(R).

For r ≥ 0 we introduce the following function which solves the eigenequation

QdS
α,λ(r) := e−iπ2 ( 1

2 +α+λ) (cosh r)α+ 1
2

2λ
Zα,λ(−i sinh r). (3.37)

We extend it to r ≤ 0 by analytic continuation. Here is its asymptotics:

QdS
α,λ(r) ∼ 1

Γ(λ+ 1)
e−λr, r → +∞. (3.38)

Thus the following functions solve the eigenequation (3.35):

QdS
α,λ(r), QdS

α,λ(−r), QdS
α,−λ(r), QdS

α,−λ(−r). (3.39)

Let us describe closed realizations of LdS
α on L2(R):
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Theorem 3.3. For any α ∈ C there exists a unique closed operator LdS
α in the sense of L2(R) that on

C∞c (R) is given by (3.36). The function C 3 α 7→ LdS
α is holomorphic. It satisfies LdS

α = LdS
−α. Outside

of the spectrum, for Reλ > 0, its resolvent is

1

(LdS
α + λ2)

(x, y)

=
Γ
(

1
2 − α+ λ

)
Γ
(

1
2 + α+ λ

)
2

{
QdS
α,λ(x)QdS

α,λ(−y) −∞ < x < y <∞;

QdS
α,λ(y)QdS

α,λ(−x) −∞ < y < x <∞.
(3.40)

To describe the discrete spectrum and spectrum of LdS
α , without loss of generality we can assume that

Reα ≥ 0. Then

σd(LdS
α ) =

{
− (α− k)

2

∣∣∣∣ k ∈ N0 +
1

2
, k < Reα

}
(3.41)

σ(LdS
α ) =[0,∞[∪σd(LdS

α ). (3.42)

Proof. We can use the proof of the theorem 4.3. Note that

QdS
α,λ(r) =

Γ
(

1
2 + λ

)
√
π
QdS
α,α,2λ(r) =

Γ(1 + 2λ)

22λΓ(1 + λ)
QdS
α,α,2λ(r). (3.43)

Hence, the Wronskians are

W
(
QdS
α,λ(−r),QdS

α,λ(r)
)

=
2

Γ
(

1
2 + α+ λ

)
Γ
(

1
2 − α+ λ

) , (3.44)

W
(
QdS
α,−λ(−r),QdS

α,λ(r)
)

=
2 cos(πα)

π
. (3.45)

We check that the integral kernel 3.40 defines a bounded operator.
The singularities of the Gamma function are at λ = − 1

2 + α − n and λ = − 1
2 − α − n, n ∈ N0. This

gives the following discrete spectrum:

σd(LdS
α ) =

{
−
(

1

2
+ α+ n

)2 ∣∣∣∣ n ∈ N0, Re

(
1

2
+ α+ n

)
< 0

}
(3.46)

∪

{
−
(

1

2
− α+ n

)2 ∣∣∣∣ n ∈ N0, Re

(
1

2
− α+ n

)
< 0

}
. (3.47)

For Reα ≥ 0 the right hand side of (3.46) is empty. This yields (3.41). 2

Proof of Prop. 1.1. The transformation cot r = sinh q implies

cos r = tanh q, tan r = sinh q, (3.48)

dq

dr
= − 1

sin r
= cosh q. (3.49)

The Whipple transformation (A.26), (A.27) on the interval w ∈] − 1, 1[ has two versions: above this
interval and below, that is

Zα,λ(w ± i0) = (±i
√

1− w2)−
1
2−α−λSλ,α

(
w

±i
√

1− w2

)
. (3.50)

19



This yields

QdS
α,λ(q) =

( 2

sin r

) 1
2Ps

λ,α(r), (3.51)

QdS
α,λ(−q) =

( 2

sin r

) 1
2Ps

λ,α(π − r). (3.52)

This yields

(sin r)
1
2

1

(Ls
λ − α2)

(r, r′) (sin r′)
1
2 =

1

(LdS
α − λ2)

(q, q′) , (3.53)

which proves Prop. 1.1. 2

Remark 3.4. Using (3.49), (3.51) and (3.52) we obtain

W
(
QdS
α,λ(−q),QdS

α,λ(q)
)

= 2W
(
Ps
λ,α(π − r),Ps

λ,α(r)
)
, (3.54)

W
(
QdS
α,λ(−q),QdS

α,−λ(q)
)

= 2W
(
Ps
λ,α(π − r),Ps

−λ,α(r)
)
. (3.55)

Therefore, (3.16) and (3.17) imply (3.44) and (3.45). This can be used in an alternative proof of Thm
3.3.

4 Hypergeometric Hamiltonians of the first kind

Let us transform the hypergeometric operator as follows:

−z α2 + 1
4 (1− z)

β
2 + 1

4F
(
α+β+µ+1

2 , α+β−µ+1
2 ; 1 + α; z, ∂z

)
z−

α
2−

1
4 (1− z)−

β
2−

1
4

= −z(1− z)P

 0 1 ∞
α
2 + 1

4
β
2 + 1

4
µ
2 z, ∂z

−α2 + 1
4 −β2 + 1

4 −µ2


−z(1− z)

(
∂2
z +

(
1

2z
− 1

2(1− z)

)
∂z

)
+

(
α2 − 1

4

)
1

4z
+

(
β2 − 1

4

)
1

4(1− z)
− µ2

4
. (4.1)

Thus if we set

Lα,β := −z(1− z)
(
∂2
z +

(
1

2z
− 1

2(1− z)

)
∂z

)
+

(
α2 − 1

4

)
1

4z
+

(
β2 − 1

4

)
1

4(1− z)
(4.2)

and F (z) solves the hypergeometric equation (2.7), then(
Lα,β −

µ2

4

)
z
α
2 + 1

4 (1− z)
β
2 + 1

4F (z) = 0. (4.3)

The hypergeometric equation has been reinterpreted as the eigenequation of the operator Lα,β with

the eigenvalue µ2

4 . It is natural to interpret this operator as acting on functions on an interval whose
endpoints are singularities of the hypergeometric equations. In each of these cases we perform the Liouville
transformation, which yields a 1-dimensional Hamiltonian. We will consider three cases:
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1. z ∈]0, 1[, which leads to an operator on L2]0, π[, which we call the spherical hypergeometric Hamil-
tonian of the 1st kind;

2. z ∈] −∞, 0[, which leads to an operator on L2(R+), which we call the hyperbolic hypergeometric
Hamiltonian of the 1st kind;

3. z ∈ 1
2 + iR, which leads to an operator on L2(R), which we call the deSitterian hypergeometric

Hamiltonian of the 1st kind.

It will be natural to introduce the parameters

δ : =
1

2
(α2 + β2), (4.4)

κ :=
1

2
(α2 − β2), τ :=

i

2
(α2 − β2) = iκ. (4.5)

i∞

−i∞

0 1 ∞

Desitterian

Spherical

Hyperbolic

−∞

Figure 2: Hypergeometirc Hamiltonians of the first kind on the z-plane. The hyperbolic Hamiltonian
act on the interval with the dotted line, spherical Hamiltonian—the thick line, and deSitterian

Hamiltonian—the dashed line.

4.1 Spherical case

For r ∈]0, π[, set in (4.2)

z = sin2 r

2
=

1− cos r

2
, which solves z′ = z

1
2 (1− z) 1

2 . (4.6)

This leads to the Schrödinger equation (
Ls
α,β −

µ2

4

)
φ(r) = 0, (4.7)

where

Ls
α,β := −∂2

r +

(
α2 − 1

4

)
1

4 sin2 r
2

+

(
β2 − 1

4

)
1

4 cos2 r
2

(4.8)

= −∂2
r +

(
δ − 1

4

)
1

sin2 r
+ κ

cos r

sin2 r
.
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In [DW] Ls
α,β is called the trigonometric Pöschl-Teller Hamiltonian

The case α = β is especially important and coincides with the spherical Gegenbauer Hamiltonian:

Ls
α := Ls

α,α. (4.9)

For r ∈]0, π[, define the function

P s
α,β,µ(r) :=

(
sin

r

2

)α+ 1
2
(

cos
r

2

)β+ 1
2

F

(
α+ β + µ+ 1

2
,
α+ β − µ+ 1

2
; 1 + α; sin2

(r
2

))
(4.10)

=
(

sin
r

2

)α+ 1
2
(

cos
r

2

)−α−µ− 1
2

F

(
α+ β + µ+ 1

2
,
α− β + µ+ 1

2
; 1 + α;− tan2

(r
2

))
. (4.11)

Note that
P s
α,β,µ(r) = P s

α,−β,µ(r) = P s
α,β,−µ(r). (4.12)

Asymptotically our function behaves like

P s
α,β,µ(r) ∼ 1

Γ(1 + α)

(r
2

)α+ 1
2

, r ∼ 0. (4.13)

Now the following functions solve the eigenvalue problem (4.7):

P s
α,β,µ(r), P s

−α,β,µ(r), P s
β,α,µ(π − r), P s

−β,α,µ(π − r). (4.14)

The following theorem describes the basic holomorphic family of closed realizations of Ls
α,β on L2]0, π[.

Theorem 4.1. For Reα,Reβ ≥ 1 there exists a unique closed operator Ls
α,β in the sense of L2]0, π[,

which on C∞c ]0, π[ is given by (4.8). The family α, β 7→ Ls
α,β is holomorphic and possesses a unique

holomorphic extension to Reα,Reβ > −1. It has only discrete spectrum:

σ(Ls
α,β) = σd(Ls

α,β) =

{(
k +

α+ β

2

)2

: k ∈ N0 +
1

2

}
. (4.15)

Outside of the spectrum its resolvent is

1(
Ls
α,β −

µ2

4

) (x, y) =Γ

(
1 + α+ β + µ

2

)
Γ

(
1 + α+ β − µ

2

)

×

{
P s
α,β,µ(x) P s

β,α,µ(π − y) if 0 < x < y < π;

P s
α,β,µ(y) P s

β,α,µ(π − x) if 0 < y < x < π.
(4.16)

Proof. Considering P s
α,β,µ(r), and P s

−α,β,µ(r) as a basis of solutions of (4.7), we can rewrite the connec-
tion formula (A.9) as

P s
β,α,µ(π − r) =

π P s
α,β,µ(r)

sin(−πα)Γ
(

1−α+β+µ
2

)
Γ
(

1−α+β−µ
2

) +
π P s
−α,β,µ(r)

sin(πα)Γ
(

1+α+β+µ
2

)
Γ
(

1+α+β−µ
2

) . (4.17)

Using (4.13) and arguing as in the proof of (3.15), we obtain

W
(
P s
−α,β,µ(r), P s

α,β,µ(r)
)

=
sinπα

π
. (4.18)
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From the connection formula and (4.18) we obtain the Wronskian

W
(
P s
β,α,µ(π − r), P s

α,β,µ(r)
)

=
1

Γ
(

1+α+β+µ
2

)
Γ
(

1+α+β−µ
2

) . (4.19)

The L2 integrability conditions at the endpoints are Reα > −1,Reβ > −1, for P s
α,β,µ(r) and P s

β,α,µ(π−r)
respectively. With these conditions, we can write the candidate for the resolvent (4.16). The L2 norm
of this integral kernel is finite. Hence it defines a bounded (even Hilbert-Schmidt) operator. For Reα ≥
1,Reβ ≥ 1 it is a unique candidate for the resolvent. 2

4.2 Hyperbolic case

For r ∈ R+, in (4.2) we set

z = − sinh2 r

2
=

1− cosh r

2
, which solves z′ = −(−z) 1

2 (1− z) 1
2 . (4.20)

This leads to the Schrödinger equation (
Lh
α,β +

µ2

4

)
φ(r) = 0, (4.21)

where

Lh
α,β := −∂2

r +

(
α2 − 1

4

)
1

4 sinh2 r
2

−
(
β2 − 1

4

)
1

4 cosh2 r
2

(4.22)

= −∂2
r +

(
δ − 1

4

)
1

sinh2 r
+ κ

cosh r

sinh2 r
.

In [DW] Lh
α,β is called the hyperbolic Pöschl-Teller Hamiltonian.

The case α = β is especially important and coincides with the hyperbolic Gegenbauer operator:

Lh
α := Lh

α,α. (4.23)

For r ∈ R+, let us define

P h
α,β,µ(r) :=

(
sinh

r

2

)α+ 1
2
(

cosh
r

2

)β+ 1
2

F

(
α+ β + µ+ 1

2
,
α+ β − µ+ 1

2
; 1 + α;− sinh2 r

2

)
(4.24)

=
(

sinh
r

2

)α+ 1
2
(

cosh
r

2

)−α−µ− 1
2

F

(
α+ β + µ+ 1

2
,
α− β + µ+ 1

2
; 1 + α; tanh2 r

2

)
, (4.25)

Qh
α,β,µ(r) :=

(
sinh

r

2

)−µ−β− 1
2
(

cosh
r

2

)β+ 1
2

F

(
α+ β + µ+ 1

2
,
−α+ β + µ+ 1

2
; 1 + µ;− sinh−2 r

2

)
(4.26)

=
(

sinh
r

2

)α+ 1
2
(

cosh
r

2

)−α−µ− 1
2

F

(
α+ β + µ+ 1

2
,
α− β + µ+ 1

2
; 1 + µ; cosh−2 r

2

)
. (4.27)

Note that

P h
α,β,µ(r) = P h

α,−β,µ(r) = P h
α,β,−µ(r), (4.28)

Qh
α,β,µ(r) = Qh

α,−β,µ(r) = Qh
−α,β,µ(r), (4.29)
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Asymptotically,

P h
α,β,µ(r) ∼ 1

Γ(1 + α)

(r
2

)α+ 1
2

, r → 0; (4.30)

Qh
α,β,µ(r) ∼ 2µ

Γ(1 + µ)
e−

µ
2 r, r → +∞. (4.31)

Now the following functions solve the eigenvalue problem (4.45):

P h
α,β,µ(r), P h

−α,β,µ(r), Qh
α,β,µ(r), Qh

α,β,−µ(r). (4.32)

The following theorem describes the basic holomorphic family of closed realizations of Lh
α,β on the

Hilbert space L2(R+).

Theorem 4.2. For Reα ≥ 1 there exists a unique closed operator Lh
α,β in the sense of L2(R+), which on

C∞c (R+) is given by (4.22). The family α, β 7→ Lh
α,β is holomorphic and possesses a unique holomorphic

extension to Reα > −1. Its discrete spectrum and spectrum are

σd(Lh
α,β) =

{
−
(α+ β

2
+ k
)2

| k ∈ N0 +
1

2
, k < −Re

α+ β

2

}
, (4.33)

∪
{
−
(α− β

2
+ k
)2

| k ∈ N0 +
1

2
, k < −Re

α− β
2

}
, (4.34)

σ(Lh
α,β) =[0,∞[∪σd(Lh

α,β). (4.35)

Outside of the spectrum, for Reµ > 0, its resolvent is

1

(Lh
α,β + µ2

4 )
(x, y) =Γ

(
1 + α+ β + µ

2

)
Γ

(
1 + α− β + µ

2

)

×

{
P h
α,β,µ(x) Qh

α,β,µ(y) if 0 < x < y <∞;

P h
α,β,µ(y) Qh

α,β,µ(x) if 0 < y < x <∞.
(4.36)

Proof. Considering P h
−α,β,µ(r), and P h

−α,β,µ(r) as a basis of solutions of (4.45), we can rewrite connection
formula (A.13) as

Qh
α,β,µ(r) = −

π P h
α,β,µ(r)

sinπα Γ
(

1−α−β+µ
2

)
Γ
(

1−α+β+µ
2

) +
π Ph−α,β,µ(r)

sin(απ)Γ
(

1+α+β+µ
2

)
Γ
(

1+α−β+µ
2

) . (4.37)

Using (4.30) and again arguing as in the proof of (3.15), we obtain we obtain

W
(
P h
−α,β,µ(r), P h

α,β,µ(r)
)

=
sinπα

π
. (4.38)

This yields the Wronskian

W
(
Qh
α,β,µ(r), P h

α,β,µ(r)
)

=
1

Γ
(

1+α+β+µ
2

)
Γ
(

1+α−β+µ
2

) .
The L2 integrability conditions at the endpoints are Reα > −1 and Reµ > 0 for P h

α,β,µ(r) and Qh
α,β,µ(r),

respectively. Using the Schur Test we check that integral kernel (4.36) defines a bounded operator. We
also see that for Reα > −1,Reµ > 0 it is a unique candidate for the resolvent. 2
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Proof of Prop. 1.2. The transformation

tan
r

2
= sinh

q

2
. (4.39)

implies

sin
r

2
= tanh

q

2
,

dq

dr
=

1

cos r2
= cosh

q

2
; (4.40)

P s
α,β,µ(r) =

1(
cosh q

2

) 1
2

P h
α,µ,β(q), (4.41)

P s
β,α,µ(π − r) =

1(
cosh q

2

) 1
2

Qh
α,µ,β(q). (4.42)

We obtain the transmutation relation

1(
Ls
α,β + µ2

4

) (r, r′) =
(

cosh
q

2

)− 1
2 1(

Lh
α,µ + β2

4

) (q, q′)
(

cosh
q′

2

)− 1
2

. (4.43)

2

4.3 DeSitterian case

For r ∈ R, in (4.2) we set

z =
1

2
− i cosh

r

2
sinh

r

2
=

1− i sinh r

2
, which solves z′ = (−z) 1

2 (1− z) 1
2 . (4.44)

This leads to the Schrödinger equation (
LdS
α,β +

µ2

4

)
φ(r) = 0, (4.45)

where

LdS
α,β := −∂2

r −
(
α2 − 1

4

)
1

cosh2 r

(
1

2
+

i sinh r

2

)
−
(
β2 − 1

4

)
1

cosh2 r

(
1

2
− i sinh r

2

)
(4.46)

= −∂2
r −

(
δ − 1

4

)
1

cosh2 r
− τ sinh r

cosh2 r
. (4.47)

This Hamiltonian was proposed and solved by F. Scarf [Sca] and in [DW] it is called the Scarf Hamiltonian.
The case α = β is especially important and coincides with the deSitterian Gegenbauer Hamiltonian:

LdS
α := LdS

α,α. (4.48)

Define for r ≥ 0

QdS
α,β,µ(r) :=

( i+ sinh r

2

)− β2−µ2− 1
4
(−i + sinh r

2

) β
2 + 1

4

× F

(
α+ β + µ+ 1

2
,
−α+ β + µ+ 1

2
; 1 + µ;

2

1− i sinh r

)
(4.49)

=
( i+ sinh r

2

)α
2 + 1

4
(−i + sinh r

2

)−α2−µ2− 1
4

× F

(
α+ β + µ+ 1

2
,
α− β + µ+ 1

2
; 1 + µ;

2

1 + i sinh r

)
. (4.50)

25



We extend r → QdS
α,β,µ(r) to r < 0 by analyticity. It satisfies

QdS
α,β,µ(r) ∼ 2µe−

µ
2 r

Γ(1 + µ)
, r → +∞. (4.51)

Note that

QdS
α,β,µ(r) = QdS

α,−β,µ(r) = QdS
−α,β,µ(r). (4.52)

Now the following functions solve the eigenvalue problem (4.45):

QdS
α,β,µ(r), QdS

α,β,−µ(r), QdS
β,α,µ(−r), QdS

β,α,−µ(−r). (4.53)

The following theorem describes all closed realizations of LdS
α,β on L2(R).

Theorem 4.3. For any α, β ∈ C there exists a unique closed operator LdS
α in the sense of L2(R) that

on C∞c (R) is given by (4.46). The function C 3 (α, β) 7→ LdS
α is holomorphic. We have LdS

α,β = LdS
−α,β =

LdS
α,−β.

Outside of the spectrum, for Reµ > 0, its resolvent is

1

(LdS
α,β + µ2

4 )
(x, y) =

Γ
(

1−α−β+µ
2

)
Γ
(

1+α−β+µ
2

)
Γ
(

1−α+β+µ
2

)
Γ
(

1+α+β+µ
2

)
2π

×

{
QdS
α,β,µ(x)QdS

β,α,µ(−y) if −∞ < x < y <∞;

QdS
β,α,µ(−y)QdS

α,β,µ(x) if −∞ < y < x <∞.
(4.54)

To describe the discrete spectrum of LdS
α,β assume without loss of generality that Re(α+ β) ≥ 0. We also

assume that Re(α− β) ≥ 0 (the case Re(α− β) ≤ 0 is analogous). Then

σd(LdS
α.β) =

{
−
(
α+ β

2
− k
)2 ∣∣∣∣ k ∈ N0 +

1

2
, k < Re

α+ β

2

}
(4.55)

∪

{
−
(
α− β

2
− k
)2 ∣∣∣∣ k ∈ N0 +

1

2
, k < Re

α− β
2

}
,

σ(LdS
α,β) =[0,∞[∪σd(LdS

α,β). (4.56)

Proof. In the connection formula (A.15) we insert z = 1−is
2 and multiply it by

(
1−is

2

)α
2 + 1

4
(

1+is
2

) β
2 + 1

4

,

obtaining

(1− is

2

)α
2 + 1

4
(1 + is

2

) β
2 + 1

4

Fα,β,µ

(1− is

2

)
=
π
(

1−is
2

)α
2 + 1

4
(

1+is
2

) β
2 + 1

4
(

is−1
2

)−1−α−β−µ
2

Fµ,β,α( 2
1−is )

sin(−πµ)Γ
(

1+α+β−µ
2

)
Γ
(

1+α−β−µ
2

)

+
π
(

1−is
2

)α
2 + 1

4
(

1+is
2

) β
2 + 1

4
(

is−1
2

)−1−α−β+µ
2

F−µ,β,α( 2
1−is )

sin(πµ)Γ
(

1+α+β+µ
2

)
Γ
(

1+α−β+µ
2

) .

(4.57)
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We transform separately (4.57) above and below the real line: obtaining resp.

πeiπ2 (−α− 1
2−

µ
2 )
(
s+i
2

)− β2− 1
4−

µ
2
(
s−i
2

) β
2 + 1

4

Fµ,β,α( 2
1−is )

sin(−πµ)Γ
(

1+α+β−µ
2

)
Γ
(

1+α−β−µ
2

)

+
πeiπ2 (−α− 1

2 +µ
2 )
(
s+i
2

)− β2− 1
4 +µ

2
(
s−i
2

) β
2 + 1

4

F−µ,β,α( 2
1−is )

sin(πµ)Γ
(

1+α+β+µ
2

)
Γ
(

1+α−β+µ
2

) , s > 0 (4.58)

πeiπ2 (α+ 1
2 +µ

2 )
(
−s−i

2

)− β2− 1
4−

µ
2
(
−s+i

2

) β
2 + 1

4

Fµ,β,α( 2
1−is )

sin(−πµ)Γ
(

1+α+β−µ
2

)
Γ
(

1+α−β−µ
2

)

+
πeiπ2 (α+ 1

2−
µ
2 )
(
−s−i

2

)− β2− 1
4 +µ

2
(
−s+i

2

) β
2 + 1

4

F−µ,β,α( 2
1−is )

sin(πµ)Γ
(

1+α+β+µ
2

)
Γ
(

1+α−β+µ
2

) . s < 0 (4.59)

Inserting s = sinh(−r) = − sinh r into (4.59), and using uniqueness of analytic continuation we get

pdS
α,β,µ(r) :=

(
1− i sinh r

2

)α
2 + 1

4
(

1 + i sinh r

2

) β
2 + 1

4

Fα,β,µ

(
1− i sinh r

2

)
=

πe
iπ
2 (α+µ

2 + 1
2 )

sin(−πµ)Γ
(

1+α+β−µ
2

)
Γ
(

1+α−β−µ
2

)QdS
β,α,µ(−r)

+
πe

iπ
2 (α−µ2 + 1

2 )

sin(πµ)Γ
(

1+α+β+µ
2

)
Γ
(

1+α−β+µ
2

)QdS
β,α,−µ(−r). (4.60)

By replacing α to −α we obtain the second identity

pdS
−α,β,µ(r) =

πe
iπ
2 (−α+µ

2 + 1
2 )

sin(−πµ)Γ
(

1−α+β−µ
2

)
Γ
(

1−α−β−µ
2

)QdS
β,α,µ(−r)

+
πe

iπ
2 (−α−µ2 + 1

2 )

sin(πµ)Γ
(

1−α+β+µ
2

)
Γ
(

1−α−β+µ
2

)QdS
β,α,−µ(−r). (4.61)

We can rewrite them via

[
pdS
α,β,µ(r)

pdS
−α,β,µ(r)

]
=

π

sin(πµ)

− e
iπ
2 (α+

µ
2

+ 1
2 )

Γ( 1+α+β−µ
2 )Γ( 1+α−β−µ

2 )
e
iπ
2 (α−µ2 + 1

2 )
Γ( 1+α+β+µ

2 )Γ( 1+α−β+µ
2 )

− e
iπ
2 (−α+

µ
2

+ 1
2 )

Γ( 1−α+β−µ
2 )Γ( 1−α−β−µ

2 )
e
iπ
2 (−α−µ2 + 1

2 )
Γ( 1−α+β+µ

2 )Γ( 1−α−β+µ
2 )


×
[
QdS
β,α,µ(−r)

QdS
β,α,−µ(−r)

]
. (4.62)

We evaluate

det

− e
iπ
2 (α+

µ
2

+ 1
2 )

Γ( 1+α+β−µ
2 )Γ( 1+α−β−µ

2 )
e
iπ
2 (α−µ2 + 1

2 )
Γ( 1+α+β+µ

2 )Γ( 1+α−β+µ
2 )

− e
iπ
2 (−α+

µ
2

+ 1
2 )

Γ( 1−α+β−µ
2 )Γ( 1−α−β−µ

2 )
e
iπ
2 (−α−µ2 + 1

2 )
Γ( 1−α+β+µ

2 )Γ( 1−α−β+µ
2 )

 = −i
sin(πµ) sin(πα)

π2
(4.63)
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Therefore we have

[
QdS
β,α,µ(−r)

QdS
β,α,−µ(−r)

]
=
−iπ

sin(πα)

 e
iπ
2 (−α−µ2 + 1

2 )
Γ( 1−α+β+µ

2 )Γ( 1−α−β+µ
2 )

− e
iπ
2 (α−µ2 + 1

2 )
Γ( 1+α+β+µ

2 )Γ( 1+α−β+µ
2 )

e
iπ
2 (−α+

µ
2

+ 1
2 )

Γ( 1−α+β−µ
2 )Γ( 1−α−β−µ

2 )
− e

iπ
2 (α+

µ
2

+ 1
2 )

Γ( 1+α+β−µ
2 )Γ( 1+α−β−µ

2 )
.


×
[
pdS
α,β,µ(r)

pdS
−α,β,µ(r)

]
(4.64)

In (4.62), we exchange α and β, and replace r with −r, and we obtain

[
pdS
β,α,µ(−r)

pdS
−β,α,µ(−r)

]
=

π

sin(πµ)

− e
iπ
2 (β+µ2 + 1

2 )
Γ( 1+α+β−µ

2 )Γ( 1−α+β−µ
2 )

e
iπ
2 (β−µ2 + 1

2 )
Γ( 1+α+β+µ

2 )Γ( 1−α+β+µ
2 )

− e
iπ
2 (−β+µ2 + 1

2 )
Γ( 1+α−β−µ

2 )Γ( 1−α−β−µ
2 )

e
iπ
2 (−β−µ2 + 1

2 )
Γ( 1+α−β+µ

2 )Γ( 1−α−β+µ
2 )


×
[
QdS
α,β,µ(r)

QdS
α,β,−µ(r)

]
. (4.65)

Using (A.12), we know that[
pdS
α,β,µ(r)

pdS
−α,β,µ(r)

]
=

π

sin(πβ)

[− 1

Γ( 1+α−β−µ
2 )Γ( 1+α−β+µ

2 )
1

Γ( 1+α+β−µ
2 )Γ( 1+α+β+µ

2 )
− 1

Γ( 1−α−β−µ
2 )Γ( 1−α−β+µ

2 )
1

Γ( 1−α+β−µ
2 )Γ( 1−α+β+µ

2 )

]

×
[
pdS
β,α,µ(−r)

pdS
−β,α,µ(−r)

]
. (4.66)

Thus we obtained the connection formula

[
QdS
β,α,µ(−r)

QdS
β,α,−µ(−r).

]
=

−iπ3

sin(πα) sin(πβ) sin(πµ)

 e
iπ
2 (−α−µ2 + 1

2 )
Γ( 1−α+β+µ

2 )Γ( 1−α−β+µ
2 )

− e
iπ
2 (α−µ2 + 1

2 )
Γ( 1+α+β+µ

2 )Γ( 1+α−β+µ
2 )

e
iπ
2 (−α+

µ
2

+ 1
2 )

Γ( 1−α+β−µ
2 )Γ( 1−α−β−µ

2 )
− e

iπ
2 (α+

µ
2

+ 1
2 )

Γ( 1+α+β−µ
2 )Γ( 1+α−β−µ

2 )


×

[− 1

Γ( 1+α−β−µ
2 )Γ( 1+α−β+µ

2 )
1

Γ( 1+α+β−µ
2 )Γ( 1+α+β+µ

2 )
− 1

Γ( 1−α−β−µ
2 )Γ( 1−α−β+µ

2 )
1

Γ( 1−α+β−µ
2 )Γ( 1−α+β+µ

2 )

]

×

− e
iπ
2 (β+µ2 + 1

2 )
Γ( 1+α+β−µ

2 )Γ( 1−α+β−µ
2 )

e
iπ
2 (β−µ2 + 1

2 )
Γ( 1+α+β+µ

2 )Γ( 1−α+β+µ
2 )

− e
iπ
2 (−β+µ2 + 1

2 )
Γ( 1+α−β−µ

2 )Γ( 1−α−β−µ
2 )

e
iπ
2 (−β−µ2 + 1

2 )
Γ( 1+α−β+µ

2 )Γ( 1−α−β+µ
2 )

[ QdS
α,β,µ(r)

QdS
α,β,−µ(r)

]
. (4.67)

The result of multiplication after simplification with the reflection formula for the gamma functions is − e−
iπµ
2 cos(πα)+e

iπµ
2 cos(πβ)

π
2π

Γ( 1+α+β+µ
2 )Γ( 1+α−β+µ

2 )Γ( 1−α+β+µ
2 )Γ( 1−α−β+µ

2 )

−2π

Γ( 1+α+β+µ
2 )Γ( 1+α−β+µ

2 )Γ( 1−α+β+µ
2 )Γ( 1−α−β+µ

2 )
e−

iπµ
2 cos(πβ)+e

iπµ
2 cos(πα)

π


×
[
QdS
α,β,µ(r)

QdS
α,β,−µ(r)

]
−π

sin(πµ)
=

[
QdS
β,α,µ(−r)

QdS
β,α,−µ(−r)

]
. (4.68)

Using

W
(
QdS
α,β,µ(r), QdS

α,β,−µ(r)
)

=
sinπµ

π
(4.69)
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we obtain

W
(
QdS
β,α,µ(−r), QdS

α,β,µ(r)
)

=
2π

Γ
(

1−α−β+µ
2

)
Γ
(

1+α−β+µ
2

)
Γ
(

1−α+β+µ
2

)
Γ
(

1+α+β+µ
2

) (4.70)

W
(
QdS
β,α,−µ(−r), QdS

α,β,µ(r)
)

=
eiπ µ2 cosπβ + e−iπ µ2 cosπα

π
. (4.71)

The L2 integrable condition at both endpoints is Re(µ) > 0 for both QdS
α,β,µ(r), and QdS

β,α,µ(−r). There-
fore, for Reµ > 0, it is a unique candidate for the resolvent. Using the Schur Test we see that the integral
kernel (4.54) defines a bounded operator.

From the singularities of the Gamma function we obtain

σd(LdS
α ) =

{
−
(
n+

1 + α+ β

2

)2 ∣∣∣∣ n ∈ N0, Re

(
n+

1 + α+ β

2

)
< 0

}
(4.72)

∪

{
−
(
n+

1 + α− β
2

)2 ∣∣∣∣ n ∈ N0, Re

(
n+

1 + α− β
2

)
< 0

}
(4.73)

∪

{
−
(
n+

1− α+ β

2

)2 ∣∣∣∣ n ∈ N0, Re

(
n+

1− α+ β

2

)
< 0

}
(4.74)

∪

{
−
(
n+

1− α− β
2

)2 ∣∣∣∣ n ∈ N0, Re

(
n+

1− α− β
2

)
< 0

}
. (4.75)

If Re(α+ β) ≥ 0 and Re(α− β) ≥ 0, then (4.72) and (4.73) are empty and we obtain (4.55). 2

5 Hypergeometric Hamiltonians of the second kind

We transform the hypergeometric equation in a different way:

−4z1+α
2 (1− z)1+ β

2F(α+β+µ+1
2 , α+β−µ+1

2 ; 1 + α; z, ∂z)z
−α2 (1− z)−

β
2

= −4z2(z − 1)2P

 0 1 ∞
α
2

β
2

µ
2 + 1

2 z, ∂z
−α2 −β2 −µ2 + 1

2



= −4z2(1− z)2

(
∂2
z +

(1

z
− 1

1− z

)
∂z

)
+ α2(1− z) + β2z − (µ2 − 1)z(1− z). (5.1)

We rearrange the terms in (5.1) containing α and β as follows:

α2(1− z) + β2z = δ + κ(1− 2z) (5.2)

= δ + τ i(2z − 1), (5.3)

where δ, κ, τ are defined in (4.5). Thus if we set

Kκ,µ := −4z2(1− z)2

(
∂2
z +

(1

z
− 1

1− z

)
∂z

)
+ κ(1− 2z)− (µ2 − 1)z(1− z) (5.4)
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and if F (z) solves the hypergeometric equation (2.7), then(
Kκ,µ + δ

)
z
α
2 (1− z)

β
2 F (z) = 0. (5.5)

We have reinterpreted (5.1) as the eigenequation of the operator Kκ,µ with eigenvalue −δ.
Again, it is natural to interpret this operator as acting on functions on an interval whose endpoints

are singularities of the hypergeometric equations. In each of these cases we perform the Liouville trans-
formation, which yields a 1-dimensional Hamiltonian. We will consider three cases:

1. z ∈ 1
2 + iR, which leads to an operator on L2]0, π[, which we call the spherical hypergeometric

Hamiltonian of the 2nd kind;

2. z ∈] −∞, 0[, which leads to an operator on L2]0,∞[ which we call the hyperbolic hypergeometric
Hamiltonian of the 2nd kind;

3. z ∈]0, 1[, which leads to an operator on L2(R), which we call the deSitterian hypergeometric Hamil-
tonian of the 2nd kind.

i∞

−i∞

0 1 ∞

Spherical

Desitterian

Hyperbolic

−∞

Figure 3: Hypergeometric Hamiltonian of the second kind on the z-plane. The hyperbolic Hamiltonian
act on the interval with dotted line, the spherical—with the thick line, and the Desitterian—with the

dashed line.

5.1 Spherical case

For u ∈]0, π[, in (5.1) and (5.3) we set

z =
1

1− e2iu
, which solves z′ = 2iz(1− z). (5.6)

This leads to the Schrödinger equation (
Ks
τ,µ − δ

)
φ(u) = 0, (5.7)

where

Ks
τ,µ(u) := −∂2

u + τ
cosu

sinu
+

(
µ2

4
− 1

4

)
1

sin2 u
. (5.8)

This Hamiltonian is known as the Rosen-Morse Hamiltonian (see [DW]).
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In the case τ = 0 we have the coincidence:

Ls
α = Ks

0,2α. (5.9)

We define for u ∈]0, π2 ]

Qs
α,β,µ(u) (5.10)

:=

(
i

1− e2iu

)−1−β−µ
2

(
−i

1− e−2iu

) β
2

F
(α+ β + µ+ 1

2
,
−α+ β + µ+ 1

2
;µ+ 1; 1− e2iu

)
(5.11)

=

(
i

1− e2iu

)α
2
(

−i

1− e−2iu

)−1−α−µ
2

F
(α+ β + µ+ 1

2
,
α− β + µ+ 1

2
;µ+ 1; 1− e−2iu

)
. (5.12)

For u ∈ [π2 , π[ it is continued analytically. It has the asymptotics

Qs
α,β,µ(u) ∼ 1

Γ(µ+ 1)
(2u)

µ
2 + 1

2 , u ∼ 0. (5.13)

Note that

Qs
α,β,µ(u) = Qs

−α,β,µ(u) = Qs
α,−β,µ(u), (5.14)

Qs
β,α,µ(π − u) = Qs

β,−α,µ(π − u) = Qs
−β,α,µ(π − u), (5.15)( 2

cosh r

) 1
2

QdS
α,β,µ(r) = Qs

α,β,µ(u), (5.16)( 2

cosh r

) 1
2

QdS
β,α,µ(−r) = Qs

β,α,µ(π − u), sinh r = − cotu. (5.17)

Now the following functions solve the eigenvalue problem (5.7):

Qs
α,β,µ(u), Qs

α,β,−µ(u), Qs
β,α,µ(π − u), Qs

β,α,−µ(π − u). (5.18)

The following theorem describes the basic closed realization of Ks
τ,µ:

Theorem 5.1. For Reµ ≥ 2, τ ∈ C, there exists a unique closed operator Ks
τ,µ in the sense of L2]0, π[,

which on C∞c ]0, π[ is given by (5.8). The family τ, µ 7→ Ks
τ,µ is holomorphic and possesses a unique

holomorphic extension to Reµ > −2, except for a singularity at (τ, µ) = (0,−1). It has only discrete
spectrum:

σ(Ks
τ,µ) =

{
− τ2

(2k + µ)2
+
(
k +

µ

2

)2 ∣∣ k ∈ N0 +
1

2

}
. (5.19)

Set

α :=
√
δ − iτ , β :=

√
δ + iτ . (5.20)

(It does not matter which sign of the square root is taken). Outside of the spectrum the resolvent of Ks
τ,µ

is

1

(Ks
τ,µ − δ)

(x, y) =
Γ
(

1−α−β+µ
2

)
Γ
(

1+α−β+µ
2

)
Γ
(

1−α+β+µ
2

)
Γ
(

1+α+β+µ
2

)
4π

×

{
Qs
α,β,µ(x)Qs

β,α,µ(π − y), if 0 < x < y < π;

Qs
α,β,µ(y)Qs

β,α,µ(π − x), if 0 < y < x < π.
(5.21)
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Proof. The relation sinh r = − cotu implies

2

1− i sinh r
= 1− e2iu,

2

1 + i sinh r
= 1− e−2iu, (5.22)

du

dr
= sinu =

1

cosh r
. (5.23)

Therefore, using (4.70) and (4.71), we obtain

W
(
Qs
β,α,µ(π − u),Qs

α,β,µ(u)
)

= 2W
(
QdS
β,α,µ(−r), QdS

α,β,µ(r)
)

(5.24)

=
4π

Γ
(

1−α−β+µ
2

)
Γ
(

1+α−β+µ
2

)
Γ
(

1−α+β+µ
2

)
Γ
(

1+α+β+µ
2

) , (5.25)

W
(
Qs
β,α,−µ(π − u),Qs

α,β,µ(u)
)

= 2W
(
QdS
β,α,−µ(−r), QdS

α,β,µ(r)
)

(5.26)

=
2(eiπ µ2 cosπβ + e−iπ µ2 cosπα)

π
. (5.27)

The L2 integrability condition for Qs
α,β,µ(u) at 0 and Qsβ,α,µ(π − u) at π is Reµ > −2. The L2 norm of

this kernel 5.21 is finite. For Re(µ) ≥ 2 it is a unique candidate for the resolvent.
As a byproduct we obtain a proof of Prop. 1.4 about the transmutation identity LdS → Ks.
The singularities of the Gamma functions in (5.21) are at

1 + ε1α+ ε2β + µ = −2n, n ∈ N0, (5.28)

where ε1, ε2 ∈ {1,−1}. This implies

α2 = (2n+ 1 + µ)2 + 2ε2β(2n+ 1 + µ) + β2. (5.29)

Hence,

β =
ε2κ

2n+ 1 + µ
− ε2

(
n+

µ

2
+

1

2

)
, (5.30)

α = − ε2κ

2n+ 1 + µ
− ε2

(
n+

µ

2
+

1

2

)
. (5.31)

This shows

δ =
κ2

(2n+ 1 + µ)2
+
(
n+

1

2
+
µ

2

)2

. (5.32)

Replacing κ2 with −τ2 we obtain (5.19). 2

For µ ∈ Z we have an additional identity for the Qs function, which follows directly from (A.17):(α+ β − µ+ 1

2

)
µ

(α− β − µ+ 1

2

)
µ
Qs
α,β,µ(u) = Qs

α,β,−µ(u). (5.33)

Using this with µ = 1 we obtain the following unexpected identity:

Theorem 5.2. For any τ 6= 0, we have Ks
τ,1 = Ks

τ,−1.

Proof. Setting µ = 1 in (5.62) we obtain

α2 − β2

4
Qs
α,β,1(u) = Qs

α,β,−1(u). (5.34)
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Setting µ = 1 and µ = −1 in the prefactor of the right hand side of (5.21) we obtain

Γ
(

1− α+β
2

)
Γ
(

1 + α−β
2

)
Γ
(

1− α−β
2

)
Γ
(

1 + α+β
2

)
4π

=
(α2 − β2)π

16 sin π
2 (α+ β) sin π

2 (α− β)
, (5.35)

Γ
(
−α+β

2

)
Γ
(
α−β

2

)
Γ
(
−α−β2

)
Γ
(
α+β

2

)
4π

=
π

(α2 − β2) sin π
2 (α+ β) sin π

2 (α− β)
. (5.36)

We thus obtain
1

(Ks
τ,1 + δ)

=
1

(Ks
τ,−1 + δ)

. (5.37)

2

Note that (5.21) is ill defined for (τ, µ) = (0,−1). Moreover, we know that {2 < Reµ} 3 µ 7→ Ls
µ
2

is

analytic, and for µ 6= −1.
We have Ks

0,µ = Ls
µ
2
. Therefore, it is natural to set

Ks
0,−1 := Ls

− 1
2
. (5.38)

We know that Ls
− 1

2

6= Ls
1
2

. Therefore, Thm 5.2 implies that the point (τ, µ) = (0,−1) is a singularity

of the function (τ, µ) 7→ Ks
τ,µ. See [DeRi], where a similar phenomenon is described for the Whittaker

operator.

5.2 Hyperbolic case

For u ∈ R+, in (5.1) and (5.2) we set

z =
1

1− e2u
, which solves z′ = 2z(z − 1). (5.39)

This leads to the Schrödinger equation (
Kh
κ,µ + δ

)
φ(u) = 0, (5.40)

where

Kh
κ,µ := −∂2

u + κ
coshu

sinhu
+

(
µ2

4
− 1

4

)
1

sinh2 u
. (5.41)

This Hamiltonian in [DW] is called the Eckart Hamiltonian.
In the case κ = 0 we have the coincidence

Lh
α = Kh

0,2α. (5.42)

We define

Ph
α,β,µ(u) := (e2u − 1)−

α
2 (1− e−2u)−

β
2 F

(
α+ β + µ+ 1

2
,
α+ β − µ+ 1

2
;α+ 1;

1

1− e2u

)
(5.43)

= (e2u − 1)−
α
2 (1− e−2u)

1+α+µ
2 F

(
α+ β + µ+ 1

2
,
α− β + µ+ 1

2
;α+ 1; e−2u

)
, (5.44)

Qh
α,β,µ(u) := (e2u − 1)

1+β+µ
2 (1− e−2u)−

β
2 F

(
α+ β + µ+ 1

2
,
−α+ β + µ+ 1

2
;µ+ 1; 1− e2u

)
(5.45)

= (e2u − 1)−
α
2 (1− e−2u)

1+α+µ
2 F

(
α+ β + µ+ 1

2
,
α− β + µ+ 1

2
;µ+ 1; 1− e−2u

)
. (5.46)
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Note that

Ph
α,βµ(u) ∼ 1

Γ(1 + α)
e−αu, u ∼ +∞; (5.47)

Qh
α,βµ(u) ∼ 1

Γ(1 + µ)
(2u)

µ
2 + 1

2 , u ∼ 0. (5.48)

We have

Ph
α,β,µ(u) = Ph

α,−β,µ(u) = Ph
α,β,−µ(u), (5.49)

Qh
α,β,µ(u) = Qh

−α,β,µ(u) = Qh
α,−β,µ(u); (5.50)( 2

sinh r

) 1
2

P h
α,β,µ(r) = Ph

α,β,µ(u), (5.51)( 2

sinh r

) 1
2

Qh
α,β,µ(r) = Qh

α,β,µ(u), cosh r = cothu. (5.52)

Now the following functions solve the eigenvalue problem (5.40):

Ph
α,β,µ(u), Ph

−α,β,µ(u), Qh
α,β,µ(u), Qh

α,β,−µ(u). (5.53)

Let us describe the basic closed realization of Kh
κ,µ on L2(R+).

Theorem 5.3. For κ ∈ C,Reµ ≥ 2 there exists a unique closed operator Kh
κ,µ in the sense of L2(R+),

which on C∞c (R+) is given by (5.41). The family κ, µ 7→ Kh
κ,µ is holomorphic and possesses a unique

holomorphic extension to Reµ > −2, (κ, µ) 6= (0, 1). Its discrete spectrum and spectrum are

σd(Kh
κ,µ) =

{
− κ2

(2k + µ)2
−
(
k +

µ

2

)2
∣∣∣∣ k ∈ N0 +

1

2
, Re

(
κ

2k + µ
+ k +

µ

2

)
< 0

}
,

σ(Kh
κ,µ) =[0,+∞[∪σd(Kh

κ,µ). (5.54)

Set

α :=
√
δ + κ, Reα > 0, β :=

√
δ − κ (5.55)

(The choice of the square root for β does not matter). Outside of its spectrum the resolvent of Kh
κ,µ is

1

(Kh
κ,µ + δ)

(x, y) =
Γ
(

1+α+β+µ
2

)
Γ
(

1+α−β+µ
2

)
2

×

{
Ph
α,β,µ(x) Qh

α,β,µ(y) if 0 < y < x <∞,
Ph
α,β,µ(y) Qh

α,β,µ(x) if 0 < x < y <∞.
(5.56)

Proof. The relation cosh r = cothu implies

sinh2 r

2
=

1

e2u − 1
, cosh2 r

2
=

1

e−2u − 1
; (5.57)

du

dr
=

1

sinh r
= sinhu, (5.58)

Therefore,

W
(
Qh
α,β,µ,Ph

α,β,µ

)
= 2W

(
Qh
α,β,µ, P

h
α,β,µ

)
(5.59)

=
2

Γ
(

1+α+β+µ
2

)
Γ
(

1+α−β+µ
2

) . (5.60)
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The L2 integrability conditions at endpoints are Reα > 0, and Reµ > −2 for Ph
α,β,µ(r) and Qh

α,β,µ(r),
respectively. For such parameters the integral kernel (5.56) defines a bounded operator. For Reα > 0,
and Reµ ≥ 2, it is the unique candidate for the resolvent.

As a byproduct we obtain a proof of Prop. 1.5 about the transmutation identity Lh → Kh.

The determination of the discrete spectrum follows by similar arguments as for Thm 5.2. 2

For µ ∈ Z we have an additional identity for the Qh function, which follows directly from (A.17):(α+ β − µ+ 1

2

)
µ

(α− β − µ+ 1

2

)
µ
Qh
α,β,µ(u) = Qh

α,β,−µ(u). (5.61)

Using this with µ = 1 we obtain

Theorem 5.4. For any κ 6= 0, we have Kh
κ,1 = Kh

κ,−1.

Proof. Setting µ = 1 in (5.62) we obtain

α2 − β2

4
Qh
α,β,1(u) = Qh

α,β,−1(u). (5.62)

Moreover,

Γ

(
1− α+ β

2

)
Γ

(
1 +

α− β
2

)
=

(α2 − β2)

4
Γ

(
α+ β

2

)
Γ

(
α− β

2

)
, (5.63)

We thus obtain
1

(Kh
τ,1 + δ)

=
1

(Kh
τ,−1 + δ)

. (5.64)

2

Similarly as in the spherical case, (5.56) is ill defined for (κ, µ) = (0,−1). Moreover, we know that
{2 < Reµ} 3 µ 7→ Lh

µ
2

is analytic, and for µ 6= −1 we have Kh
0,µ = Lh

µ
2
. Therefore, it is natural to set

Kh
0,−1 := Lh

− 1
2
. (5.65)

We know that Lh
− 1

2

6= Lh
1
2

. Therefore, Thm 5.4 implies that the point (κ, µ) = (0,−1) is a singularity

of the function (κ, µ) 7→ Kh
κ,µ.

5.3 DeSitterian case

For u ∈ R, in (5.1) and (5.2) we set

z =
1

1 + e2u
, which solves z′ = 2z(z − 1). (5.66)

This leads to the Schrödinger equation (
KdS
κ,µ + δ

)
φ(u) = 0, (5.67)

where

KdS
κ,µ := −∂2

u − κ
sinhu

coshu
−
(
µ2

4
− 1

4

)
1

cosh2 u
. (5.68)
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In [DW] it is called the Manning-Rosen Hamiltonian.
In the case κ = 0 we have the coincidence:

LdS
α = KdS

0,2α. (5.69)

We define

PdS
α,β,µ(u) := (1 + e2u)−

α
2 (1 + e−2u)−

β
2 F
(α+ β + µ+ 1

2
,
α+ β − µ+ 1

2
;α+ 1;

1

1 + e2u

)
(5.70)

:= (1 + e2u)−
α
2 (1 + e−2u)

1+α+µ
2 F

(α+ β + µ+ 1

2
,
α− β + µ+ 1

2
;α+ 1;−e−2u

)
. (5.71)

We have the asymptotics

PdS
α,β,µ(u) ∼ 1

Γ(1 + α)
e−αu, u ∼ +∞. (5.72)

Note that

PdS
α,β,µ(u) = PdS

α,−β,µ(u) = PdS
α,β,−µ(u), (5.73)( 2

sin r

) 1
2

P s
α,β,µ(r) = PdS

α,β,µ(u), cos r = tanhu. (5.74)

Now the following functions solve the eigenvalue problem (5.67):

PdS
α,β,µ(u), PdS

−α,β,µ(u), PdS
β,α,µ(−u), PdS

−β,α,µ(−u). (5.75)

We will find all closed realization of KdS
κ,µ in the sense of L2(R).

Theorem 5.5. For any κ, µ ∈ C there exists a unique closed operator KdS
κ,µ in the sense of L2(R) that

on C∞c (R) is given by (5.68). The function C2 3 (κ, µ) 7→ KdS
κ,µ is holomorphic. The discrete spectrum

and spectrum of KdS
κ,µ are

σd(KdS
κ,µ) =

{
− κ2

(2k + µ)2
−
(
k +

µ

2

)2
∣∣∣∣ k ∈ N0 +

1

2
, k < −

∣∣∣∣Re
κ

2k + µ

∣∣∣∣− µ

2

}
∪
{
− κ2

(2k − µ)2
−
(
k − µ

2

)2
∣∣∣∣ k ∈ N0 +

1

2
, k < −

∣∣∣∣Re
κ

2k − µ

∣∣∣∣+
µ

2

}
, (5.76)

σ(KdS
κ,µ) = [κ,+∞[∪ [−κ,+∞[∪σd

(
KdS
κ,µ

)
. (5.77)

Here, for z ∈ C we use the notation [z,+∞[:= {z + t | t ∈ [0,+∞[}.
Set

α :=
√
δ + κ, Reα > 0; β :=

√
δ − κ, Reβ > 0. (5.78)

Outside of its spectrum, the resolvent of KdS
κ,µ is

1

(KdS
κ,µ + δ)

(x, y) =
Γ
(

1+α+β+µ
2

)
Γ
(

1+α+β−µ
2

)
2

×

{
PdS
β,α,µ(x) PdS

α,β,µ(y), if −∞ < x < y <∞;

PdS
β,α,µ(y) PdS

α,β,µ(x), if −∞ < y < x <∞.
(5.79)

We have KdS
κ,µ = KdS

κ,−µ
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Proof. The relation cos r = tanhu implies

sin2 r

2
=

1

1 + e2u
, cos2 r

2
=

1

1 + e−2u
; (5.80)

du

dr
=

1

sin r
= coshu. (5.81)

This yields (5.74). Using (5.81) and (5.74), and then (4.19), we obtain

W
(
PdS
α,β,µ(u),PdS

β,α,µ(−u)
)

= 2W
(
P s
α,β,µ(r), P s

β,α,µ(π − r)
)

(5.82)

=
2

Γ
(

1+α+β+µ
2

)
Γ
(

1+α+β−µ
2

) . (5.83)

The L2 integrability condition at +∞ of Pα,β,µ(u) is Re(α) > 0, and at −∞ of Pβ,α,µ(−u) is Re(β) > 0.
For such parameters, the integral kernel (5.79) defines a bounded operator and is a unique candidate for
the resolvent.

As a byproduct we obtain a proof of Prop. 1.4 about the transmutation identity Ls → LdS.
The determination of the discrete spectrum is similar as in the hyperbolic case. 2

Proof of Prop. 1.3. The change of variables

1 + e2w = e2u (5.84)

implies

−e2w = 1− e2u, −e−2w =
1

1− e2u
; (5.85)

dw

du
=

1

1− e−2u
= 1 + e−2w, (5.86)

PdS
α,β,µ(w) =

(
1− e−2u

)− 1
2Ph

α,µ,β(u), (5.87)

PdS
β,α,µ(−w) =

(
1− e−2u

)− 1
2Qh

α,µ,β(u). (5.88)

We redefine parameters

δ′ :=
1

2
(α2 − µ2), κ′ :=

1

2
(α2 + µ2). (5.89)

We obtain the transmutation identity(
1− e−2u

)− 1
2

1(
Kh
κ,µ + δ

) (u, u′)
(
1− e−2u′

)− 1
2 =

1(
KdS
κ′,β + δ′

) (w,w′). (5.90)

2

6 The Laplacian on an interval, halfline and line

The Laplacians on ]0, π[, R+ and R with the Dirichlet or Neumann boundary conditions at endpoints
belong to the most widely used operators. Their Green functions can be easily computed in terms of
elementary functions, without using hypergeometric functions. In this section we will check that they
are special cases of hypergeometric Hamiltonians. We will see that this coincidence is related to various
identities for hypergeometric functions from Appendix A.6.
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6.1 Laplacian on an interval

Consider the Laplacian −∂2
x on the interval ]0, π[. The Dirichlet and Neumann boundary condition will

be denoted D and N resp. Putting them at both 0 and π leads to 4 operators on L2]0, π[. They are
special cases of the spherical hypergeometric Hamiltonian of the first kind:

LDD := Ls
1
2 ,

1
2

= Ls
1
2
, (6.1)

LND := Ls
− 1

2 ,
1
2
, (6.2)

LDN := Ls
1
2 ,−

1
2
, (6.3)

LNN := Ls
− 1

2 ,−
1
2

= Ls
− 1

2
. (6.4)

Resolvents of these operators can be computed in terms of elementary functions. Indeed, the following
functions solve

(−∂2
x + k2)φ(x) = 0 (6.5)

and satisfy the Dirichlet/Neumann boundary conditions at 0, resp. at π:

Dirichlet: sinh kx, sinh k(π − x); (6.6)

Neumann: cosh kx, cosh k(π − x). (6.7)

They have the Wronskians:

W
(

sinh k(π − x), sinh kx
)

= k sinhπk, (6.8)

W
(

cosh k(π − x), sinh kx
)

= k coshπk, (6.9)

W
(

sinh k(π − x), cosh kx
)

= k coshπk, (6.10)

W
(

cosh k(π − x), cosh kx
)

= k sinhπk. (6.11)

By the usual methods, we compute the spectra of operators (6.1)–(6.4), and for k2 outside of the spectra
their Green functions :

σ(LDD) = {n2 | n ∈ N0},

1

LDD + k2
(x, y) =

1

k sinhπk

{
sinh kx sinh k(π − y), if 0 < x < y < π,

sinh ky sinh k(π − x), if 0 < y < x < π;
(6.12)

σ(LND) = {(n+ 1
2 )2 | n ∈ N0},

1

LND + k2
(x, y) =

1

k coshπk

{
cosh kx sinh k(π − y), if 0 < x < y < π,

cosh ky sinh k(π − x), if 0 < y < x < π;
(6.13)

σ(LDN) = {(n+ 1
2 )2 | n ∈ N0},

1

LDN + k2
(x, y) =

1

k coshπk

{
sinh kx cosh k(π − y), if 0 < x < y < π,

sinh ky cosh k(π − x), if 0 < y < x < π;
(6.14)

σ(LNN) = {n2 | n ∈ N},

1

LNN + k2
(x, y) =

1

k sinhπk

{
cosh kx cosh k(π − y), if 0 < x < y < π,

cosh ky cosh k(π − x), if 0 < y < x < π.
(6.15)
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Let us check that (6.12)–(6.15) agree with the more general formula (4.16) involving the hypergeo-
metric function and the Gamma function. We identify k = iµ

2 . By (A.32) and (A.33) we obtain

P s
1
2 ,±

1
2 ,µ

(x) =
sinh kx

k
√
π
, (6.16)

P s
− 1

2 ,±
1
2 ,µ

(x) =
cosh kx√

π
, (6.17)

Finally, we use

Γ (1 + ik) Γ (1− ik) =
kπ

sinh kπ
, (6.18)

Γ

(
1

2
+ ik

)
Γ

(
1

2
− ik

)
=

π

coshπk
, (6.19)

Γ(ik) Γ (−ik) =
π

k sinh kπ
. (6.20)

6.2 Laplacian on the halfline

Consider the Laplacian −∂2
x on the half-line R+. Setting the Dirichlet and Neumann boundary conditions

at 0 we obtain 2 operators on L2(R+), which are special cases of the hyperbolic Gegenbauer Hamiltonian:

LD := Lh
1
2 ,

1
2

= Lh
1
2 ,−

1
2

= Lh
1
2
, (6.21)

LN := Lh
− 1

2 ,
1
2

= Lh
− 1

2 ,−
1
2

= Lh
− 1

2
. (6.22)

Let us compute their resolvents. The following functions solve

(−∂2
x + k2)φ(x) = 0 (6.23)

and satisfy the Dirichlet/Neumann boundary conditions at 0 and decay at +∞:

Dirichlet: sinh kx; (6.24)

Neumann: cosh kx; (6.25)

decaying at +∞: e−kx, Re k > 0. (6.26)

They have the Wronskians:

W
(
e−kx, sinh kx

)
= k, (6.27)

W
(
e−kx, cosh kx

)
= k. (6.28)

Now for Re k > 0,

(LD + k2)−1(x, y) =
1

k

{
sinh kx e−ky, if 0 < x < y,

sinh ky e−kx, if 0 < y < x;
(6.29)

(LN + k2)−1(x, y) =
1

k

{
cosh kx e−ky, if 0 < x < y,

cosh ky e−kx, if 0 < y < x.
(6.30)
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To check that (6.29) and (6.30) agree with (4.36), identify k = µ
2 . By (A.34), (A.35) and (A.36), we

have

P h
1
2 ,±

1
2 ,±µ

(x) =
sinh kx

k
√
π
, (6.31)

P h
− 1

2 ,±
1
2 ,±µ

(x) =
cosh kx√

π
, (6.32)

Qh
± 1

2 ,±
1
2 ,µ

(x) =
22k

Γ(1 + 2k)
e−kx. (6.33)

Finally, use

Γ(k)Γ

(
k +

1

2

)
=

2−2k
√
π

k
Γ(2k + 1), (6.34)

Γ

(
k +

1

2

)
Γ (k + 1) = 2−2k

√
πΓ(2k + 1). (6.35)

6.3 Laplacian on the line

Consider the Laplacian −∂2
x on the line R, denoted L. It is a special case of the deSitterian hypergeometric

Hamiltonian of the first kind:

L := LdS
± 1

2 ,±
1
2

= LdS
± 1

2 ,∓
1
2

= LdS
± 1

2
. (6.36)

It is well known how to compute its resolvent: The following functions solve

(−∂2
x + k2)φ(x) = 0 (6.37)

decaying at +∞: e−kx, Re(k) > 0, (6.38)

decaying at −∞: ekx, Re(k) > 0. (6.39)

They have the Wronskian:

W
(
e−kx, ekx

)
= 2k. (6.40)

Now for Re k > 0,

(L+ k2)−1(x, y) =
1

2k

{
ekxe−ky, if x < y,

ekye−kx, if y < x.
(6.41)

To see that (6.41) agrees with (4.54), we identify k = µ
2 , use

QdS
± 1

2 ,±
1
2 ,µ

(x) = QdS
± 1

2 ,∓
1
2 ,µ

(x) =
22k

Γ(2k + 1)
e−kx, (6.42)

which follows from (A.36), and

Γ(k) Γ

(
k +

1

2

)2

Γ (k + 1) =
2−4kπ

k
Γ(2k + 1)2. (6.43)
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7 Geometric applications

In this section we show major applications of hypergeometric Hamiltonians in geometry. We will obtain
these Hamiltonians as the results of separation of variables of (pseudo-)Laplacians on various (pseudo-
)spheres.

Recall that every (pseudo-)Riemannian manifold is equipped with a certain natural differential op-
erator called the (pseudo-)Laplacian. Suppose we fix coordinates x = x1, . . . , xd, the (pseudo-)metric is
given by the field of symmetric invertible matrices [gij ], so that the the “line element” is

ds2 =
∑

1≤i,j≤d

gijdxidxj . (7.1)

Then the pseudo-Laplacian is given by

∆ =
1√
|det g|

∂xig
ij
√
|det g|∂xj , (7.2)

where [gij ] is the inverse of [gij ]. In the case of the Riemannian signature, ∆ is called the Laplacian (or
the Laplace-Beltrami operator). For the Lorentzian signature the usual name is the d’Alembertian.

(Pseudo-)spheres in a (pseudo-)Euclidean space Rp,q inherit a (pseudo-)Riemannian structure from
the ambient space. If the ambient space is Euclidean, they are called spheres. Otherwise, they are various
kinds of hyperboloids.

Below we describe a few examples of separation of variables for a (pseudo-)Laplacian on a (pseudo-
)sphere in appropriate coordinate systems. We will see that after an appropriate gauging, subtraction
of a constant and restriction to an invariant subspace one obtains various hypergeometric Hamiltonians.
These computations motivate the names “spherical”, “hyperbolic” and “deSitterian” that we use in our
paper for various types of hypergeometric Hamiltonians.

The best known among these Laplacians is ∆s
d, the Laplacian on the d-dimensional sphere Sd. As it

is well-known, it has the spectrum

σ(∆s
d) = {−l(l + d− 1) | l ∈ N0}. (7.3)

(This is, incidentally, a consequence of computations in Subsection 7.1 and the properties of the spherical
Gegenbauer Hamiltonian). Eigenfunctions of ∆s

d with eigenvalue −l(l+d−1) will be called d-dimensional
spherical harmonics of order l.

7.1 Sphere

The unit d-dimensional sphere is defined as

Sd := {X ∈ Rd+1 | X2
0 +X2

1 + · · ·+X2
d = 1}. (7.4)

We will denote elements of Sd−1 by X̂ and the corresponding element of length by dX̂2. We will use the
coordinates (r, X̂) on Sd

X0 = cos r, Xi = sin rX̂i, i = 1, . . . , d, X̂ ∈ Sd−1. (7.5)

One can also use slightly different coordinates (w, X̂) with

cos r = w, sin r =
√

1− w2. (7.6)
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In these coordinates we first write the line element, then the Laplacian:

ds2 = dr2 + sin2 rdX̂2 (7.7)

=
dw2

1− w2
+ (1− w2)dX̂2; (7.8)

∆s
d = ∂2

r + (d− 1) cot r∂r +
∆s
d−1

sin2 r
(7.9)

= (1− w2)∂2
w − dw∂w +

∆s
d−1

1− w2
. (7.10)

Finally, we perform an appropriate gauging:

(sin r)
d−1
2

(
−∆s

d

)
(sin r)−

d−1
2 +

(
d−1

2

)2
= −∂2

r +

(
d−2

2

)2 − 1
4 −∆s

d−1

sin2 r
. (7.11)

Thus the Laplacian on Sd on (d− 1)-dimensional spherical harmonics of order l (7.11) reduces to the
spherical Gegenbauer Hamiltonian Ls

α with α = (d2 − 1 + l).

7.2 Hyperbolic space

The d-dimensional hyperbolic space is defined as

Hd := {X ∈ Rd+1 | −X2
0 +X2

1 + · · ·+X2
d = −1, X0 > 0}. (7.12)

We will use the following cordinates on Hd: (r, X̂), where X̂ ∈ Sd−1:

X0 = cosh r, i = 1, . . . , d, Xi = sinh r X̂i. (7.13)

One can also use slightly different coordinates (w, X̂) with

cosh r = w, sinh r =
√
w2 − 1. (7.14)

In these coordinates we first write the line element, then the Laplacian:

ds2 =dr2 + sinh2 rdX̂2 (7.15)

=
dw2

w2 − 1
+ (w2 − 1)dX̂2; (7.16)

∆h
d = ∂2

r + (d− 1) coth r∂r +
∆s
d−1

sinh2 r
(7.17)

=(w2 − 1)∂2
w + dw∂w +

∆s
d−1

w2 − 1
. (7.18)

Finally, we perform an appropriate gauging:

(sinh r)
d−1
2

(
−∆h

d

)
(sinh r)−

d−1
2 −

(
d−1

2

)2
=− ∂2

r +

(
d−2

2

)2 − 1
4 −∆s

d−1

sinh2 r
. (7.19)

Thus the Laplacian on Hd on d− 1-dimensional spherical harmonics of order l reduces to the hyperbolic
Gegenbauer Hamiltonian Lh

α with α = d
2 − 1 + l.
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7.3 DeSitter space

The deSitter space is defined as

dSd := {X ∈ Rd+1 | −X2
0 +X2

1 + · · ·+X2
d = 1}. (7.20)

We will use the cordinates (t, X̂) on dSd given by

X0 = sinh t, Xi = cosh t X̂i, , i = 1, . . . , d, X̂ ∈ Sd−1. (7.21)

Alternative coordinates are

sinh t = w, cosh t =
√

1 + w2. (7.22)

In these coordinates we first write the line element, then the d’Alembertian:

ds2 = −dt2 + cosh2 tdX̂2 (7.23)

=− dw2

w2 + 1
+ (w2 + 1)dX̂2 (7.24)

2dS
d = −∂2

t + (d− 1) tanh t∂t +
∆s
d−1

cosh2 t
(7.25)

=− (w2 + 1)∂2
w − dw∂w +

∆s
d−1

w2 + 1
. (7.26)

Finally, we perform an appropriate gauging:

(cosh t)
d−1
2 2dS

d (cosh t)−
d−1
2 −

(
d−1

2

)2
=− ∂2

t −
(
d−2

2

)2 − 1
4 −∆s

d−1

cosh2 t
. (7.27)

Thus the d’Alembertian on dSd on d − 1-dimensional spherical harmonics of order l reduces to the
deSitterian Gegenbauer Hamiltonian LdS

α with α = d
2 − 1 + l.

7.4 Sphere in double spherical coordinates

Consider the unit sphere of dimension p+ q − 1 with coordinates partitioned in two groups:

Sp+q−1 := {(X,Y ) ∈ Rp+q | X2
1 + · · ·+X2

p + Y 2
1 + · · ·+ Y 2

q = 1}. (7.28)

We consider also two spheres of dimension p− 1 and q − 1:

Sp−1 ={X ∈ Rp : X2
1 + · · ·+X2

p = 1}, Sq−1 = {Y ∈ Rq : Y 2
1 + · · ·+ Y 2

q = 1} (7.29)

Sp+q−1 is parametrized by (τ, X̂, Ŷ ), with 0 ≤ τ ≤ π
2 , X̂ ∈ Sp−1, Ŷ ∈ Sq−1:

Xi = sin τ X̂i, i = 1, . . . , p; Yj = cos τ Ŷj , i = 1, . . . , q. (7.30)

Alternatively, one can use coordinates (w, X̂) where

sin2 τ = w, cos2 τ = 1− w. (7.31)
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We compute the line element and the Laplacian:

ds2 =
dw2

4w(1− w)
+ wdX̂2 + (1− w)dŶ 2 (7.32)

= dτ2 + sin2 τdX̂2 + cos2 τdŶ 2 (7.33)

∆s
p+q−1 = 4w(1− w)∂2

w + 2
(
p(1− w)− qw

)
∂w +

∆s
p−1

w
+

∆s
q−1

1− w
(7.34)

=∂2
τ +

(
(p− 1) cot τ − (q − 1) tan τ

)
∂τ +

∆s
p−1

sin2 τ
+

∆s
q−1

cos2 τ
. (7.35)

We perform an appropriate gauging:

(sin τ)
p−1
2 (cos τ)

q−1
2

(
−∆s

p+q−1

)
(sin τ)−

p−1
2 (cos τ)−

q−1
2 +

(
p+q−2

2

)2
(7.36)

=− ∂2
τ +

(
p−2

2

)2 − 1
4 −∆s

p−1

sin2 τ
+

(
q−2

2

)2 − 1
4 −∆s

q−1

cos2 τ
. (7.37)

Finally, we make a substitution τ = r
2 :

(7.37) = 4

(
− ∂2

r +

(
p−2

2

)2 − 1
4 −∆s

p−1

4 sin2 r
2

+

(
q−2

2

)2 − 1
4 −∆s

q−1

4 cos2 r
2

)
. (7.38)

Thus on products of a spherical harmonic of order j and l we obtain the spherical hypergeometric
Hamiltonian of the first kind Ls

α,β with

α =
p

2
− 1 + j, β =

q

2
− 1 + l. (7.39)

7.5 Hyperboloid in double spherical coordinates

Consider the hyperboloid of signature p−1, q embedded in the pseudoEuclidean space of signature (p, q):

Hp−1,q := {(X,Y ) ∈ Rp+q | −X2
1 − · · · −X2

p + Y 2
1 + · · ·+ Y 2

q = −1}. (7.40)

Let Sp−1 and Sq−1 be as in (7.29). Hp−1,q is parametrized by (τ, X̂, Ŷ ), with 0 ≤ τ ≤ ∞, X̂ ∈ Sp−1,
Ŷ ∈ Sq−1:

Xi = cosh τ X̂i, i = 1, . . . , p; Yj = sinh τ Ŷj , i = 1, . . . , q. (7.41)

Alternatively, one can use coordinates (w, X̂, Ŷ ) where

cosh2 r = w, sinh2 r = w − 1. (7.42)

The line element and the pseudo-Laplacian in these coordinates:

ds2 =
dw2

4w(w − 1)
− wdX̂2 + (w − 1)dŶ 2 (7.43)

=dτ2 − cosh2 τdX̂2 + sinh2 τdŶ 2 (7.44)

∆p−1,q = 4w(w − 1)∂2
w + 2

(
p(w − 1) + qw

)
∂w −

∆s
p−1

w
+

∆s
q−1

w − 1
(7.45)

=∂2
τ +

(
(p− 1) tanh τ + (q − 1) coth τ

)
∂τ −

∆s
p−1

cosh2 τ
+

∆s
q−1

sinh2 τ
. (7.46)
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We perform an appropriate gauging:

(cosh τ)
p−1
2 (sinh τ)

q−1
2

(
−∆p−1,q

)
(cosh τ)−

p−1
2 (sinh τ)−

q−1
2 −

(
p+q−2

2

)2
(7.47)

=− ∂2
τ −

(
p−2

2

)2 − 1
4 −∆s

p−1

cosh2 τ
+

(
q−2

2

)2 − 1
4 −∆s

q−1

sinh2 τ
. (7.48)

Finally, we substitute τ = r
2 :

(7.48) = 4

(
− ∂2

r −
(
p−2

2

)2 − 1
4 −∆s

p−1

4 cosh2 r
2

+

(
q−2

2

)2 − 1
4 −∆s

q−1

4 sinh2 r
2

)
. (7.49)

Thus on the product of a spherical harmonic of order j and l we obtain the hyperbolic hypergeometric
Hamiltonian of the first kind Lh

α,β with

α =
q

2
− 1 + l, β =

p

2
− 1 + j. (7.50)

7.6 Complex manifolds

All the manifolds that we used so far were real. In the next subsection we will need a complex (analytic)
manifold. They have essentially the same formalism as real manifolds. Let us briefly sketch its elements.
For more details, see [LeB].

Suppose that a complex manifold is equipped with local complex coordinates z = (z1, . . . , zd) and the
holomorphic line element ∑

1≤i,j≤d

gijdzidzj , (7.51)

where gij is a complex symmetric invertible matrix. The corresponding complex Laplacian is defined by
essentially the same formula as in the real case:

∆ =
1√

det g
∂zig

ij
√

det g∂zj . (7.52)

(Note that there is no absolute value).
Suppose that the manifold is equipped with a conjugation, in the coordinates given by zi 7→ zi. We

then also have the anti-holomorphic line element∑
1≤i,j≤d

gijdzidzj . (7.53)

and the corresponding conjugate Laplacian

∆ =
1√

det g
∂zig

ij
√

det g∂zj . (7.54)

As our first example consider the space Cd+1 equipped with the line element

dZ2 = dZ2
0 + dZ2

1 + · · ·+ dZ2
p . (7.55)

The corresponding Laplacian is obviously

∆ = ∂2
Z0

+ · · ·+ ∂2
Zp . (7.56)
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Note that our standard identification of Cd+1 with R2(d+1) will be

Zi =
1√
2

(Xi + iYi) (7.57)

(and not Zi = Xi + iYi. Therefore,

∂Zi =
1√
2

(
∂Xi − i∂Yi

)
, (7.58)

(and not, as usual, ∂Zi = 1
2

(
∂Xi − i∂Yi

)
.) Clearly, with this definition 〈dZi|∂Zj 〉 = δij .

Another example of a complex manifold is the unit sphere [HIU]

SdC := {Z ∈ Cd+1
∣∣Z2

0 + Z2
1 + · · ·+ Z2

d = 1}. (7.59)

Introducing the complex polar coordinanes

R :=
√
Z2

0 + · · ·+ Z2
d , Ẑi :=

Zi
R
, (7.60)

we have the direct analog of the formula from the real case:

dZ2 = dR2 +R2dẐ2, (7.61)

where dẐ2 is the complex line element on SdC. The corresponding complex Laplacian is given by the same
expressions as in the real case:

∆s
d,C =

∑
0≤i<j≤d

(Zi∂Zj − Zj∂Zi)2 (7.62)

= R2∆d+1,C −R2∂2
R − dR∂R. (7.63)

7.7 Hyperboloid Hp−1,p in complex coordinates

Consider the hyperboloid Hp−1,p embedded in R2p, defined as in Subsection 7.5, with the coordinates
Xi, Yi ∈ R, i = 1, . . . , p. We identify R2p with Cp as in (7.57), so that we obtain two representations of
Hp−1,p, a real and a complex one:

Hp−1,p = {(X,Y ) ∈ R2p | − Y 2
1 − · · · − Y 2

p +X2
1 + · · ·+X2

p = −1} (7.64)

= {Z ∈ Cp | Z2
1 + · · ·+ Z2

p + Z
2

1 + · · ·+ Z
2

p = 1} (7.65)

The (real) line element on R2p = Cp can be written as

− dY 2
1 − · · · − dY 2

p + dX2
1 + · · ·+ dX2

p (7.66)

=dZ2
1 + · · ·+ dZ2

p + dZ
2

1 + · · ·+ dZ
2

1 (7.67)

=dR2 +R2dẐ2 + dR
2

+R
2
dẐ

2

(7.68)

Now on Hp−1,p we have R2 + R
2

= 1. Therefore R2 = 1+i sinh r
2 for a unique r ∈ R. Thus we can

parametrize Hp−1,p with r ∈ R, Ẑ ∈ Sp−1
C

Zi =

√
1 + i sinh r

2
Ẑi, (7.69)
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where we take the principal branch of square root. The (real) line element and the pseudo-Laplacian are

ds2 = −1

4
dr2 +

1 + i sinh r

2
dẐ2 +

1− i sinh r

2
dẐ

2

, (7.70)

∆p−1,p = −4∂2
r − 4(p− 1) tanh r∂r +

2

1 + i sinh r
∆s,C
p−1 +

2

1− i sinh r
∆s,C
p−1. (7.71)

We perform an appropriate gauging:(
cosh r)

p−1
2

(
∆p−1,p

)
(cosh r)−

p−1
2 − (p− 1)2 (7.72)

=4

(
− ∂2

r −
(
−∆s,C

p−1 + (p−1
2 )2 − 1

4

)
2(1 + i sinh r)

−
(
−∆s,C

p−1 + (p−1
2 )2 − 1

4

)
2(1− i sinh r)

)
. (7.73)

Thus on joint eigenvectors of ∆s,C
p−1 and ∆s,C

p−1 of degree l, resp. j we obtain the deSitterian hypergeometric

Hamiltonian of the first kind LdS
α,β with

α =
p

2
− 1 + l, β =

p

2
− 1 + j. (7.74)
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A Identities for the hypergeometric function

In this section, we review identities for the hypergeometric and Gegenbauer functions with the emphasis
on the connection formulas and Kummer’s table. There are many reviews available including [WW] and
[NIST1]. Our presentation is close to [D1], [D2].

A.1 Kummer’s table

Recall that the hypergeometric equation is given by the operator F(a, b; c; z, ∂z) defined in (2.1), and the
hypergeometric function with Olver’s normalization F(a, b; c; z) is defined in (2.2). In this section, for
brevity and transparency, we change the notation following [D1] and [D2], writing

Fα,β,µ(z) := F

(
1 + α+ β + µ

2
,

1 + α+ β − µ
2

; 1 + α; z

)
. (A.1)

It is obvious from the definition that we have the following identity

Fα,β,µ(z) = Fα,β,−µ(z). (A.2)

The following 6 functions form a set of standard solutions of the hypergeometric equation. Each of the
solutions can be expressed in 4 ways (actually, 4× 2 ways if we include the trivial identity (A.2)). This
yields 6× 4 = 24 expressions usually called Kummer’s table:

Fα,β,µ(z) = (1− z)
−1−α−β+µ

2 Fα,−µ,−β(
z

z − 1
)

= (1− z)
−1−α−β−µ

2 Fα,µ,β(
z

z − 1
) (A.3)

= (1− z)−βFα,−β,−µ(z).
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(−z)αF−α,β,−µ(z) = (−z)α(1− z)
−1+α−β−µ

2 F−α,µ,−β(
z

z − 1
)

= (−z)α(1− z)
−1+α−β+µ

2 F−α,−µ,β(
z

z − 1
) (A.4)

= (−z)α(1− z)−βF−α,−β,µ(z).

(−z)
−1−α−β+µ

2 F−µ,β,−α(z−1) = (1− z)
−1−α−β+µ

2 F−µ,α,−β

(
1

1− z

)
= (−z)−α(1− z)

−1+α−β−µ
2 F−µ,−α,β

(
1

1− z

)
(A.5)

= (−z)
−1−α−β+µ

2 (1− z)−βFα,−β,−µ
(
z−1
)
.

(−z)
−1−α−β−µ

2 Fµ,β,α(z−1) = (1− z)
−1−α−β−µ

2 Fµ,−α,−β

(
1

1− z

)
= (−z)−α(1− z)

−1+α−β+µ
2 Fµ,α,β

(
1

1− z

)
(A.6)

= (−z)
−1−α−β−µ

2 (1− z)−βF−α,−β,µ
(
z−1
)
.

Fβ,α,µ(1− z) = (−z)
−1−α−β+µ

2 Fβ,−µ,−α(1− 1

z
)

= (−z)
−1−α−β−µ

2 Fβ,µ,α(1− 1

z
) (A.7)

= (−z)−αFβ,−α,−µ(1− z).

(1− z)−βF−β,−µ,−α(1− z) = (−z)
−1−α−β+µ

2 Fβ,−µ,−α(1− 1

z
)

= (−z)
−1−α−β−µ

2 Fβ,µ,α(1− 1

z
) (A.8)

= (−z)−αFβ,−α,−µ(1− z).

A.2 Connection formulas

Here are connection formulas. For z /∈]−∞, 0] ∪ [1,∞[:

Fβ,α,µ(1− z) (A.9)

=
π Fα,β,µ(z)

sin(−πα)Γ
(

1−α+β−µ
2

)
Γ
(

1−α+β+µ
2

) +
π z−α F−α,β,−µ(z)

sin(πα)Γ
(

1+α+β+µ
2

)
Γ
(

1+α+β−µ
2

) ,
(1− z)−βF−β,α,−µ(1− z) (A.10)

=
π Fα,β,µ(z)

sin(−πα)Γ
(

1−α−β−µ
2

)
Γ
(

1−α−β−µ
2

) +
π z−α F−α,β,−µ(z)

sin(πα)Γ
(

1+α−β−µ
2

)
Γ
(

1+α−β+µ
2

) ,
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Fα,β,µ(z) (A.11)

=
π Fβ,α,µ(1− z)

sin(−πβ)Γ
(

1+α−β−µ
2

)
Γ
(

1+α−β+µ
2

) +
π (1− z)−β F−β,α,−µ(1− z)

sin(πβ)Γ
(

1+α+β+µ
2

)
Γ
(

1+α+β−µ
2

) ,
z−αF−α,β,µ(z) (A.12)

=
π Fβ,α,µ(z)

sin(−πβ)Γ
(

1−α−β−µ
2

)
Γ
(

1−α−β+µ
2

) +
π (1− z)−β F−β,α,−µ(1− z)

sin(πβ)Γ
(

1−α+β−µ
2

)
Γ
(

1−α+β+µ
2

) .
For z /∈ [0,∞[:

(−z)
−1−α−β−µ

2 Fµ,β,α
(
z−1
)

(A.13)

=
π Fα,β,µ(z)

sin(−πα)Γ
(

1−α−β+µ
2

)
Γ
(

1−α+β+µ
2

) +
π (−z)−αF−α,β,µ(z)

sin(πα)Γ
(

1+α−β+µ
2

)
Γ
(

1+α+β+µ
2

) ;

(−z)
−1−α−β+µ

2 F−µ,β,α
(
z−1
)

(A.14)

=
π Fα,β,µ(z)

sin(−πα)Γ
(

1−α−β−µ
2

)
Γ
(

1−α+β−µ
2

) +
π (−z)−α F−α,β,µ(z)

sin(πα)Γ
(

1+α−β−µ
2

)
Γ
(

1+α+β−µ
2

) .

Fα,β,µ(z) (A.15)

=
π(−z)

−1−α−β−µ
2 Fµ,β,α(z−1)

sin(−πµ)Γ
(

1+α+β−µ
2

)
Γ
(

1+α−β−µ
2

) +
π(−z)

−1−α−β+µ
2 F−µ,β,α(z−1)

sin(πµ)Γ
(

1+α+β+µ
2

)
Γ
(

1+α−β+µ
2

) ,
(−z)−αF−α,β,µ(z) (A.16)

=
π(−z)

−1−α−β−µ
2 Fµ,β,α(z−1)

sin(−πµ)Γ
(

1−α+β−µ
2

)
Γ
(

1−α−β−µ
2

) +
π(−z)

−1−α−β+µ
2 F−µ,β,α(z−1)

sin(πµ)Γ
(

1−α+β+µ
2

)
Γ
(

1−α−β+µ
2

) .
A.3 Degenerate case

Let µ ∈ Z. Then we have the identity(α+ β − µ+ 1

2

)
µ

(α− β − µ+ 1

2

)
µ
F
(α+ β + µ+ 1

2
,
α− β + µ+ 1

2
; 1 + µ; z

)
(A.17)

=z−µF
(α+ β − µ+ 1

2
,
α− β − µ+ 1

2
; 1− µ; z

)
. (A.18)

A.4 Gegenbauer functions

In the remaining part of this section we review some of the relations for Gegenbauer function, following
mostly [DGR].

Recall that the Gegenbauer equation is defined by the operator Gα,λ(w, ∂w) defined in (2.8), and the
two Gegenbauer functions that we use were defined in (2.10) and (2.11). Let us rewrite their definitions
using the notation introduced in (A.1).

49



The following function satisfies the Gegenbauer equation and has value 1 at 1:

Sα,±λ(w) = Fα,α,λ

(
1− w

2

)
. (A.19)

It can be easily seen from (A.3) that the solution behaving as (w+1
2 )−α at 1 is

S−α,±λ(w) =
(1 + w

2

)−α
F−α,α,2λ

(
1− w

2

)
(A.20)

Solution behaving as w−
1
2−λ−α at +∞ is

Zα,λ(w) = (w ± 1)−
1
2−α−λF2λ,α,α

(
2

1± w

)
(A.21)

It is useful to introduce Olver’s normalization

Sα,λ(w) =
Sα,λ(w)

Γ(1 + α)
, Zα,λ(w) =

Zα,λ(w)

Γ(1 + λ)
. (A.22)

We can read their connection formula from the connection formulas of hypergeometric functions (A.13)
(A.9), for Im(w) < 0:

Zα,λ(w) =

√
π2−α+λ− 1

2

sin(−πα) Γ
(
−α+ λ+ 1

2

)Sα,λ(w) +

√
π2α+λ− 1

2 (w2 − 1)−α•
sinπα Γ

(
α+ λ+ 1

2

) S−α,λ(w), (A.23)

Sα,λ(−w) =
cosπλ

sin(−πα)
Sα,λ(w) +

π (1− w2)−α

sinπα Γ
(

1
2 + α+ λ

)
Γ
(

1
2 + α− λ

)S−α,λ(w). (A.24)

Note that the first connection formula is valid when w /∈]−∞, 1], and the second connection formula is
valid when w /∈]−∞,−1] ∪ [1,∞[. Here we borrow a notation from [DGR] where

(w2 − 1)α• := (w − 1)α(w + 1)α. (A.25)

The functions (w2 − 1)α and (w2 − 1)α• coincide only if Re(w) > 0. In general the function (w2 − 1)α• is
holomorphic on C\]−∞, 1] while (w2 − 1)α is holomorphic on C \ {[−1, 1] ∪ iR}.

A.5 Whipple transformation

Gegenbauer equation has an extra symmetry compared to hypergeoemetric symmetry called Whipple
transformation. On the level of its standard solutions it has the following form:

Zα,λ(w) = (w2 − 1)
− 1

4−
α
2−

λ
2

• Sλ,α

(
w

(w2 − 1)
1
2
•

)
, (A.26)

Sα,λ(w) = (w2 − 1)
− 1

4−
α
2−

λ
2

• Zλ,α

(
w

(w2 − 1)
1
2
•

)
, Re(w) > 0. (A.27)

(A.27) is obtain by inverting (A.26) and using the fact that w 7→ w

(w2−1)
1
2
•

is an involution if and only if

Re(w) > 0.
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A.6 Half integer case

Gegenbauer functions with α = ± 1
2 have simple expressions in terms of elementary functions. To see this

we change variables in Gegenbauer operators. For w ∈]− 1, 1[, we substitute w = cosφ:

G− 1
2 ,λ

(w, ∂w) = ∂2
φ + λ2; (A.28)

G 1
2 ,λ

(w, ∂w) =
1

sinφ

(
∂2
φ + λ2

)
sinφ. (A.29)

For w ∈]1,+∞[, we substitute w = cosh θ:

G− 1
2 ,λ

(w, ∂w) = −∂2
θ + λ2; (A.30)

G 1
2 ,λ

(w, ∂w) =
1

sinh θ

(
− ∂2

θ + λ2
)

sinh θ. (A.31)

(A.28)—(A.31) easily imply the first column of the following identities for Gegenbauer functions. (The
second column simply follows from the definitions of Gegenbauer functions).

cosλφ =S− 1
2 ,λ

(cosφ) = F
(
λ,−λ;

1

2
; sin2 φ

2

)
, (A.32)

sinλφ

λ sinφ
=S 1

2 ,λ
(cosφ) = F

(
1 + λ, 1− λ;

3

2
; sin2 φ

2

)
, (A.33)

coshλθ =S− 1
2 ,λ

(cosh θ) = F
(
λ,−λ;

1

2
; sinh2 θ

2

)
, (A.34)

sinhλθ

λ sinh θ
=S 1

2 ,λ
(cosh θ) = F

(
1 + λ, 1− λ;

3

2
; sinh2 θ

2

)
, (A.35)

2λe−λθ =Z− 1
2 ,λ

(cosh θ) =
(

2 sinh2 θ

2

)−λ
F
(
λ, λ+

1

2
; 1 + 2λ;− 1

sinh2 θ
2

)
, (A.36)

2λe−λθ

sinh θ
=Z 1

2 ,λ
(cosh θ) =

(
2 sinh2 θ

2

)−λ−1

F
(
λ+

1

2
, λ+ 1; 1 + 2λ;− 1

sinh2 θ
2

)
. (A.37)

The above formulas can be found e.g. in equations (4.25)–(4.28) of [DGR] (in a slightly different
form). They are straightforward generalizations of well-known formulas for Chebyshev polynomials. In
fact, for n ∈ N0 the usual Chebyshev polynomials are special cases of Gegenbauer functions with α = ± 1

2 :

Tn(w) = S− 1
2 ,n

(w), Un(w) = (n+ 1)S 1
2 ,n+1(w). (A.38)

B Closed realizations of 1d Schrödinger operators

B.1 Minimal and maximal realization

The theory of self-adjoint realizations of 1d Schrödinger operators with real potentials is well-known
and discussed in various sources [GeZin, GTV]. Somewhat less known is the theory of their closed
realizations, which allows for complex potentials—however it is also a classic subject covered in various
texts [DuSch, EE, DeGe]. We will treat [DeGe] as the basic source for this topic. It is concisely repeated
in Sect. 2 of [DL].

For the convenience of the reader let us summarize some points from [DeGe, DL].
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We consider an interval ]a, b[ and an operator L acting on f ∈ C∞c ]a, b[ given by (1.1), that is

Lf :=
(
− ∂2

x + V (x)
)
f. (B.1)

A closed realization of L is a closed operator L• in the sense of L2]a, b[ that restricted to C∞c ]a, b[ coincides
with L.

There always exists the maximal closed realization, denoted Lmax and the minimal closed realization,
denoted Lmin. Lmax restricted to D(Lmin) coincides with Lmin.

In many cases D(Lmin) = D(Lmax), and then there exists a unique closed realization of L.
Sometimes D(Lmax) is larger than D(Lmin), and then there exist also closed realizations of L, denote

them L• , which satisfy
D(Lmin) ⊂ D(L•) ⊂ D(Lmax) (B.2)

and L• = Lmax
∣∣∣
D(L•)

.

B.2 Resolvent

Let L• be a realization of L with separated boundary conditions. Following [DL, DeGe] we will now
sketch how to find the spectrum of L•, denoted σ(L•), and how to compute the integral kernel of 1

L•−z
for z ∈ C outside of σ(L•).

First let us recall the definition of the Wronskian of two complex functions Φ1,Φ2 on ]a, b[:

W(Φ1,Φ2)(x) := Φ1(x)Φ′2(x)− Φ′1(x)Φ2(x). (B.3)

It is easily checked that if both Φ1 and Φ2 are eigenfunctions of −∂2
x + V (x) with the same eigenvalue,

then W(Φ1,Φ2)(x) does not depend on x, so that we can write W(Φ1,Φ2).
Consider a closed realization of L, denoted L•. Let D(L•) ⊂ L2]a, b[ denote the domain of L•. Suppose

z ∈ C and let Ψa(z, ·),Ψb(z, ·) be functions in AC1]a, b[ solving the eigenvalue equation(
− ∂2

x + V (x)− z
)
Ψa(z, x) = 0, (B.4)(

− ∂2
x + V (x)− z

)
Ψb(z, x) = 0, (B.5)

Ψa(z, ·) is in D(L•) near a and Ψb(z, ·) is in D(L•) near b. Set

W(x) :=W
(
Ψb(z, ·),Ψa(z, ·)

)
. (B.6)

Define the integral kernel

R•(z;x, y) :=
1

W(z)

{
Ψa(z, x)Ψb(z, y) if a < x < y < b,

Ψa(z, y)Ψb(z, x) if a < y < x < b.
(B.7)

Note that (B.7) does not depend on the choice of Ψa(z, ·) and Ψb(z, ·).
Suppose that (B.7) defines a bounded operator R•(z), Then z 6∈ σ(L•) and

1

L• − z
= R•(z). (B.8)

Conversely, if z 6∈ σ(L•), then the functions Ψa,Ψb with the above properties exist and the operator
R•(z) is bounded.
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C Associated Legendre functions vs. Gegenbauer functions

In the literature, many authors use a Legendre function instead of Gegenbauer functions. Here, we briefly
discuss the relations between these functions and Gegenbauer functions. For Legendre function we use
[NIST2] as our reference and [D1] as our reference for Gegenbauer function.

The Legendre differential operator is

Lαµ := (1 + z2)∂2
z − 2z∂z + µ(µ+ 1)− α2

1− z2
. (C.1)

It is equivalent to the Gegenbauer operator, in fact

(1− w2)∓
α
2 Lαµ(1− w2)±

α
2 (C.2)

=(1− w2)∂2
w − 2(±α+ 1)w∂w + (µ∓ α)(µ± α+ 1) = G±α,µ+ 1

2
. (C.3)

Certain distinguished funnctions annihilated by this operator are called associated Legendre functions.
There various choices for these functions, which we quote following [NIST2]:
The associated Legendre function of the first kind is

Pα
µ(z) =

(
z + 1

z − 1

)α
2

F

(
µ+ 1,−µ; 1− α;

1− z
2

)
(C.4)

=
2α

(z2 − 1)
α
•

S−α,µ+ 1
2
(z) (C.5)

The Ferrers function of the first kind is

Pαµ (z) =

(
z + 1

1− z

)α
2

F

(
µ+ 1,−µ; 1− α;

1− z
2

)
(C.6)

=
2α

(1− z2)
α
•

S−α,µ+ 1
2
(z) (C.7)

And the associated Legendre function of the second kind is

Qα
µ(z) = eiπαπ

1
2 Γ(α+ µ+ 1)

(
z2 − 1

)α
2

2µ+1zα+µ+1
F

(
α+ µ

2
+ 1,

α+ µ

2
+

1

2
;

3

2
+ µ; z−2

)
(C.8)

= eiπαπ
1
2 Γ(α+ µ+ 1)

(
z2 − 1

)α
2

2µ+1
Zα,µ+ 1

2
(z) (C.9)

Note that Legendre functions are represented with upper and lower indices. One should not confuse
them with other, quite analogous functions defined in the text, whose parameters are lower indices.

The Legendre functions are closely related to the functions Ps, Ph, and Qh that we introduced in the
section on Gegenbauer Hamiltonians, which you can see on the right of the following comparison:

Pαµ (cos r) =
( 2

sin r

) 1
2Ps
−α,µ+ 1

2
(r), (C.10)

Pα
µ(cosh r) =

( 2

sinh r

) 1
2Ph
−α,µ+ 1

2
(r), (C.11)

Qα
µ(cosh r) =

1

(2 sinh r)
1
2

eiπα
√
πΓ(α+ µ+ 1)Qh

−α,µ+ 1
2
(r). (C.12)
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[DeGa] Dereziński J., Gaß C.: Propagators in curved spacetimes from operator theory, arXiv:2409.03279
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Ann. Phys., 152:203 (1984)

[HIU] Honda K., Ikawa T. AND Udagawa S.: On Complex Spheres, Mem. Fac. Sci. Eng. Shimane Univ.
Series B: Mathematical Science 36 (2003)

[HI] Hull T.E, Infeld L.: The factorization method, Rev. Mod. Phys. 23 2168 (1951)
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