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1 Generalized hypergeometric equations and func-
tions

1.1 Generalized hypergeometric series

Recall that for a ∈ C and n ∈ N we introduce the Pochhammer symbol (a)n :=
a(a+ 1) · · · (a+ n− 1). For a1, . . . , ak ∈ C, c1, . . . , cm ∈ C\{0,−1,−2, . . . }, we
define the (generalized) hypergeometric series of type kFm:

kFm(a1, . . . , ak; c1, . . . , cm; z) :=

∞∑
j=0

(a1)j · · · (ak)jz
j

(c1)j · · · (cm)jj!
. (1.1)

Notice that

1. if m+ 1 > k, then (1.1) is convergent for z ∈ C;

2. if m+ 1 = k, then (1.1) is convergent for |z| < 1;

3. if m + 1 < k, then (1.1) is divergent (however sometimes we can give a
meaning to the function kFm).

This follows by the d’Alembert criterion: if fj is jth coefficient of (1.1), then

fj+1

fj
=

(a1 + j) · · · (ak + j)

(c1 + j) · · · (cm + j)
.

We can also use a different normalization:

kFm(a1, . . . , ak; c1, . . . , cm; z) :=
kFm(a1, . . . , ak; c1, . . . , cm; z)

Γ(c1) · · ·Γ(cm)

=

∞∑
j=0

(a1)j · · · (ak)jz
j

Γ(c1 + j) · · ·Γ(cm + j)j!
. (1.2)
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Then we do not have to restrict the values of c1, . . . , cm ∈ C. (If for some i
ci ∈ {0,−1,−2 . . . }, then F is zero).

1.2 Generalized hypergeometric equations

Theorem 1.1 The function (1.1) solves the equation

(c1 + z∂z) · · · (cm + z∂z)∂zF (a1, . . . , ak; c1, . . . , cm; z) (1.3)

=(a1 + z∂z) · · · (ak + z∂z)F (a1, . . . , ak; c1, . . . , cm; z). (1.4)

Proof. We check that both (1.3) and (1.4) are equal to

a1 · · · akF (a1 + 1, . . . , ak + 1; c1, . . . , cm; z).
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Note that the equation (1.4) is of the order max(k,m+ 1). Below we list all
equations and hypergeometric functions with equations of the order at most 2.

1.3 Hypergeometric function or 2F1

F (a, b; c; z) =
∞∑
n=0

(a)n(b)n
n!(c)n

zn.

The series is convergent for |z| < 1, it extends to a multivalued function on a
covering of C\{0, 1}.

The function is a solution of the hypergeometric equation(
z(1− z)∂2z + (c− (a+ b+ 1)z)∂z − ab

)
u(z) = 0

that is analytic around 0 and equals there 1.

1.4 Confluent function or 1F1

F (a; c; z) =
∞∑
n=0

(a)n
n!(c)n

zn.

The series is convergent for all z ∈ C. It defines a solution analytic around 0
and equal there 1 of the confluent equation

(z∂2z + (c− z)∂z − a)u(z) = 0,

1.5 Function 0F1

F (−; c; z) = F (c; z) =
∞∑
n=0

1
n!(c)n

zn.

The series is convergent for all z ∈ C. It defines a solution analytic around
0 and equal there 1 of the 0F1 equation (related to the Bessel equation)

(z∂2z + c∂z − 1)u(z) = 0.
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1.6 2F0 function

For arg z 6= 0 we define

F (a, b;−; z) := lim
c→∞

F (a, b; c; cz).

It extends to an analytic function on the universal cover of C\{0} with a branch
point of an infinite order at 0. It has the following asymptotic expansion:

F (a, b;−; z) ∼
∞∑
n=0

(a)n(b)n
n!

zn, | arg z − π| < π − ε, ε > 0.

This function has a branch point at zero. Hence it cannot be defined with a
series around zero. It solves the 2F0 equation (related to the confluent equation)(

z2∂2z + (−1 + (a+ b+ 1)z)∂z + ab
)
u(z) = 0.

1.7 Power function 1F0

F (a;−; z) = (1− z)−a =
∞∑
n=0

(a)n
n! z

n

The series is convergent for |z| < 1, it extends to a multivalued function on
a covering of C\{1}. It is a solution of

((1− z)∂z − a)u(z) = 0.

1.8 Exponential function 0F0

F (−;−; z) = ez =
∞∑
n=0

1
n!z

n.

It solves
(∂z − 1)u(z) = 0.

2 2nd order differential equations in complex
domain

In this section we will discuss a general theory of equations of the form(
b(z)∂2z + c(z)∂z + d(z)

)
u(z) = 0. (2.5)

z will be a complex variable. The functions b, c, d will be usually holomorphic
or at least meromorphic in an open set Ω ⊂ C.

Discussing an equation such as (2.5), we will often introduce an operator

A(z, ∂z) := b(z)∂2z + c(z)∂z + d(z). (2.6)
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We will say that (2.5) is given by the operator (2.6). Indeed, u solves (2.5) iff u
is in the kernel of (2.6).

By dividing (2.5) by b(z) we obtain(
∂2z +

c(z)

b(z)
∂z +

d(z)

b(z)

)
u(z) = 0. (2.7)

Thus we can usually assume that b(z) is 1.

2.1 Wronskian

Let u1(z), u2(z) be a pair of functions. Their Wronskian is

W (u1, u2)(z) = W (z) := u1(z)u′2(z)− u′1(z)u2(z).

If they are solutions of (2.5), then the Wronskian satisfies(
∂z +

c(z)

b(z)

)
W (z) = 0.

If
ũ1(z) = a11u1(z) + a12u2(z), ũ2(z) = a21u1(z) + a22u2(z)

is another pair of solutions, then

W (ũ1, ũ2) = (a11a22 − a12a21)W (u1, u2).

2.2 Regular points

Definition 2.1 We say that z0 ∈ Ω is a regular point of the equation (2.6) if
c(z)
b(z) and d(z)

b(z) are analytic around z0.

Proposition 2.2 Let b(z), c(z), d(z) be holomorphic in a connected and simply
connected open subset Ω ⊂ C and z0 is a regular point. Then the problem{ (

b(z)∂2z + c(z)∂z + d(z)
)
u(z) = 0

u(z0) = w0, ∂zu(z0) = w1,
(2.8)

has a unique solution in Ω.

Let us give the formula for the coefficients of the expansion

u(z) :=

∞∑
k=0

ukz
k.

of (2.8):
u0 = w0, u1 = w1,

m∑
k=0

k(k − 1)ukbm−k +
m−1∑
k=0

kcm−k−1uk +
m−2∑
k=0

dm−k−2uk = 0.
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Definition 2.3 Assume that b(z), c(z), d(z) are holomorphic for |z| > R. We
say that ∞ is a regular point of (2.6) if after the change of coordinates w = z−1

we obtain a regular point at 0.

Consider (2.6). The change w = z−1 and division by w4 leads to(
b(w−1)∂2w +

(
2w−1b(w−1)− w−2c(w−1)

)
∂w + w−4d(w−1)

)
u(w−1) = 0.

Hence ∞ is a regular point if there exist (finite) limits

lim
z→∞

(
2z − z2 c(z)

b(z)

)
, lim

z→∞
z4
d(z)

b(z)
.

Theorem 2.4 Let ∞ be a regular point of (2.6). Then for any w0, w1 there
exists a unique solution of the problem{ (

b(z)∂2z + c(z)∂z + d(z)
)
u(z) = 0

lim
z→∞

u(z) = w0, lim
z→∞

(u(z)− w0)z = w1.
(2.9)

2.3 Regular-singular points

Definition 2.5 We say that an equation(
b(z)∂2z + c(z)∂z + d(z)

)
u(z) = 0 (2.10)

has a regular-singular point at z0 ∈ Ω, if c(z)
b(z) has at z0 a pole of at most 1st

order and d(z)
b(z) has at z0 a pole of at most 2nd order.

For simplicity, assume that z0 = 0. We can rewrite the above equation as(
p(z)z2∂2z + q(z)z∂z + r(z)

)
u(z) = 0. (2.11)

If p(0) 6= 0, then 0 is regular-singular iff p, q, r are analytic at 0.

Theorem 2.6 (Frobenius Method) Assume that p(0) 6= 0 and p, q, r are
holomorphic in an open connected simply connected set Ω ⊂ C containing 0.
Let λ ∈ C satisfy

λ(λ− 1)p(0) + λq(0) + r(0) = 0,

(λ+m)(λ+m− 1)p(0) + (λ+m)q(0) + r(0) 6= 0, m = 1, 2, . . . .

Then there exists a unique function ũ(z) holomorphic in Ω, such that u(z) :=
zλũ(z) is a solution of the problem

(
z2p(z)∂2z + q(z)z∂z + r(z)

)
u(z) = 0,

lim
z→0

z−λu(z) = 1,
(2.12)
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We insert

u(z) :=

∞∑
k=0

ukz
λ+k

into the differential equation. The coefficient at zλ+m for m = 0, 1, 2, . . . is

m∑
k=0

(
(λ+ k)(λ+ k − 1)pm−k + (λ+ k)qm−k + rm−k

)
uk. (2.13)

We want u0 = 1. The cofficient at zλ is(
λ(λ− 1)p0 + λq0 + r0

)
u0. (2.14)

Thus, if we are looking for solutions (2.11), we should first find the roots
λ1, λ2 of the so-called indicial equation

λ(λ− 1)p(0) + λq(0) + r(0) = 0.

These roots are called the indices of the regular-singular point z0.
The next terms in the series we find from(

(λ+ k)(λ+ k − 1)p0 + λq0 + r0
)
u0 (2.15)

=

m−1∑
k=0

(
(λ+ k)(λ+ k − 1)pm−k + (λ+ k)qm−k + rm−k

)
uk.

If λ1 − λ2 6∈ Z, then we can find two linearly independent solutions that
behave at zero as zλ1 and zλ2 . If λ1 − λ2 ∈ Z, then generally we can find only
a solution behaving as zλ1 , where λ1 − λ2 ≥ 0.

Definition 2.7 We say that a singular point z0 is nonlogarithmic if all solutions

are linear combinations of functions of the form
∞∑
j=0

(z − z0)λ+jwj.

Clearly, if a singular point is nonlogarithmic, then its indices are integers.

Theorem 2.8 Suppose that m = 0, 1, 2, . . . and the indices of 0 are {0,−m}.

1. If m = 0, then 0 is logarithmic and assuming with v0 = 0, w0 = 1 there
exists a unique pair of solutions of the form

∞∑
k=0

vkz
k + ln z

∞∑
k=0

wkz
k,

∞∑
k=0

wkz
k. (2.16)

2. If 0 is nonlogarithmic, then m > 0. Besides, assuming v−m = 1 and
w0 = 1 there exists a unique pair of solutions of the form

−1∑
k=−m

vkz
k,

∞∑
k=0

wkz
k. (2.17)
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3. If m ≥ 1 and 0 is logarithmic, then assuming with w0 = 1, v−m = 1 and
v0 = 0, there exists a unique pair of solutions of the form

∞∑
k=−m

vkz
k + ln z

∞∑
k=0

wkz
k,

∞∑
k=0

wkz
k. (2.18)

Proof. The existence of the solution
∑∞
k=0 wkz

k is a special case of the generic
Frobenius method. Let us show the existence of the other solution.

We insert the first expression of (2.18) in the differential equation. We obtain

∞∑
n=0

zn ln z

n∑
j=0

(
(n− j)(n− j − 1)pjwn−j + qj(n− j)wn−j + rjwn−j

)

+

∞∑
n=−m

zn

(
n+m∑
j=0

(
(n− j)(n− j − 1)pjvn−j + qj(n− j)vn−j + rjvn−j

)

+

n∑
j=0

(
(2n− 2j − 1)pjwn−j + qjwn−j

))
= 0.

For n = −m, . . . ,−1 we obtain the recurrence relations for vn:

n+m∑
j=0

(
(n− j)(n− j − 1)pjvn−j + qj(n− j)vn−j + rjvn−j = 0, (2.19)

At the 0th level we have

n+m∑
j=1

(
(−j)(−j − 1)pjvn−j +

m∑
j=1

qj(−j)v−j +

m∑
j=1

rjv−j

)
(2.20)

+(−p0 + q0)w0 = 0. (2.21)

The term (2.21) is mp0w0.
If m = 0, then (2.20) is zero and w0 can be arbitrary, e.g. w0 = 1. We first

solve for wj , j = 1, 2, . . . . v0 is arbitrary, we set v0 = 0. Then we solve for
v1, . . . .

Let m ≥ 1. The equation at the level n = −m is trivially zero, hence we can
set v−m = 1. Then we solve for v−m+1, . . . , v−1.

If m ≥ 1 and (2.20) is zero, then there is no logarithmic term, we can set
v0 = 1 and we can solve for v1, . . . , and then rename v0, v1, . . . into w0, w1, . . . .

If m ≥ 1 and (2.20) is nonzero, then first we solve for w0, w1, . . . with w0 = 1.
Moreover, v0 is arbitrary, and can be set 0. Then we determine v1, . . . . 2

Definition 2.9 Assume that p(z), q(z), r(z) are holomorphic for |z| > R. We
say that ∞ is a regular-singular point of (2.6) if after the change of coordinates
w = z−1 we obtain a regular-singular point at 0.
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∞ is a regular singular point of (2.11) if

lim
z→∞

q(z)

p(z)
, lim

z→∞

r(z)

p(z)
(2.22)

exist.

Proposition 2.10 Let p(z), q(z), r(z) be holomorphic in a connected simply
connected open set Ω ⊂ C containing {|z| > R}. Let λ ∈ C satisfy

λ(λ+ 1)p(∞)− λq(∞) + r(∞) = 0,

(λ+m)(λ+m+ 1)p(∞)− (λ+m)q(∞) + r(∞) 6= 0, m = 1, 2, . . . .

Then there exists a unique function ũ(z) holomorphic in Ω, such that u(z) :=
z−λũ(z) is a solution of{ (

p(z)z2∂2z + q(z)z∂z + r(z)
)
u(z) = 0,

lim
z→∞

zλu(z) = 1.
(2.23)

For simplicity, in what follows we assume p(z) = 1.

Proposition 2.11 Let (
∂2z +

q(z)

(z − z0)
∂z +

r(z)

(z − z0)2

)
(2.24)

have indices ρ0, ρ̃0 at z0 and ρ∞, ρ̃∞ at ∞. Then

(z − z0)µ
(
∂2z +

q(z)

(z − z0)
∂z +

r(z)

(z − z0)2

)
(z − z0)−µ (2.25)

has at z0 indices ρ0 + µ, ρ̃0 + µ and at ∞ indices ρ∞ − µ, ρ̃∞ − µ.

Proof. We can assume that z0 = 0. We use zµ∂zz
−µ = ∂z − µ

z . Then (2.25) is(
∂z −

µ

z

)2
+
q(z)

z

(
∂z −

µ

z

)
+
r(z)

z2

= ∂2z − 2
µ

z
∂z +

µ+ µ2

z2
+
q(z)

z
∂z −

q(z)µ

z2
+
r(z)

z2

= ∂2z +
(−2µ+ q(z))

z
∂z +

(
µ+ µ2 − µq(z) + r(z)

)
z2

.

Therefore, the indicial equation at 0 is

λ(λ− 1) + λ(q(0)− 2µ) + µ+ µ2 − q(0)µ+ r(0) (2.26)

= (λ− µ)(λ− µ− 1) + q(0)(λ− µ) + r(0), (2.27)

and the indicial equation at ∞ is

λ(λ+ 1)− λ(q(∞)− 2µ) + µ+ µ2 − q(∞)µ+ r(∞) (2.28)

= (λ+ µ)(λ+ µ+ 1)− q(∞)(λ+ µ) + r(∞). (2.29)

2
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Theorem 2.12 Suppose that we change the variables in the equations, con-
sidering a (holomorphic) map y 7→ z(y). Assume that y0 is mapped at z0 and
∂z
∂y (y0) 6= 0. Then the indices of the transformed equation coincide with the
indices of the original equation.

Proof. We will assume that the equation has the form (2.24) and z0 = y0 = 0.
Let us compute the change of the differentiation operators:

∂z =
1
∂z
∂y

∂y, (2.30)

∂2z = −
∂2z
∂y2(
∂z
∂y

)3 ∂y +
1(
∂z
∂y

)2 ∂2y . (2.31)

Therefore, (
∂2z +

q(z)

z
∂z +

r(z)

z2

)
(2.32)

=
1(
∂z
∂y

)2
(
∂2y +

(q(z(y))∂z(y)∂y

z(y)
−

∂2z(y)
∂y2

∂z(y)
∂y

)
∂y +

(
∂z
∂y

)2
z(y)2

r(z(y))

)
(2.33)

=
1(
∂z
∂y

)2(∂2y +
q̃(y)

y
∂y +

r̃(y)

y2

)
(2.34)

Now it is easy to see that q̃(0) = q(0) and r̃(0) = r(0). 2

2.4 Equations with two regular-singular points on the Rie-
mann sphere

Example 2.13 Every 2nd order equation that in C ∪ {∞} has only regular
points except for two regular-singular points at 0 and ∞ has the form

(z2∂2z + qz∂z + r)u(z) = 0. (2.35)

It is sometimes called the homogeneous Euler equation. Its indicial points
are

0 : λ(λ− 1) + qλ+ r = 0,

∞ : λ(λ+ 1)− qλ+ r = 0.

If ρ, ρ̃ are its indices at 0, then −ρ,−ρ̃ are its indices at ∞. Its solutions are
zρ, zρ̃ if ρ 6= ρ̃ and zρ, zρ log z if ρ = ρ̃. The equation (2.35) can be rewritten
as

(z2∂z + (1− ρ− ρ̃)z∂z + ρρ̃)u(z) = 0.

Example 2.14 Every 2nd order equation that in C ∪ {∞} has only regular
points except for two regular-singular points at z1 and z2 has the form(
∂2z +

(
g1(z−z1)−1 +g2(z−z2)−1

)
∂z+h(z−z1)−2(z−z2)−2

)
u(z) = 0, (2.36)
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where g1 + g2 = 2. Its indicial equations are

z1 : λ(λ− 1) + g1λ+ h(z1 − z2)−2 = 0,

z2 : λ(λ− 1) + g2λ+ h(z1 − z2)−2 = 0.

If ρ, ρ̃ are indices at z1, then −ρ, −ρ̃ are indices at z2. Solutions have the
form (z − z1)ρ(z − z2)−ρ, (z − z1)ρ̃(z − z2)−ρ̃, if ρ 6= ρ̃ and (z − z1)ρ(z − z2)−ρ,
(z − z1)ρ(z − z2)−ρ log(z − z1)(z − z2)−1, if ρ = ρ̃.

Equation (2.36) can be rewritten as(
∂2z +

(
(1− ρ− ρ̃)(z − z1)−1 + (1 + ρ+ ρ̃)(z − z2)−1

)
∂z

+ρρ̃(z1 − z2)2(z − z1)−2(z − z2)−2
)
u(z) = 0.

3 Systems of 1st order equations

3.1 Regular points

This subsection can be skipped.
We will discuss differential equations

∂zv(z) = A(z)v(z). (3.37)

where A(z) is a matrix and v(z) ∈ Cn.

Definition 3.1 If A(z) is analytic at z0, then we say that z0 is a regular point
of (3.37).

Theorem 3.2 Let Ω be a connected simply connected open subset of C. Let

Ω 3 z 7→ A(z) =

 a11(z) . . . a1n(z)
. . .

an1(z) . . . ann(z)



be a holomorphic function with values in n×n matrices and w =

 w1

. . .
wn

 ∈ Cn.

Then there exists a unique holomorphic function Ω 3 z 7→ v(z) =

 v1(z)
. . .
vn(z)

 ∈
Cn that solves the problem {

dv(z)
dz = A(z)v(z),

v(z0) = w.
(3.38)
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Proof. Let us first restrict ourselves to a disk K(z0, r) such that K(z0, r)
cl ⊂ Ω.

We can also assume that z0 = 0.
Let

A(z) =

∞∑
k=0

Akz
k

Then the series

v(z) :=

∞∑
k=0

vkz
k,

where 
v0 = w,

vm+1 := 1
m+1

m∑
k=0

Am−kvk.

is the unique formal series solving (3.38).
Let us show that this series is convergent in K(0, r). By the Cauchy inequal-

ity,
‖Ak‖ ≤ Cr−k.

If we set 
p0 = ‖w‖

pm+1 := 1
m+1

m∑
k=0

Cr−m+kpk,

then we can show inductively that

‖vm‖ ≤ pm. (3.39)

Indeed, we have
‖v0‖ = p0.

Assume that
‖vk‖ ≤ pk, k = 0, . . . ,m.

Then

‖vm+1‖ ≤ 1
m+1

m∑
k=0

‖Am−kvk‖

≤ 1
m+1

m∑
k=0

‖Am−k‖‖vk‖

≤ 1
m+1

m∑
k=0

Crk−mpk = pm+1.

This proves (3.39).
If we subtract the formula

r(m+ 1)pm+1 =
m∑
k=0

Cr−m+k+1pk,

mpm =
m−1∑
k=0

Cr−m+k+1pk,
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then we obtain
r(m+ 1)pm+1 = (Cr +m)pm.

This immediately implies

lim
m→∞

pm+1

pm
= r−1.

Hence, by the d’Alembert criterion

∞∑
k=0

pkz
k

is convergent in the disk K(0, r). Therefore, so is

∞∑
k=0

vkz
k

The above reasoning can be repeated for any disk contained in Ω. In this
way, since Ω is connected, we can extend v(z) to the whole Ω. Ω is simply
connected, and therefore the resulting function will be univalued. 2

Example 3.3
(∂z − 1)v(z) = 0, v(0) = 1.

We set

v(z) =

∞∑
n=0

vnz
n.

We obtain a recurrence relation

nvn = vn−1.

Therefore,

v(z) =

∞∑
n=0

zn

n!
, z ∈ C.

Obviously, v(z) = ez.

Example 3.4 Let µ ∈ C, z 6= −1(
∂z − µ(z + 1)−1

)
v(z) = 0, v(0) = 1.

We set

v(z) =

∞∑
n=0

vnz
n.

We obtain a recurrence relation

nvn = (µ− n+ 1)vn−1.

Therefore,

v(z) =

∞∑
n=0

µ . . . (µ− n+ 1)zn

n!
, |z| < 1.

Obviously, v(z) = (1 + z)µ.
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Proof of Thm 2.4. Define

v(z) :=

[
u(z)
u′(z)

]
, w :=

[
w0

w1

]
and

A(z) :=

[
0 1

−d(z) −c(z).

]
Then (2.8) can be rewritten as{

dv(z)
dz = A(z)v(z),

v(z0) = w.

We can apply Thm 3.2. 2

Definition 3.5 Assume that A(z) is defined for |z| > R. We say that ∞ is a
regular point of (3.37), if after the change of the variable w = z−1 we obtain a
reggular point at 0.

Obviously, ∂z = −w2∂w. Hence, after the change of the variable (3.37)
transforms into

∂wv(w−1) = −w−2A(w−1)v(w−1).

Therefore, ∞ is a regular point iff there exists

lim
z→∞

z2A(z).

Theorem 3.6 Let ∞ be a regular point of (3.40). Then for any w ∈ Cn, there
exists a unique holomorphic solution satisfying

dv(z)
dz = A(z)v(z),

lim
z→∞

v(z) = w.
(3.40)

3.2 Regular-singular points

Definition 3.7 We say that the equation

dv(z)

dz
= A(z)v(z) (3.41)

has a regular-singular point at z0, if A(z) has at z0 a pole of at most 1st order.

We can then rewrite (3.38) as

(z − z0)∂zv(z) = B(z)v(z), (3.42)

where B(z) is holomorphic around z0. The eigenvalues of the matrix B(z0) are
called indices of the singular point z0.

For simplicity, assume that z0 = 0.

13



Theorem 3.8 (Frobenius method for systems of equations) Let Ω be a
connected simply connected open subset of C containing 0. Let

Ω 3 z 7→ B(z) =

 b11(z) . . . b1n(z)
. . .

bn1(z) . . . bnn(z)


be a holomorphic function with values in n× n matrices Let w ∈ Cn and λ ∈ C
satisfy

(B(0)− λ)w = 0,

λ+m is not an eigenvalue of B(0) for m = 1, 2, . . . .
(3.43)

Then there exists a unique function ṽ(z) holomorphic on Ω such that v(z) :=
zλṽ(z) solves the problem  z dv(z)

dz = B(z)v(z),

lim
z→0

z−λv(z) = w.
(3.44)

Proof. Let us first consider a disc K(0, r) such that K(0, r)cl ⊂ Ω.
Let

B(z) =

∞∑
k=0

Bkz
k

Then the series

v(z) := zλ
∞∑
k=0

vkz
k,

where 
v0 = w

vm := (λ+m−B0)−1
m−1∑
k=0

Bm−kvk.

is the unique formal series solving (3.44).
Let us show that this series is convergent in the disk K(0, r). By the Cauchy

inequality,
‖Bk‖ ≤ Cr−k.

If we set 
p0 = ‖w‖

pm :=
∥∥(λ+m−B0)−1

∥∥m−1∑
k=0

Cr−m+kpk,

then we can show by induction that

‖vm‖ ≤ pm.
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If we subtract the formulas

r
∥∥(λ+m+ 1−B0)−1

∥∥−1 pm+1 =
m∑
k=0

Cr−m+kpk,∥∥(λ+m−B0)−1
∥∥−1 pm =

m−1∑
k=0

Cr−m+kpk,

then we obtain

r
∥∥(λ+m+ 1−B0)−1

∥∥−1 pm+1 =
(
C +

∥∥(λ+m−B0)−1
∥∥−1) pm.

It is easy to see that

lim
m→∞

m
∥∥(λ+m−B0)−1

∥∥ = 1.

Hence,

lim
m→∞

pm+1

pm
= r−1.

Thus by the d’Alembert criterion, the series that defines ṽ(z) is convergent in
the disk K(0, r).

Using Them 3.2 we can extend ṽ(z) to the whole Ω. 2

Example 3.9 Let

B =


λ . . .
1 λ . . .

. . .

. . . λ

. . . 1 λ

 .
Consider the equation z∂zv(z) = Bv(z). We obtain

z∂zv1 = λv1,

v1 + z∂zv2 = λv2,

. . .

vn−1 + z∂zvn = λvn.

A basis of solution of this system is

0
. . .
0
zλ

zλ log z
. . .

zλ(log z)m−1


, m = 1, . . . , n.

15



Example 3.10 The following equation has a regular-singular point at 0:

∂zv(z) = (az−1 + b)v(z).

its solution is v(z) = zaebz

Proof of Thm 2.6 Define

v(z) :=

[
u(z)
zu′(z)

]
, w :=

[
1
λ

]
and

B(z) :=

[
0 1
−c(z) 1− b(z)

]
.

We then have

B(z)v(z) =

[
zu′(z)

−c(z)u(z)− b(z)zu′(z) + zu′(z)

]
,

z∂z

[
u(z)
zu′(z)

]
=

[
zu′(z)

z2u′′(z) + zu′(z)

]
,

z−λv(z) =

[
ũ(z)

zũ′(z) + λũ(z)

]
.

Hence (2.12) can be rewritten as z dv(z)
dz = B(z)v(z),

lim
z→0

z−λv(z) = w.

We can apply Thm 3.8. 2

Definition 3.11 Assume that B(z) is defined for |z| > R. We say that ∞ is a
regular-singular point of (3.41), if after the change of the variable w = z−1 we
obtain a regular-singular point at 0.

Thus (3.42) has a regular-singular point if lim
z→∞

B(z) exists.The eigenvalues

of −B(∞) are called indices of ∞.

Theorem 3.12 Let Ω be a connected simply connected subset of C containing
{|z| > R}. Let

Ω 3 z 7→ B(z) =

 a11(z) . . . a1n(z)
. . .

an1(z) . . . ann(z)


be a holomorphic function with values in n×n matrices. Let w ∈ Cn and λ ∈ C
satisfy

(B(∞) + λ)w = 0,

λ+m is not an eigenvalue of −B(∞) for m = 1, 2, . . . .
(3.45)
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Then there exists a unique function ṽ(z) holomorphic on Ω such that v(z) :=
z−λṽ(z) solves  z dv(z)

dz = B(z)v(z),

lim
z→∞

zλv(z) = w.
(3.46)

Example 3.13 Every 1st order equation on the Riemann sphere possessing only
regular points except of regular-singular points at z1, z2 and ∞ has the form

∂zv(z) =
(
a1(z − z1)−1 + a2(z − z2)−1

)
v(z) (3.47)

It has indices

z1 : a1, z2 : a2, ∞ : −a1 − a2,

and a solution (z − z1)a1(z − z2)a2 .

4 Hypergeometric equation

4.1 Riemann equations

Lemma 4.1 Every 2nd order equation which on the Riemann sphere has only
regular points except for 3 points at z1, z2 and ∞ is given by an operator of the
form

∂2z +
( g1
z − z1

+
g2

z − z2

)
∂z

+
h1

(z − z1)2
+

h2
(z − z2)2

+
k

(z − z1)(z − z2)
. (4.48)

Proof. Consider
∂2z + c(z)∂z + d(z) (4.49)

Clearly, if in C the only singular points are at z1, z2, and they are regular-
singular, then

c(z) = creg(z) +
g1

z − z1
+

g2
z − z2

, (4.50)

d(z) = dreg(z) +
h1

(z − z1)2
+

h2
(z − z2)2

+
k1

z − z1
+

k2
z − z2

. (4.51)

where creg, dreg are entire functions. ∞ is a regular-singular point if the following
limits also exist:

lim
z→∞

zc(z), (4.52)

lim
z→∞

z2d(z). (4.53)
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(4.52) implies the existence of limz→∞ zcreg(z). Thus, zcreg(z) is a bounded
entire function. By the Liouville Theorem, zcreg is a constant. But creg is also
an entire function. Hence creg = 0

(4.53) implies the existence of a limit limz→∞ zd(z), which in turn implies
the existence of limz→∞ zdreg(z). By the Liouville Theorem, zdreg is a constant.
But dreg is also an entire function. Hence dreg = 0.

Using again (4.53), knowing that dreg = 0, we obtain k1 + k2 = 0. 2

We can transform (4.48) further, obtaining

∂2z +
( g1

(z − z1)
+

g2
(z − z2)

)
∂z

+
h1(z1 − z2)

(z − z1)2(z − z2)
+

h2(z2 − z1)

(z − z2)2(z − z1)
+

h

(z − z1)(z − z2)
. (4.54)

with h = k − h1 − h2.
Suppose that the indices are

z1 : ρ1, ρ̃1,
z2 : ρ2, ρ̃2,
∞ : ρ3, ρ̃3.

Lemma 4.2 The sum of indices of (4.48) is 1. The Riemann operator expressed
in terms of the indeces is

P

 z1 z2 ∞
ρ1 ρ2 ρ3 z, ∂z
ρ̃1 ρ̃2 ρ̃3


= ∂2z −

(
ρ1 + ρ̃1 − 1

z − z1
+
ρ2 + ρ̃2 − 1

z − z2

)
∂z

+
ρ1ρ̃1(z1 − z2)

(z − z1)2(z − z2)
+

ρ2ρ̃2(z2 − z1)

(z − z2)2(z − z1)
+

ρ3ρ̃3
(z − z1)(z − z2)

(4.55)

Proof. Its indicial equations are

z1 : λ(λ− 1) + g1λ+ h1 = 0,

z2 : λ(λ− 1) + g2λ+ h2 = 0,

∞ : λ(λ+ 1)− (g1 + g2)λ+ h = 0.

By the Vieta equations

−1 + g1 = −ρ1 − ρ̃1,
−1 + g2 = −ρ2 − ρ̃2,

1− g1 − g2 = −ρ∞ − ρ̃∞.

We sum up these equations. 2

It is easy to generalize (4.55) to an arbitrary triplet of points:

18



Theorem 4.3 1. Suppose that we are given a 2nd order differential equa-
tion on the Riemann sphere having 3 singular points z1, z2, z3, all of them
regular singular points with the following indices

z1 : ρ1, ρ̃1,
z2 : ρ2, ρ̃2,
z3 : ρ3, ρ̃3.

Then the following condition is satisfied:

ρ1 + ρ̃1 + ρ2 + ρ̃2 + ρ3 + ρ̃3 = 1. (4.56)

Such an equation, normalized to have coefficient 1 at the 2nd derivative,
is always equal to

P

 z1 z2 z3
ρ1 ρ2 ρ3 z, ∂z
ρ̃1 ρ̃2 ρ̃3

φ(z) = 0, (4.57)

where

P

 z1 z2 z3
ρ1 ρ2 ρ3 z, ∂z
ρ̃1 ρ̃2 ρ̃3

 := ∂2z −
(
ρ1+ρ̃1−1
z−z1 + ρ2+ρ̃2−1

z−z2 + ρ3+ρ̃3−1
z−z3

)
∂z

+ ρ1ρ̃1(z1−z2)(z1−z3)
(z−z1)2(z−z2)(z−z3) + ρ2ρ̃2(z2−z3)(z2−z1)

(z−z2)2(z−z3)(z−z1) + ρ3ρ̃3(z3−z1)(z3−z2)
(z−z3)2(z−z1)(z−z2) .

2. Let z 7→ w(z) = az+b
cz+d . (Transformations of this form are called homogra-

phies or Möbius transformations). We can always assume that ad−bc = 1.
Then

P

 w(z1) w(z2) w(z3)
ρ1 ρ2 ρ3 w, ∂w
ρ̃1 ρ̃2 ρ̃3

 = (cz+d)4P

 z1 z2 z3
ρ1 ρ2 ρ3 z, ∂z
ρ̃1 ρ̃2 ρ̃3

 ,

3.

(z − z1)−λ(z − z2)λP

 z1 z2 z3
ρ1 ρ2 ρ3 z, ∂z
ρ̃1 ρ̃2 ρ̃3

 (z − z1)λ(z − z2)−λ

= P

 z1 z2 z3
ρ1 − λ ρ2 + λ ρ3 z, ∂z
ρ̃1 − λ ρ̃2 + λ ρ̃3

 .

Clearly, in all above formulas one of zi can equal∞, with an obvious meaning
of various expressions.
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4.2 Hypergeometric equation

By Thm 4.3 (2), we can assume that the points z1, z2, z3 are any triplet of
distinct points on the Riemann sphere. We choose them to be 0, 1,∞.

By Thm 4.3 (3), we can assume that ρ1, ρ2 are arbitrary numbers. We choose
them to be both 0. The sum of remaining indices must be 1. Hence, we have 3
parameters left. We set
0, indices: 0, 1− c;
1, indices: 0, c− a− b;
∞, indices: a, b. Thus

P

 0 1 ∞
0 0 a z, ∂z

1− c c− a− b b


= ∂2z −

(1− c− 1

z
+
c− a− b− 1

(z − 1)

)
∂z +

ab

z(z − 1)
. (4.58)

Define

F(a, b; c; z, ∂z) := z(1− z)P

 0 1 ∞
0 0 a z, ∂z

1− c c− a− b b

 (4.59)

= z(1− z)∂2z + (c− (a+ b+ 1)z)∂z − ab. (4.60)

Rewrite the equation

F(a, b; c; z, ∂z)F (z) = 0

in the form (
z2∂2z + (a+ b+ 1)z∂z + ab

)
F (z) = (z∂2z + c∂z)F (z). (4.61)

Substituting F =
∑∞
n=0 Fnz

n into (4.61) we obtain

∞∑
n=0

(n+ a)(n+ b)Fnz
n =

∞∑
n=0

n(n+ c− 1)Fnz
n−1. (4.62)

This leads to the recurrence relation

(n+ a)(n+ b)Fn = Fn+1(n+ 1)(n+ c). (4.63)

For a ∈ C we define

(a)n := a(a+ 1) · · · (a+ n− 1).

The solution analytic at 0 and equal there 1 is the hypergeometric function

F (a, b; c; z) =

∞∑
j=0

(a)j(b)j
(c)j

zj

j!
,
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F (a, b; c; z) is defined for c 6= 0,−1,−2, . . . . Sometimes, it is more convenient
to consider

F(a, b; c; z) :=
F (a, b, c, z)

Γ(c)
=

∞∑
j=0

(a)j(b)j
Γ(c+ j)

zj

j!

defined for all a, b, c.

4.3 Solution ∼ z1−c at 0

We have the identity

zc−1F(a, b; c)z1−c

= F(b+ 1− c, a+ 1− c; 2− c)

Therefore, the solution of (4.60) behaving as z1−c at zero is

z1−cF (b+ 1− c, a+ 1− c; 2− c; z) (4.64)

4.4 Solutions having definite behaviors at 1

w = 1− z is a substitution that exchanges 0 and 1:

F(a, b; c; z, ∂z) :=

= F(a, b; a+ b+ 1− c;w, ∂w).

Therefore, the solution analytic at 1 and having there the value 1 is

F (a, b; a+ b+ 1− c; 1− z).

There is also a solution behaving as (1− z)c−a−b at 1:

(1− z)c−a−bF (−b+ c,−a+ c; 1 + c− a− b; 1− z).

4.5 Solutions having definite behaviors at ∞
∞ is a regular-singular point with indices a, b. w = z−1 is the substitution that
exchanges 0 and ∞

(−z)1+aF(a, b; c; z, ∂z)(−z)−a (4.65)

= F(a, a− c+ 1; a− b+ 1;w, ∂w). (4.66)

Hence, the solution that behaves at ∞ as z−a is

z−aF (a, a− c+ 1; a− b+ 1; z−1).

The second solution is obtained by exchanging a and b:

z−bF (b− c+ 1, b; b− a+ 1; z−1).

21



4.6 Identities

The following substitution does not move 0, and exchanges 1 and ∞: z 7→ w =
z
z−1 . It leads to

−(1− z)1+aF(a, b; c; z, ∂z)(1− z)−a

= F (a, c− b; c;w, ∂w) (4.67)

An analogous identity is obtained if we exchange a and b. This yields

F (a, b; c; z)

= (1− z)c−a−bF (c− a, c− b; c; z)

= (1− z)−aF
(
a, c− b; c; z

z−1

)
= (1− z)−bF

(
c− a, b; c; z

z−1

)
.

4.7 Integral representations

Theorem 4.4 Let the curve [0, 1] 3 τ γ7→ t(τ) satisfy

ta−c+1(1− t)c−b(t− z)−a−1
∣∣∣t(1)
t(0)

= 0.

Then ∫
γ

ta−c(1− t)c−b−1(t− z)−adt (4.68)

solves the hypergeometric equation.

Proof. We check that(
z(1− z)∂2z + (c− (a+ b+ 1)z)∂z − ab

)
ta−c(1− t)c−b−1(t− z)−a

= −a∂tta−c+1(1− t)c−b(t− z)−a−1.

2

This implies the following representation of the hypergeometric function:∫ ∞
1

ta−c(t− 1)c−b−1(t− z)−a (4.69)

=
Γ(b)Γ(c− b)

Γ(c)
F (a, b; c; z), Re(c− b) > 0, Reb > 0. (4.70)

Indeed, notice that (4.69) satisfies the assumptions of Thm 4.4, it is analytic
around zero and at zero equals∫ ∞

1

t−c(t− 1)c−b−1dt =
Γ(b)Γ(c− b)

Γ(c)
.
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Setting z = 1 in (4.69) we obtain∫ ∞
1

ta−c(t− 1)c−a−b−1dt =
Γ(c− a− b)Γ(b)

Γ(c− a)
. (4.71)

Therefore,

F (a, b; c; 1) =
Γ(c− a− b)Γ(c)

Γ(c− a)Γ(c− b)
, Rec > Re(a+ b). (4.72)
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5 Confluent equation

5.1 1F1 equation as a limit of the hypergeometric equation

Let a, c ∈ C. The confluent or the 1F1 equation is given by the operator

F(a; c; z, ∂z) := z∂2z + (c− z)∂z − a. (5.73)

The confluent equation is a limiting case of the hypergeometric equation:

lim
b→∞

1

b
F(a, b; c; z/b, ∂z/b)

= lim
b→∞

1

b

(z
b

(
1− z

b

)
b2∂2z +

(
c− (a+ b+ 1)

z

b

)
b∂z − ab

)
=F(a; c; z, ∂z).

Thus we move the singularity from 1 to b and let it coalesce with the singularity
at ∞. Not surprisingly, the singularity at ∞ becomes irregular.

5.2 Confluent function

0 stays a regular-singular point with indices 0, 1−c. Thus the general Frobenius
theory guarantees that if c 6= 0,−1,−2, . . . , the equation possesses a solution
analytic around 0 and equal 1 at 0. This solution is called Kummer’s confluent
function and is given by the following series, convergent for all z ∈ C:

F (a; c; z) =

∞∑
n=0

(a)n
n!(c)n

zn.

Note that under the above restriction on c this is the unique solution of the
confluent equation analytic at zero and equal there 1.

Sometimes it is better to use the function

F(a; c; z) =
F (a; c; z)

Γ(c)
=

∞∑
n=0

(a)n
n!Γ(c+ n)

zn,

which is always defined, where used the identity

Γ(c+ n) = Γ(c)(c)n.

5.3 Solution ∼ z1−c at 0

By the Frobenius theory the confluent equation possesses another solution that
behave at zero as z1−c times an analytic function equal 1 at 0 (at least, when
c 6= 1, 2, . . . ). Fortunately, this other solution can also be expressed in terms of
the confluent function. Indeed, we have the identity

zc−1F(a; c)z1−c = F(1 + a− c; 2− c).
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Hence

z1−cF (a− c+ 1; 2− c; z) =

∞∑
n=0

(a− c+ 1)n
n!(2− c)n

z1−c+n.

is a solution of the confluent equation.

5.4 First Kummer’s identity

Using e−z∂ze
z = ∂z + 1 we obtain the identity

e−z(z∂2z + (c− z)∂z − a)ez

= z∂2z + (c+ z)∂z + c− a. (5.74)

Substitute z = −w and multiply by −1, obtaining

w∂2w + (c− w)∂w − c+ a.

Thus
e−zF(a; c; z, ∂z)e

z = F(c− a; c;w, ∂w). (5.75)

Hence ezF (c − a; c;−z) is a solution of the confluent equation analytic around
0 and equal 1 at 0. But we know that, at least for c 6= 0,−1,−2, . . . , such a
solution is F (a; c; z). Therefore we obtain the identity

F (a; c; z) = ezF (c− a; c;−z), (5.76)

5.5 Integral representations

If [0, 1] 3 τ 7→ s(τ) ∈ Ω is a curve and f is a function on Ω, we introduce the
notation

f
∣∣∣γ(1)
γ(0)

:= f(γ(1))− f(γ(0)).

Theorem 5.1 Let the curve γ satisfy

ezssa(1− s)c−a
∣∣∣γ(1)
γ(0)

= 0. (5.77)

Then ∫
γ

ezssa−1(1− s)c−a−1ds (5.78)

is a solution of the confluent equation

Proof.(
z∂2z + (c− z)∂z − a

)
ezssa−1(1− s)c−a−1

= zezssa+1(1− s)c−a−1 + (c− z)ezssa(1− s)c−a−1 − aezssa−1(1− s)c−a−1

= −zezssa(1− s)c−a − aezssa−1(1− s)c−a + (c− a)ezssa(1− s)c−a−1

= −∂sezssa(1− s)c−a.
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We apply
∫
γ

ds to both sides of the above equation. We obtain(
z∂2z + (c− z)∂z − a

) ∫
γ

ezssa−1(1− s)c−a−1ds

=−
∫
γ

∂se
zssa(1− s)c−ads

=ezssa(1− s)c−a
∣∣∣γ(1)
γ(0)

,

which by assumption vanishes. 2

We would like to find a curve that satisfies the assumptions of the above
theorem. One way to find such a curve is to “pin” it at points where the
function contained in (5.77) vanishes.

Now for Rea > 0 this function vanishes at t = 0, and for Re(c − a) > 0 it
vanishes at t = 1. Therefore, for Rea > 0, Re(c− a) > 0,∫ 1

0

ezssa−1(1− s)c−a−1ds = Γ(a)Γ(c− a)F(a; c; z). (5.79)

Indeed, as we explained above, the assumptions of Theorem 5.1 are satisfied,
hence (5.79) is a solution of the confluent equation. It is clearly analytic around
0. We check that at zero it equals∫ 1

0

sa−1(1− s)c−a−1ds =
Γ(a)Γ(c− a)

Γ(c)
.

Hence (5.79) is true, at least for c 6= 0,−1,−2, . . . . But by continuity of both
sides, the identity is true also in these exceptional points. 2

5.6 Laguerre polynomials

For n = −a ∈ {0, 1, 2, . . . }, we have (a)n+1 = (a)n+2 = · · · 0. Therefore,
F (−n; c; z) is an nth degree polynomial. These are the so-called Laguerre poly-
nomials, defined according to the standard convention as

Lαn(z) :=
(1 + α)n

n!
F (−n; 1 + α; z) =

(1 + α)n
n!

n∑
j=0

(−n)jz
j

(1 + α)jj!

=

n∑
j=0

(α+ j + 1)n−j(−z)j

j!(n− j)!
.

They can be represented as an integral with γ encircling 0:

Lαn(z) =
(−1)n

2πi

∫
[0+]

etzt−n−1(1− t)α+ndt. (5.80)

Indeed, clearly the contour satisfies the assumptions of Theorem 5.1 (because it
is closed). Hence it is a solution of the confluent equation. It is clear that it is

analytic at zero. We check that at zero it yields (1+α)n
n! .
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5.7 The 2F0 equation

Parallel to the 1F1 equation we will consider the 2F0 equation, given by the
operator

F(a, b;−; z, ∂z) := z2∂2z + (−1 + (1 + a+ b)z)∂z + ab, (5.81)

where a, b ∈ C. This equation is another limiting case of the hypergeometric
equation:

lim
c→∞

F(a, b; c; cz, ∂(cz)) = cz(1− cz) 1

c2
∂2z + (c− (a+ b+ 1)cz)

1

c
∂z − ab

= −F(a, b;−; z, ∂z). (5.82)

Thus the singularity at 1 is moved to 1
c → 0, so that it coalesces with 0 and

forms an irregular singularity.

5.8 Point ∞ for the confluent equation

We have

za+1(z∂2z + (c− z)∂z − a)z−a

= z2∂2z + z(−2a+ c− z)∂z + a(1 + a− c). (5.83)

= z2∂2z + z(1− a− b− z)∂z + ab, (5.84)

where we set b := 1+a−c. Substituting w = −z−1 (with the inverse z = −w−1),
using ∂z = w2∂w, we obtain that (5.84) is

w2∂2w + (−1 + (1 + a+ b)w)∂w + ab.

We thus obtained the 2F0 equation.
If

(w2∂2w + (−1 + (1 + a+ b)w)∂w + ab)g(w) = 0,

then
(z∂2z + (c− z)∂z − a)z−ag(−z−1) = 0. (5.85)

Conversely, if
(z∂2z + (c− z)∂z − a)f(z) = 0,

then
(w2∂2w + (−1 + (1 + a+ b)w)∂w + ab)w−af(−w−1) = 0.

5.9 Asymptotic series

Let function f be defined on K(z0, r) ∩ {α1 < arg(z − z0) < α2}. We write

f(z) ∼
∞∑
j=0

aj(z − z0)j ,
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if for any n there exists Cn such that∣∣∣f(z)−
n∑
j=0

aj(z − z0)j
∣∣∣ ≤ Cn|z − z0|n+1.

Clearly, if f(z) =
∞∑
j=0

aj(z−z0)j for z ∈ K(z0, r), then f(z) ∼
∞∑
j=0

aj(z−z0)j .

Example. For −π2 + ε < arg z < π
2 − ε

e−
1
z ∼

∞∑
j=0

0zj .

Example. For −π4 + ε < arg(z) < π
4 − ε and −π4 + ε < arg(−z) < π

4 − ε

e−
1
z2 ∼

∞∑
j=0

0zj .

Indeed,

∂nz e−
1
z2 = e−

1
z2 Pn

(
1

z

)
, (5.86)

where Pn is a polynomial. Moreover,
∣∣e− 1

z2
∣∣ = e−Re( 1

z2
). We have Re( 1

z2 ) > 0
for −π4 + ε < arg(z) < π

4 and −π4 + ε < arg(−z) < π
4 , therefore in these

sectors we have a rapid convergence to zero of (5.86). (In the other two sectors

it explodes). Therefore e−
1
z2 has zero directional derivatives in theses sectors.

Hence its asymptotic series is zero by the Taylor formula.
Example: Error Function.

Erf(z) :=

∫ z

0

e−t
2

dt.

Clearly, lim
Rez→∞

Erf(z) = 1
2

√
π. We integrate by parts:

1

2

√
π − Erf(z) =

∫ ∞
z

e−t
2

dt =
e−z

2

2z
+

∫ ∞
z

e−t
2 dt

2t2
=

e−z
2

2z
+ e−z

2

O

(
1

z2

)
.

Repeating integration by parts we obtain for −π2 + ε < arg z < π
2 − ε

ez
2
(1

2

√
π − Erf(z)

)
∼ 1

2z

∞∑
k=1

(−1)k
1 · 3 · · · (2k − 1)

(2z2)k

)
.

5.10 2F0 function

We try to solve (5.85) with a power series

g(w) =

∞∑
n=0

gnw
n.
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We obtain

∞∑
n=0

(
n(n− 1)gnw

n − ngnwn−1 + (1 + a+ b)ngnw
n + abgnw

n
)

= 0

Hence
(n− 1 + a)(n− 1 + b)gn−1 = ngn.

This gives the coefficients

gn =
(a)n(b)n

n!
g0

and leads to a divergent series.

Theorem 5.2 Let a contour γ satisfy

e−tta(1− wt)1−b
∣∣∣γ(1)
γ(0)

= 0 (5.87)

Then ∫
γ

e−tta−1(1− wt)−bdt

is a solution of (5.85).

Proof. By Thm 5.1 ∫
γ

ezssa−1(1− s)c−a−1ds

is a solution of the confluent equation. Therefore,

w−a
∫
γ

e−sw
−1

sa−1(1− s)c−a−1ds,

for b = 1 + a− c is a solution of (5.85). Next we substitute t = s
w . 2

For w ∈ C\[0,∞[, Rea > 0 we define

F (a, b;−;w) :=
1

Γ(a)

∫ ∞
0

e−tta−1(1− wt)−bdt. (5.88)

For other values of a we extend (5.88) by analytic continuation. Note that the
integrand does not have a singularity for t ∈]0,∞[ (because we assumed that
w 6∈ [0,∞[. We obtain an analytic function on C\[0,∞[. It is easy to see that
0 is a branch point of this function–thus the natural domain of this function is
the same as for the logarithm.

Proposition 5.3 We have the following asymptotic expansion:

F (a, b;−;w) ∼
∞∑
n=0

(a)n(b)n
n!

wn.
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More precisely, for any n, for | argw| ≥ ε > 0, |w| < 1∣∣∣∣∣∣w−n−1
(
F (a, b;−;w)−

n∑
j=0

(a)j(b)j
j!

wj
)∣∣∣∣∣∣ = 0.

Proof. It is easy to see that, at least for Re(a) > 0 the function F (a, b;−;w)
is continuous at w = 0 within the sector | argw| ≥ ε > 0.

To prove this, we use Taylor’s formula with a remainder

f(z) =

n−1∑
j=0

f (j)(0)zj

j!
+ zn

∫ 1

0

f (n)(sz)n(1− s)n−1

n!
ds,

which implies

(1− z)−b =

n−1∑
j=0

(b)jz
j

j!
+

(b)nz
n

n!

∫ 1

0

n(1− s)n−1(1− zs)−b−nds.

Hence

F (a, b;−;w)

=
1

Γ(a)

∫ ∞
0

e−tta−1(1− wt)−bdt

=

n−1∑
j=0

1

Γ(a)

∫ ∞
0

e−tta−1
(b)jw

jtj

j!
dt

+
1

Γ(a)

∫ ∞
0

e−tta−1
(b)nw

ntn

n!

∫ 1

0

(1− wts)−b−nn(1− s)n−1ds

=

n−1∑
j=0

(b)jΓ(a+ j)wj

Γ(a)j!

+
wn(b)n
Γ(a)n!

∫ 1

0

n(1− s)n−1ds

∫ ∞
0

e−tta−1+n(1− wts)−b−ndt

=
n−1∑
j=0

(b)j(a)jw
j

j!

+
wn(b)n(a)n

n!

∫ 1

0

n(1− s)n−1dsF (a+ n, b+ n;−;ws).

Now, for large n, Re(a + n) > 0. We know that F (a + n, b + n;−;ws) is then
bounded. Hence the remainder is of the order O(wn). 2

5.11 Solutions of the confluent equation with definite be-
havior at ∞

Consider the analytic function on the upper halfplane given by

s 7→ ezssa−1(1− s)c−a−1,
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where we use the principal branch of power functions. Assume that Rea > 0,
Re(c− a) > 0. Remember that

G(z) =

∫ 1

0

ezssa−1(1− s)c−a−1ds =
Γ(a)Γ(c− a)

Γ(c)
F (a; c; z)

is one of solutions of the confluent equation. If Imz > 0, then we can write the
following solutions

G0(z) =

∫ −e−iφ∞

0

ezssa−1(1− s)c−a−1ds,

G1(z) =

∫ −e−iφ∞

1

ezssa−1(1− s)c−a−1ds,

where |φ− arg z| < π
2 guarantees that ezs along the halfline where we integrate

converges fast to zero (thus the appropriate condition is fulfilled). Notice that

G(z) +G1(z)−G0(z) = 0. (5.89)

Substituting s = −z−1t, where t ∈ [0,∞[, for Rea > 0 we obtain

G0(z) =

∫ ∞
0

e−t(−tz−1)a−1(1 + z−1t)c−a−1(−z−1)dt

= (−z)−aΓ(a)F (a, a+ 1− c;−,−z−1).

Substituting s = 1− z−1t, where t ∈ [0,∞[, for Re(c− a) > 0 we can write

G1(z) = −ez
∫ ∞
0

e−t(1− z−1t)a−1z−c+atc−a−1dt

= −ezz−c+aΓ(c− a)F (c− a, 1− a;−, z−1).

By (5.89), we obtain

F (a; c; z)

Γ(c)
= (−z)−aF (a, a+ 1− c;−;−z−1)

Γ(c− a)
+ z−c+a

ezF (c− a, 1− a;−; z−1)

Γ(a)

5.12 Hydrogen atom

We transform the confluent operator

e−z/2
(
z∂2z + (c− z)∂z − a

)
ez/2 (5.90)

= z∂2z + c∂z +
c

2
− a− z

4
; (5.91)

Next,

z−(1−c)/2
(
z∂2z + c∂z +

c

2
− a− z

4

)
z(1−c)/2 (5.92)

= z∂2z + ∂z −
z

4
+
c

2
− a− (1− c)2

4z
. (5.93)
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We divide (5.91) by z and substitute z = 2w. We obtain

∂2w +
1

w
∂w − 1 + (c− 2a)

1

w
−
(

1− c
2

)2
1

w2
, (5.94)

We will see that this is the equation for the radial wave function for the Coulomb
potential in dimension 2. (It is easy to transform into an analogous equation in
higher dimensions).

The stationary Schrödinger equation with the Coulomb potential is(
−∆− β

r
− E

)
Φ = 0. (5.95)

In the polar coordinates it reads(
−∂2r −

1

r
∂r −

1

r2
∂2φ −

β

r
− E

)
Φ = 0. (5.96)

We make an ansatz
Φ(r, φ) = f(r)g(φ). (5.97)

We obtain

r2
(
∂2r + 1

r∂r + β
r + E

)
f(r)

f(r)
=
∂2φg(φ)

g(φ)
= A, (5.98)

where A does not depend on r or φ.
Now

∂2φg(φ)

g(φ)
= A (5.99)

is solved by

g(φ) = B+ei
√
Aφ +B−e−i

√
Aφ. (5.100)

To guarantee the continuity of g we need to assume that m :=
√
A ∈ Z We are

left with the radial equation(
∂2r +

1

r
∂r +

β

r
− m2

r2
+ E

)
f(r) = 0. (5.101)

Let us assume that E = −k2 < 0. We change the variable r = w
k . (5.101)

transforms into (
∂2w +

1

w
∂w +

β

kr
− m2

r2
− 1

)
f(r) = 0. (5.102)

Compared with (5.94) we obtain

c− 2a =
β

k
,

c− 1

2
= m,
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or

c = 1 + 2m, a =
1

2
+m− β

2k
. (5.103)

Therefore, if f satisfies the confluent equation with these parameters, then
e−ww(−1+c)/2f(2w) = e−wwmf(2w) satisfies (5.94). If we want the function
to be square integrable at zero, we need m > −1, hence m = 0, 1, 2, . . . . If we
want the function to be square integrable at infinity, we need to assume that
f is a Laguerre polynomial. This means −a = n is a nonegative integer. This
yields the spectrum of the (2-dimensional) “Hydrogen”:

E = −k2 = − β2

4( 1
2 +m+ n)2

, m = 0, 1, 2, . . . , , n = 0, 1, 2, . . . . (5.104)

6 Poisson summation formula and Jacobi’s theta
function

6.1 Alternative convention for Fourier transformation

In the literature one can find (at least) two conventions for Fourier transfor-
mations. In the following table we compare two conventions. The first is more
common. In this section we adopt the second, which has many advantages.

Standard convention Convention with 2π in exponent

direct transform f̂(ξ) :=
∫
f(x)e−ixξdx, f̂(ξ) :=

∫
f(x)e−i2πxξdx;

inverse transform f(x) := 1
2π

∫
f̂(x)eixξdξ, f(x) :=

∫
f̂(ξ)ei2πxξdξ;

periodic functions period 2π period 1;

f̂k =
∫ π
−π f(x)e−ixkdx, f̂k =

∫ 1
2

− 1
2

f(x)e−i2πxkdx;

f(x) = 1
2π

∑
k

f̂keikx f(x) =
∑
k

f̂kei2πkx;

Gaussian f(x) = e−x
2

f(x) = e−πx
2

;

f̂(ξ) = e−
1
4 ξ

2

f̂(ξ) = e−πξ
2

.

6.2 Poisson summation formula

In the following theorem we adopt the convention with 2π in the exponent.

Theorem 6.1 Let f, f̂ ∈ L1, so that they are continuous functions. Assume
also that

∑
j |f̂(j)| <∞ and

∑
j |f(j)| <∞. Then

∞∑
k=−∞

f(k) =

∞∑
j=−∞

f̂(j). (6.105)
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Proof. Let j ∈ Z.∫ n+ 1
2

−n− 1
2

f(x)e−i2πxjdx =

n∑
k=−n

∫ 1
2

− 1
2

f(x+ k)e−2πijxdx. (6.106)

Define

g(x) := lim
n→∞

n∑
k=−n

f(x+ k). (6.107)

g is a periodic function with period 1. Using that f ∈ L1(R) and the dominated
convergence theorem we show that g ∈ L1[− 1

2 ,
1
2 ]. Letting n→∞ in (6.106) we

obtain

f̂(j) =

∫ 1
2

− 1
2

g(x)e−2πijxdx. (6.108)

Since
∞∑

j=−∞
|f̂(j)| <∞, we can apply the inversion of the Fourier transformation

for periodic functions, which yields

g(x) =

∞∑
j=−∞

f̂(j)e2πijx. (6.109)

Setting x = 0 and using
∞∑

k=−∞
|f(k)| < ∞, we see that g(0) =

∞∑
k=−∞

f(k). (A

priori, the limit in (6.107) was valid only for almost all x.) Therefore,

∞∑
k=−∞

f(k) =

∞∑
j=−∞

f̂(j). (6.110)

2

Note that under slightly weaker assumptions we can prove a slightly weaker
asymmetric statement, by essentially the same proof:

Theorem 6.2 If f ∈ L1 and
∞∑

j=−∞
|f̂(j)| <∞, then for almost all x,

∞∑
k=−∞

f(x+ k) =

∞∑
j=−∞

f̂(j)e2πijx. (6.111)

Let us rewrite the Poisson summation formula with the standard Fourier
transformation:

∞∑
n=−∞

f(x− Ln) =

∞∑
j=−∞

f̂
(2π

L
j
)
. (6.112)

One can interpret it as follows: if we want to approximate a function which
decays sufficiently fast at ∞ by a function periodic of period L, then we have
two ways to do it: either we do it in the position space, or we first take the
Fourier transform, restrict it to the reciprocal lattice which has the period 2π

L ,
and then take the inverse Fourier sum. Both methods yield the same answer.
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6.3 Heat equation on the line

Consider the heat equation on the line with the initial condition given by the
deltafunction at the origin:

∂tg(x, t) = ν∂2xg(x, t), (6.113)

lim
t↘0

g(x, t) = δ(x), (6.114)

To solve it we use the Fourier transformation in x:

∂tĝ(x, t) :=
1

2π

∫
eixkĝ(x, t),

∂tĝ(k, t) = −νk2ĝ(k, t),

lim
t↘0

ĝ(k, t) = 1.

This is solved by ĝ(k, t) = e−νtk
2

. Hence

g(x, t) =
1

2π

∫
e−νtk

2+ikxdx

=
1

2π

∫
e−νt(k+i ix

2νt )
2− x2

4νt dx =
1

2
√
πνt

e−
x2

4νt . (6.115)

Secifying ν = 1
4π we obtain

g(x, t) = t−
1
2 exp

(
− πx2

t

)
.

6.4 Heat equation on the circle

Consider the heat equation for t > 0 on the circle of perimeter 1, identified with
R/Z. We choose the initial condition to be the deltafunction at 0. We can write
it on the line as the solution with the initial condition given by the Dirac comb:

∂tf(x, t) =
1

4π
∂2xf(x, t), (6.116)

lim
t↘0

f(x, t) =

∞∑
m=−∞

δ(x−m), (6.117)

One can solve it in the position representation by periodizing the solution for
the line

f(x, t) = t−
1
2

∞∑
m=−∞

exp
(
− π(x−m)2

t

)
. (6.118)

By the Poisson summation formula we have

f(x, t) =

∞∑
n=−∞

exp(−πn2t+ 2πinx), (6.119)

This is precisely the expression that we would obtain if we applied the Fourier
approach to the heat equation on the circle.
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6.5 Jacobi’s theta function

One of the most famous special functions is Jacobi’s theta function. There are
several conventions for its arguments. Here are two of them:

q = exp(πiτ), η = exp(2πiz).

θ(z, τ) =

∞∑
n=−∞

qn
2

ηn, |q| < 1; (6.120)

=

∞∑
n=−∞

exp(πin2τ + 2πinz), Imτ > 0; (6.121)

Here are the basic identities in the z, τ notation:

θ(z + 1, τ) = θ(z, τ), (6.122)

θ(z + τ, τ) = exp(−πiτ − 2iz)θ(z, τ), (6.123)

θ(z + a+ bτ) = exp(−πib2z − 2πibz)θ(z, τ), (6.124)

θ
( z
τ
,
−1

τ

)
= (−iτ)

1
2 exp

(π
τ

iz2
)
θ(z, τ). (6.125)

Let us repeat the formulas (6.122)–(6.125) in the convention

z = x, τ = it :

θ(x, it) =

∞∑
n=−∞

exp(−πn2t+ 2πinx), Ret > 0; (6.126)

θ(x+ 1, it) = θ(x, it), (6.127)

θ(x+ it, it) = exp(πt− 2ix)θ(x, it), (6.128)

θ
(−ix

t
,

i

t

)
= t

1
2 exp

(π
t
x2
)
θ(x, it). (6.129)

By the Poisson summation formula (6.126) can be rewritten as

θ(x, it) =

∞∑
n=−∞

t−
1
2 exp

(
− π(x− n)2

t

)
. (6.130)

(6.129) follows from the comparison of (6.126) and (6.130).
Note that

f(x, t) = θ(x, it)

is precisely the solution of the heat equation on the circle we considered above.
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7 Dzeta function

7.1 Riemann’s dzeta function and prime numbers

For Res > 1 Riemann’s dzeta function is defined as

ζ(s) :=

∞∑
n=1

1

ns
. (7.131)

Every positive integer has a unique representation n = 2αm, where m is
odd. Therefore,

∞∑
n=1

1

ns
=

∑
m is odd

1

ms

∞∑
α=0

1

2sα
=

1

(1− 1
2s )

∑
m is odd

1

ms
. (7.132)

Hence

ζ(s)(1− 2−s) =
∑

m is odd

1

ms
. (7.133)

Likewise, if p1 = 2, p2 = 3, p3 = 5, . . . are the prime numbers in the
increasing order, then

ζ(s)(1− p−s1 ) · · · (1− p−sk ) =
∑

m not divisible
by p1, . . . , pk

1

ms
, (7.134)

Proposition 7.1 We have

∞∏
j=1

(1− p−sj ) =
1

ζ(s)
. (7.135)

Moreover, ζ(s) 6= 0 for Res > 1.

Proof. First note that the lhs of (7.135) is an absolutely convergent product,
because

p−sj ≤ j
−s,

and
∑
j−s <∞. By continuing (7.1) we obtain

lim
n→∞

ζ(s)

n∏
j=1

(1− p−sj ) = 1, (7.136)

which implies (7.135).
All the factors of (7.135) are nonzero. Hence (7.135) is nonzero. 2
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7.2 Holomorphic extension of the dzeta function
and Riemann’s reflection formula–1st proof

Define

η(s) := π−
s
2 Γ
(
s
2

)
ζ(s), (7.137)

ξ(s) :=
1

2
s(s− 1)η(s) =

1

2
s(s− 1)π−

s
2 Γ
(
s
2

)
ζ(s). (7.138)

The main aim of this subsection is a proof of the following theorem:

Theorem 7.2 1. The function ζ extends holomorphically to C\{1} and sat-
isfies

ζ(s) = 2sπs−1Γ(1− s) sin(π2 s)ζ(1− s). (7.139)

2. The function η extends to holomorphically to C\{0, 1} and satisfies

η(s) = η(1− s). (7.140)

3. ξ extends to an entire function on C satisfying

ξ(s) = ξ(1− s), ξ(0) = ξ(1) =
1

2
. (7.141)

We will present two proofs of this theorem.
In this subsection we describe the first one. It proves directly (2), from which

(1) and (3) immediately follow. It uses the following auxiliary function:

φ(x) :=

∞∑
n=1

e−n
2πx. (7.142)

Note that

1 + 2φ(x) =

∞∑
n=−∞

e−n
2πx = θ(0, it). (7.143)

By the Poisson summation formula

1 + 2φ(x) = θ(0, ix) =
1√
x
θ
(

0,
i

x

)
=

1√
x

(
1 + 2φ

( 1

x

))
(7.144)

Theorem 7.3 We have the identities

η(s) =

∫ ∞
0

dx

x
φ(x)x

s
2 (7.145)

=

∫ ∞
1

dx

x
φ(x)

(
x
s
2 + x

1−s
2

)
− 1

s(1− s)
(7.146)

The first is valid for Res > 1, the second for all s. In particular, by (7.146), η
extends analytically to C\{0, 1} and (7.140) holds.
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Proof. For any Res > 0 we have

1

ns
π−

s
2 Γ
(s

2

)
=

∫ ∞
0

dx

x
e−n

2πxx
s
2 . (7.147)

For Res > 1 we can sum up (7.147) obtaining (7.145). Now,∫ ∞
0

dx

x
φ(x)x

s
2 =

∫ ∞
1

dx

x
φ(x)x

s
2 +

∫ ∞
1

dx

x
φ
( 1

x

)
x−

s
2

=

∫ ∞
1

dx

x
φ(x)

(
x
s
2 + x

1−s
2

)
+

1

2

∫ ∞
1

dx

x

(
x

1−s
2 − x− s2

)
But

1

2

∫ ∞
1

dx

x

(
x

1−s
2 − x− s2

)
=

1

s− 1
− 1

s
= − 1

s(1− s)
. (7.148)

This implies (7.146) for Res > 1. But (7.146) is analytic except for 0, 1. Hence
the formula can be extended.

(7.140) follows from (7.146). 2

Proof of Theorem 7.2. (2), and hence (3) follow directly from Theorem 7.3.

Applying Γ(s) = π−
1
2 2s−1Γ( s2 )Γ( s2 + 1

2 ) and Γ( s2 + 1
2 )Γ(− s2 + 1

2 ) = π
cos(π2 s)

we see that (7.164) is equivalent to

Γ
(s

2

)
ζ(s) = πs−

1
2 Γ
(
− s

2
+

1

2

)
ζ(1− s). (7.149)

This proves (1). 2

Theorem 7.4 For 0 < Res < 1.

η(s) =

∫ ∞
1

dx

x

(
φ(x)x

1
4 − 1

2x
− 1

4

)(
x

1
2 (s−

1
2 ) + x−

1
2 (s−

1
2 )
)

(7.150)

=

∫ ∞
0

1

2

dx

x

(
φ(x)x

1
4 − 1

2x
− 1

4

)(
x

1
2 (s−

1
2 ) + x−

1
2 (s−

1
2 )
)

(7.151)

Proof. For 0 < Res < 1,

−1

2

∫ ∞
1

dx

x

(
x
s−1
2 + x−

s
2

)
= − 1

1− s
− 1

s
= − 1

s(1− s)
. (7.152)

Hence (7.146) implies (7.150)
(7.150) implies (7.151) by (7.144). 2

7.3 Holomorphic extension of the dzeta function
and Riemann’s reflection formula–2nd proof

In this subsection we prove Theorem 7.2 by directly showing (1).
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Theorem 7.5 For any s with Res > 1 we have

ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1e−x

1− e−x
dx. (7.153)

ζ extends to a holomorphic function on C\{0}. It has the following integral
representation valid for all s except for s = 1, 2, . . . (because of singularities of
the Gamma function):

ζ(s) =
Γ(1− s)

2πi

∫
]−∞,0+,−∞[

zs−1ez

1− ez
dz. (7.154)

Proof. (7.153) follows by summing up∫ ∞
0

xs−1e−nxdx = Γ(s)
1

ns
. (7.155)

(7.154) follows by summing up

1

2πi

∫
]−∞,0+,−∞[

zs−1enzdz =
1

Γ(1− s)ns
. (7.156)

(7.154) is holomorphic on the whole C except maybe at the singularities of
Γ(1 − s), which are 1, 2, . . . . But we already know that ζ is holomorphic for
Res > 1. Hence the only singularity can be at 1. 2

We can analyze the behavior of ζ close to the singularity:

Theorem 7.6

ζ(s) =
1

s− 1
+ γ +O(s). (7.157)

Proof.

ζ(s) =

∞∑
n=1

∫ ∞
n

s

xs+1
dx (7.158)

=

∞∑
n=1

∫ n+1

n

sn

xs+1
dx (7.159)

=

∫ ∞
1

s

xs
dx+

∞∑
n=1

∫ n+1

n

s(n− x)

xs+1
dx. (7.160)

Now, ∫ ∞
1

s

xs
dx =

s

s− 1
= 1 +

1

s− 1
,

lim
s↘1

∫ n+1

n

s(n− x)

xs+1
dx =

∫ n+1

n

n− x
x2

dx =
1

n+ 1
− log(n+ 1) + log(n).
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Therefore,

lim
s↘0

(
ζ(s)− 1

s− 1

)
(7.161)

= 1 +

∞∑
n=1

( 1

n+ 1
− log(n+ 1) + log(n)

)
(7.162)

=

∞∑
n=1

( 1

n
− log(n+ 1) + log(n)

)
= γ. (7.163)

2

Theorem 7.7

ζ(s) = 2sπs−1Γ(1− s) sin(π2 s)ζ(1− s). (7.164)

or equivalently
ζ(s)Γ(s) cos(π2 s) = 2s−1πsζ(1− s). (7.165)

Proof. Assume that Res < 0. The function zs−1ez

1−ez has simple poles at z ∈
i2πZ\{0}. We compute the residues:

Res
zs−1ez

1− ez

∣∣∣
z=i2πn

= −(i2πn)s−1. (7.166)

Now for n > 0,

(i2πn)s−1 + (i2π(−n))s−1 (7.167)

= (2π)s−1(ei
π
2 (s−1) + e−i

π
2 (s−1))ns−1 (7.168)

= 2sπs−1 sin
(π

2
s
)
ns−1. (7.169)

On C\] − ∞, 0], treated as the domain of zs, we consider the circle of radius
(2N+1)π and centered at 0. We treat it as a curve γN starting at −(2N+1)π−i0
and ending at −(2N+1)π+i0. Let δN := [−(2N+1)π−i0, 0+,−(2N+1)π+i0].
Then

1

2πi

∫
γN

zs−1ez

1− ez
dz − 1

2πi

∫
δN

zs−1ez

1− ez
dz (7.170)

= −
N∑
n=1

2sπs−1 sin(
π

2
s)ns−1 (7.171)

→ −2sπs−1 sin(
π

2
s)ζ(1− s). (7.172)

But on γN ∣∣∣ ez

1− ez

∣∣∣ < K (7.173)

41



|zs−1| < |(2N + 1)π|Res−1 (7.174)

Hence the first term of (7.170) converges to 0. Clearly, the second term of
(7.170) converges to −ζ(s).

We pass from (7.164) to (7.165) by Γ(1 − s)Γ(s) = π
sin(πs) and sinπs =

2 sin(π2 s) cos(π2 s). 2

7.4 Bernoulli numbers

The Bernoulli numbers are defined by

x

ex − 1
=

∞∑
n=0

Bn
xn

n!
. (7.175)

The function
x

ex − 1
+
x

2
=
x

2
coth

(x
2

)
(7.176)

is even. Hence for odd n we have Bn = 0 except for B1 = − 1
2 . Otherwise,

B0 = 1, B2 = 1
6 , etc. We also have

x coth(x) =

∞∑
k=0

B2k
(2x)2k

(2k)!
, (7.177)

x cot(x) =

∞∑
k=0

(−1)kB2k
(2x)2k

(2k)!
. (7.178)

Theorem 7.8 For positive even integers the dzeta function can be expressed
in terms of Bernoulli numbers:

ζ(2k) =
(−1)k+122k−1π2k

(2k)!
B2k. (7.179)

For all negative integers the dzeta function can be expressed in terms of Bernoulli
numbers:

ζ(−n) = −Bn+1

n+ 1
. (7.180)

(In particular, for even negative integers the dzeta function is zero).

Proof. To prove (7.179) we use the well known identity

π cotπx =
1

x
+

∞∑
n=1

2x

x2 − n2
. (7.181)
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Setting z = πx into (7.181) we obtain

z cot z = 1 + 2

∞∑
n=1

z2

z2 − n2π2
(7.182)

= 1− 2

∞∑
n=1

∞∑
k=1

z2k

n2kπ2k
(7.183)

= 1− 2

∞∑
k=1

z2k

π2k
ζ(2k). (7.184)

To prove (7.180) we can use the reflection formula

ζ(s) = 2sπs−1Γ(1− s) sin(π2 s)ζ(1− s). (7.185)

Setting s = −2k, k = 0, 1, . . . we see that ζ(−2k) = 0 because sin(−πk) = 0.
Setting s = −2k + 1, m = 1, 2, . . . we obtain

ζ(−2k + 1) = 2−2k+1π−2k(2k − 1)!(−1)k+1ζ(2k) = −B2k

2k
, (7.186)

Alternatively, (7.180) follows from (7.154), which for s = −n can be rewritten
as

ζ(−n) =
n!

2πi

∫
[0+]

z−1−n

e−z − 1
dz. (7.187)

7.5 Zeros of the dzeta function

Theorem 7.9 η and ξ have no zeros except in 0 ≤ Res ≤ 1. The only zeros
of ζ away from 0 ≤ Res ≤ 1 are at −2,−4, . . . .

Proof. ζ has no zeros for Res > 1 by Prop. 7.1. Hence so does not η for
Res > 1. By reflection, η has no zeros for Res < 0. The only singularities of Γ
are at 0,−1,−2, . . . . Hence the only zeros of ζ in Res < 0 can be at −2,−4, . . . .
2

Let 1
2 +iZ be the set of all zeros of the dzeta function away from −2,−4, . . . .

Z coincides with the set of zeros of η and of ξ. Note that Z = −Z by the
reflection identity

η(z) = η(1− z), ξ(z) = ξ(1− z).

Moreover, Z = −Z by

ζ(z) = ζ(z), η(z) = η(z), ξ(z) = ξ(z).

Theorem 7.9 says that Z ⊂ {|Im(z)| < 1
2}.

The Riemann conjecture says that Z ⊂ R.
Let 1

2 + iZ+ be the set of zeros of the dzeta function with positive imaginary
part. Clearly, Z = Z+ ∪ (−Z+).
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The function ξ is entire and ξ(0) = 1
2 . Therefore, one can try to recover it

from the position of its zeros:

2ξ(s) =
∏
λ∈Z

(
1− s

1
2 + iλ

)
=

∏
λ∈Z+

( s
1
2 + iλ

− 1
)( s

1
2 − iλ

− 1
)
. (7.188)

This is indeed true, and follows from a more general theorem proven much later
by Hadamard. Riemann guessed (7.188), which implies

log
(
2ξ(s)

)
=

∑
λ∈Z

log
( s

1
2 + iλ

− 1
)
. (7.189)

Using

ζ(s) =
π
s
2

s(s− 1)Γ( s2 )
ξ(s) (7.190)

we obtain

log(ζ(s)) = log
( π

s
2

s(s− 1)Γ( s2 )

)
+ log(ξ(s)). (7.191)

Hence

log(ζ(s)) = log
( π

s
2

s(s− 1)Γ( s2 )

)
+
∑
λ∈Z

log
( s

1
2 + iλ

− 1
)
. (7.192)

7.6 Riemann’s formula

Introduce

π(x) := #{primes ≤ x}, (7.193)

Π(x) =

∞∑
m=1

1

m
π(x

1
m ). (7.194)

Then for Res > 1,

log ζ(s) = −
∑
p

log(1− p−s) (7.195)

= −
∑
p

∞∑
m=1

p−sm

m
, (7.196)

= −
∫ ∞
0

x−sΠ′(x)dx. (7.197)

For any a > 1, we can write Π′ as the Fourier transform

log ζ(a+ it) = −
∫ ∞
0

x−a−itΠ′(x)dx (7.198)

= −
∫

e−au−ituΠ′(eu)eudu. (7.199)
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Inverting the Fourier transform we obtain

Π′(x) = −x
a−1

2π

∫
xit log ζ(a+ it)dt. (7.200)

= − 1

2πi

∫
a+iR

xs−1ζ(s)ds.

We use now (7.192) and (7.200). This yields

Π′(x) =
1

log(x)
−
∑
λ∈Z

x−
1
2+iλ

log(x)
− 1

x(x2 − 1) log(x)
. (7.201)

Then we use Π(1− 0) = 0 to obtain

Π(x) = Li(x)−
∑
λ∈Z

Li(x
1
2+iλ)− log(2) +

∫ ∞
x

dt

t(t2 − 1) log(t)
. (7.202)

7.7 The Li function

We define

Li(x) :=

∫ x

0

dy

log(y)
, (7.203)

where the singularity at zero is integrated in the sense of the principal value.
Note that for Re(µ) > 0

Li(x
1
µ ) :=

∫ x

0

tµ−1dt

log(t)
. (7.204)

In fact, we can change the variables y = tµ in (7.203).
Let us recall the Euler constant and the Fourier transformation of the loga-

rithm

−γ =

∫ ∞
0

e−k log(k)dk, (7.205)∫
log(±is+ 0)e−iskds = −2π

θ(∓k)

|k|
− 2πγδ(k), (7.206)

Here θ(∓k)
|k| is understood as the distribution∫

θ(±k)

|k|
φ(k)dk = lim

ε↘0

(∫ ∞
ε

1

|k|
φ(±k)dk + log(ε)φ(0)

)
. (7.207)

In (7.206) we choose the + case, set x = e−k, and we rewrite it as follows for
Re(a) ≥ Re(µ),

1

2πi

∫
a+iR

xs log(s− µ)ds = −x
µθ(x− 1)

log x
− γδ(x− 1). (7.208)
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Here again θ(x−1)
log x is a distribution regularized at zero:∫

θ(x− 1)

log x
φ(x)dx = lim

ε↘0

(∫ ∞
1+ε

1

log(x)
φ(x)dx+ log(ε)φ(0)

)
. (7.209)

We will see that the primitive of (7.208) can be expressed in terms of the Li
function.

Proposition 7.10 For x > 1

Li(x) =

∫ x

0

(θ(x− 1)

log x
+ γδ(x− 1)

)
dx. (7.210)

Proof. First we compute ∫ e−ε

0

dt

log(t)
= −

∫ ∞
ε

e−t

t
dt

−
∫ ∞
ε

e−t log(t)dt+ e−ε log(ε) = γ + log(ε) + o(ε).

Now

Li(x) = lim
ε↘0

(∫ 1−ε

0

1

log(y)
+

∫ x

1+ε

1

log(y)

)
= lim
ε↘0

(
γ + log(ε) +

∫ x

1+ε

1

log(y)

)
.

7.8 The Hurwitz dzeta function

For Res > 0 and a 6∈ {. . . ,−2,−1, 0}, we define

ζ(s, a) :=

∞∑
n=1

1

(a+ n)s
. (7.211)

Theorem 7.11 For any s, a with Res > 0 and Rea > 0, we have

ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1e−ax

1− e−x
dx. (7.212)

s 7→ ζ(s, a) extends to a holomorphic function on C\{0}. It has the following
integral representation valid for all s except for s = 0, 1, 2, . . . :

ζ(s) =
Γ(1− s)

2πi

∫
]−∞,0+,−∞[

zs−1eaz

1− ez
dz. (7.213)

For s ≈ 0 we have

ζ(s) =
1

s− 1
+O(s0). (7.214)
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7.9 The Hurwitz identity

Theorem 7.12 Let 0 < Rea ≤ 1. Then

ζ(s, a) = 2sπs−1Γ(1− s)
∞∑
n=1

sin(2πna+ π
2 s)

n1−s
. (7.215)
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