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1 Homographies

We set
Rez =z = (2 + 2), Imz ==y = %(2 — %),
Riy:={zeR : >0}, Ci:={2zeC : Imz>0},
R*=R\{0}, C*:=C\{0},
K(zp,r):={2€C : |z—2z| <7}, 20€C, r>0.
A transformation

Coz—yg(z)=az+beC
where a # 0 is called affine.

(1.1)

Theorem 1.1 Afine transformations are bijections of C. If (21, z2) are two
distinct points in C and (w1, wz) are two distinct points in C then there exists

a unique afine transformation g such that

g(z1) = w1, g(z2) = ws.

Afine transformations form a group, which we denote C x GL(1,C). Let

AGL(l,C)::{[g ll’] . aeCx, beC},



If
A:[g H (1.2)

h4 denotes the transformation (1.1), then AGL(1,C) > A — h4 is an iso-
morphism of AGL(1,C) onto the group of afine transformations.
For z1,29,23 € C, 21 # 29, 29 # 23 define

21 — 23

21,29, % = .
(21, 22; 23) po——

Then for any afine transformation g,
(9(21),9(22); 9(23)) = (21, 22; 23).

Define
GL(n,C) :={A € L(n, : det A # 0}.

C)
SL(n,C):={A € L(n,C) : detA=1}.
Analogously define GL(n,R) and SL(n,R). We have an isomorfizm

GL(n,C) 3 A (A™HT € GL(n,C).

For
A= [ Z Z ] (1.3)
we have ;
(AT = (ad — be) ™! [ 5 _ac ] .
If A€ GL(2,C) i A\? = det A, then
AlA e SL(2,0).

For A € SL(2,C)

e [0 0 -1
=[5 o]y W)
The center of SL(2,C) is the two-element group Z(SL(2,C)) = {1,—1}.
We set PSL(2,C) := SL(2,C)/{1, —1}.



1.1 Riemann sphere
Definition 1.2 The Riemann sphere is the set
C:=CuU{oc}.

We say that Q C C is open in C, if QN C is open in C and if oo € Q, then
there exists R > 0 such that

C\K(0,R) C Q.
In C?\{0} we introduce the relation
w~v & dyeox Aw=w.

It is an equivalence relation. (C*\{0})/ ~ is denoted CP and can be identi-
fied with C:
CPS@WUH]HUHGC
w2 wo

1.2 Homografies

Definition 1.3 A transformation C 3 z h(z) € C is called a homography
if it has a form

= z#—?w,
h(z)=4 o0 z=-9 | (1.4)

a
c

for some a,b,c,d € C i ad —bc # 0. Takg homografie bedziemy tez oznaczali
ha, where A is (1.3). We denote the set of homographies by Homog.

zZ = OQ.

Note that for ad —bec = 0, the transformation (1.4) reduces to a constant.

Theorem 1.4 Homographies are bijections of C into itself. They form a
group. The map
GL(2,C) 5 A~ hy € Homog

18 a surjective homomorphism of groups. In other words,
hayha, =ha,a,.

We have
ha, = ha,

iff there exists A € C\{0} such that
A = AAy



Proof. If ¢ = 0, then h is an afine transformation, hence a bijection. Assume
that ¢ # 0. It can be decomposed as

h = gokg (1.5)
where
g1(z) = cz + d,
k(z) =271,
92(2) _ 7adgbcz+ %.
All these transformations are bijections, hence so is h. O
If A = ac — bd # 0, then replacing [ CCL Z } with % @ Z ] we do not

change the homography and make sure that it is parametrized by an element
of SL(2,C). For all homographies there are exactly to matrices in SL(2,C)
—a —b
—c —d |’

Hence instead of parametrizing homographies with elements of GL(2,C),
it is better to use SL(2,C), or even PSL(2,C) so that

associated with this homography: [ CCL Z ] and {

PSL(2,C) > +A+— hyy € Homog
is a group isomorphism. R
The representation of GL(2,C) in C? and in C are naturally releated:
Theorem 1.5 Let

CA\{(0,0)} > [Z]Hﬂ[zl ] — e

29 29
Then
ToA = hAoﬂ'
Proof.
[21} [azqubzz}
moA =7
29 cz1 + dzo
_az; bz G%-i-b
cz1 +dzy c%—i—d
:hA<Zl) _ hAow[Zl }
29 zZ2
Od



1.3 Properties of homographies

Lemma 1.6 Homographies preserving oo coincide with afine transforma-
tions.

Lemma 1.7 The homography

Z— 21 %3 — k9
hi(z) = ———=
1() Z— 2923 — X1

transforms (z1, z2, z3) on (0,00, 1).

Theorem 1.8 If (21,22,23) are three distinct points in C and (w1, we, w3)
are three distinct points in C, then there exists a unique homography h such
that

h(z1) = w1, h(z2) =w2, h(z3)=ws. (1.6)

Proof. Let hy transform (21, 22, 23) on (0, 00, 1) and hg transform (wy, we, ws)
on (0,00,1). Then we set h := h; 'hy.

Let us show the uniqueness. First note that If z3 = wg = oo, then the
uniquenss follows from 1.1.

Let g,k be homographies such that

9(0) = z1, g(1) = 22, g(00) =23,  k(w1) =0, k(wz) =1, k(w3) = oo.
Then
khig(0) =0, kh;g(1) =1, kh;g(c0) =00, i =1,2.
Hence
kh1g = khag. (1.7)
Multiply (1.7) from the left by k~! and from the right by g~'. We obtain
h1 = hy. O

If 21, 29, 23, 24 18 a quadruple of pairwise distinct elements of C, then the

number
(21 — 23)(22 — 24)

(21 — 24) (22 — 23)

is called the cross-ratio of this quadruple.

(Zla 223523, 24) =

Theorem 1.9 If h is a homography, then

(21, 22; 23, 22) = (h(21), h(22); h(23), h(za))-

If 21, 29, 23, z4 and w1, wa, w3, wy are two quadruples, then there exists a ho-
mography transforming one on the other iff (z1, z2; 23, 24) = (w1, wa; W3, Wy4)



1.4 Generalized circles

Definition 1.10 A compactified line in C is the set of the form L := L U
{oo} € C, where L is a line in C. A generalized circle is a subset of C, which
1s either a circle or a compactified line. The complements of generalized
circles have two connected components. They are called generalized discs.

Theorem 1.11 FEvery generalized circle is given by an equation of the form
112z + 122 + a21Z + age = 0, (18)

where
arr, a2 € R, ap =an1 € C, ajrane — ajpan < 0.

Proof. The circle of center zy and radius » € R has the equation

|z — 2|> = r? =0,

or

Tz — 2Z0 — Z20 + Zoz0 — 72 = 0. (1.9)

Every line can be written as z = re + ite, where |e|/ = 1 and r > 0. It
equation is then

ze+ze —2r = 0. (1.10)

Both (1.9) as well as (1.10) have the form (1.8). O

Proposition 1.12 Homographies transform generalized circles on generali-
zed circles and generalized discs on generalized discs. A quadruple z1, z2, 23, 24
is located on a generalized circl iff (21, z2; 23, 24) € R.

Proof. By (1.5), it is enough to check this for afine transformations, which
is obvious and for inversions. If w = %, then in the variable w the equation
(1.8) is

a1 + a12W + agw + apww = 0,

and also has the form (1.8). O



1.5 Group U(2)

In C? we define the canonical Hermitian scaar product
(z|lw) = ZTwy + Zaws.
The unitary group is defined as
U@2):={Aec M2,C) : (Az|Aw) = (z|w), z,w € C?}.
Equivalently,: A*A = 1. U(2) consists of matrices satisfying
af? +]ef2 = 1,
ab+cd =0, (1.11)
b2 + |d|? = 1.

Theorem 1.13 (1) Matrices of U(2) have the form

[ % } : (1.12)

gdzie
a2+ B2 =1, =1

Besides, X is the determinant of (1.12).
(2) Matrices of SU(2) have the form

where
|a|2 + |b|2 =1.

Proof. Let

S Y

alle
Sl

Then b = —\c, d = Aa. We insert this to the third formula of (1.11) obtaining
AP (el + laf?) =1

Hence |A\| = 1. This implies ¢ = —Ab. Therefore, a matrix in U(2) has the
form (1.12), where |A\| = 1. The determinant of (1.12) equals A(|a|? + |b|?) =
A. Hence for SU(2) we have A = 1. O



1.6 Grops U(1,1) and SL(2,R)

Let
1 0
h ]2 0]

In C? we define a Hermitian pseudoscalar product
(z|h1w) = ZTw — Zaws.
The pseudounitary group of signature 1,1 is defined as
U(1,1):={A € M(2,C) : (Az|I;1Aw) = (2|[1 1w), z,w € C*}.

Equivalently,
A*L 1A=1,,

or
lal* = |e* =1,

ab—cd =0, (1.13)
b2 — Jd]? = —1.
Theorem 1.14 (1) Matrices in U(1,1) have the form

[ ;B )f)a ] ’ (1.14)

Al=1, la* = [pP=1.

Besides, A is the determinant of (1.14).
(2) Matrices of SU(1,1) have the form

)

where

where
la> — b = 1.
Proof. Let
a_c¢_
d b

Then b = Ac, d = Aa. We insert this into the third formula of (1.13) obtaining
AP (lef* — lal*) = ~1.

Hence, |A| = 1. This implies ¢ = Ab. Therefore, every matrix in U(1,1) has
the form (1.14). The determinant of (1.14) equals A(|a|? — [b?) = A. O



Theorem 1.15 Let
11— 1|1
B_Q[—i 1], B —[. 1]. (1.15)

Then
SL(2,R) > A~ BAB™! € SU(1,1),

18 an isomorphism.

Proof. We have

BAB_I—l a+ib—ic+d ia+b+c—id | | a1 b
T 2| —la+b4c+id a—ib+ic+d | | by @
and
lay|* = |b1|> = ad — be = 1
Od

1.7 Homographies mapping antipodal pairs on antipodal pa-
irs

In C we define the “antipodal conjugation”
, 1

z) = —=.

J(e) = —2

For z = rel® we have j(z) = r—1el®+7)  Clearly, j2(2) = 2. A pair of
points {z1, z2} such that j(z1) = z2 (and hence also j(z2) = z1) is called an
antipodal pair.

Theorem 1.16 Homographie transforming antipodal pairs onto antipodal
pairs, or equivalently, satisfying

have the formi ha dwith A € SU(2).
Proof. Let A€ GL(2,C) and h = hs. Then

‘ _ faz+b\  dj(z)—¢ . [aj(z)+b
i) = (55) = BA=E _nieen - (AL

{Z fl]:)‘[_db _ﬂ

Therefore, |\| = 1 and ¢ = —\b, d = A\@. We obtain an element of U(2). O




1.8 Homographies preserving a generalized disc

Theorem 1.17 All homographies transforming Cy in itself have the form
ha for A e SL(2,R).

Proof. First note that h and h~! are continuous. Hence the image of the
boundary is the boundary of the image. R :=RU {o0} is the boundary
of C;. Hence, h(R) = R. By Lemma 1.7 and the uniqueness we see that
h = ha for some A € GL(2,R). We have

b
ha(z) = Zjid

_ac)z]*+(ad+ch)Rez+bd+i(ad—cb)Imz
- |cz+d|?

Hence ha(Cy) C Cg iff det A > 0. Therefore, we can replace A with
(det A)"2A € SL(2,R). O

Theorem 1.18 All homographies transforming the unit disc {z : |z| < 1}
into itself have the form ha for A € SU(1,1).

Proof. Recall that
SL(2,R)> A~ BAB™! = A e SU(1,1),
is and isomorphism, where B was defined in (1.15). Hence
hi=hgha(hp)™".

Thus, by Theorem 1.17, it is enough to show that

z—1
—iz4+1

hB(z) =
transforms C4 onto {z : |z| < 1}. Indeed,

: 212 2 2
+iy — +(y—1
vy —if oty )2<1<:>ze<c+.

1+y—iz| 224+ (y+1)

10



2 Separation of variables in the Helmholtz equation

in 2 dimensions

2.1 Holomorphic functions

Let us identify R? with C by the transformation R? 3 (z,%) — 2z := x + iy €

C. We introduce the following operators acting on functions on C
1 . 1 ‘
0, = 5(62; —i0y), Oz:= 5(893 +10y).

Note that

0,z =1, 0,z =0,
Oz =0, 0F=1,
Op =0, + 0z, 0y =10, —105.

df = 0,fdz + 0z fdz.
Proposition 2.1 Let 2 C C be open and Let
Qs3z=zr+4+iy—ut+iv=feC
be a smooth function. The following conditions are equivalent

1. For any z € ) there exists the derivative in the compler sense

h—0 h

2. The Cauchy-Riemann conditions hold

Opu = Oyv, Oyu = —0yv.

3. Ozf = 0. If this is the case, then O,f = f' in the sense of (2.2).

(2.1)

(2.2)

(2.3)

4. For any z € Q) there exists r > 0 such that f is given by a convergent

power series in K(z,r).

If the above conditions hold we say that f is holomorphic in €2. The word

analytic is used as a synonym of holomorphic.

11



2.2 Cauchy-Riemann conditions and conformal transforma-
tions

Let
Qoz=z+iy—u+iv=feC (2.4)

be a function. We say that it is a conformal map if the following holds. If
[0,1] 3 7 = (xi(7),v:i(7))), i = 1,2, are two curves starting at (z1(0),y1(0))) =
(22(0),92(0))), and [0,1] > 7+ (u;(7),v;(7))) are their images, then

(0721(0), 9791 (0)) - (9-22(0), 87y2(0))
1 (0-21(0), 87y1(0)) [[[| (Or22(0), Ory2(0)) ||
__ (9ru1(0), 0-v1(0)) - (97u2(0) a 7v2(0))
1 (0711 (0), 0-v1(0)) ||| (Oru2(0 ) 97v2(0)) |

Let (2.4) be analytic. The analyticity is equivalent to the Cauchy-
Riemann conditions, which imply

(9% + ﬁg)u = (0% + 85)’0 =0, :
(02u)? + (Byu)? = (020)” + (Oyv)? = (Dpu)® + (Dpv)* = |0-f*, (2.6
O0,u0,v + Oyudyv = 0, u0;v — 0,v0,u = 0. (2.7)

(2.5) mean that the functions v and v are harmonic. The conditions (2.6)
an (2.7) mean that the vectors (9u, 0yu) and (0,v, 0yv) are orthogonal and
of the same length. The determinant of the matrix

Ozu  Oyu
[ Ozv Oyv ] (2:8)

is |0, f|*. Hence this is a (proper) rotation matrix times |9, f|. Therefore, if
|0, f| # 0, then the transformation (2.4) preserves angles—is conformal.

2.3 Antiholomorphic functions

We say that a function z — f is antiholomorphic if z m is holomorphic.
Clearly, it is equivalent to 0,f = 0. The Cauchy-Riemann conditions are
replaced by

Opu = —0yv, Oy = Ozv. (2.9)

The matrix (2.8) has the determinant —|0, f|>. Hence it is proportional to
and improper rotation.
If f is anti-holomorphic and |0z f| # 0, then f is conformal.

12



2.4 Helmholtz equation in Cartesian coordinates

The Helmholtz equation in 2 dimensions has the form
(92 + 0 + E)g, (2.10)

where E is a parameter. It has many solutions. To distinguish interesting
solutions one has to add boundary conditions, e.g. the Dirichlet conditions
on the boundary of a domain §2.

In Cartesian coordinates it is convenient to solve the Helmholtz equation
in a rectangle, e.g. [0, A] x [0, B]. We then use the ansatz

g(z,y) = p(z)q(y),

and we obtain )

1 2 _ - 92
M(aﬁE)p(fv)— q(y)ﬁyq(y)- (2.11)

The lhs does not depend on y and the rhs does not depend on z. Hence
(2.11) equals a constant C, which leads to

02+ E—C)p(z) = 0,
0+ Claly) =

The Dirichlet boundary conditions mean

which yields

n-m m-m

A2 B?

p(z) = Sinmr%, q(y) = sinmﬂ%, E-C=

In particular, F = WQ(X—QQ + %ﬁ)

If © is a disc or an anulus, or their sector, it is more convenient to use
polar coordinates. More generally, in the coordinates u(z,y),v(z,y) it is
convenient to solve differential equations in a domain Q = {(z,y) : wug <

u(z,y) < ui, vo <v(z,y) <wvi}

2.5 Change of coordinates in the Laplacian

Let Q be an open subset of R? and

Q3 (z,y) ~ (u,v) € R? (2.12)

13



be a smooth transformation. We then have

(024029 = 0u(0udug + 03v0ug) + Oy (Oyudug + 0yvdyg)
= (0% + aj)u Oug + (02 + 35)1; Owg
+(0pudyu + Oyudyu)d2g
+2(0,u0,v + Oyudyv)0y, 0y 9,
+ (90050 + DY) d2g. (2.13)

Assume now that z = x + iy — u + iv = f is an analytic function. The
Cauchy-Riemann conditions imply (2.5), (2.6) and (2.7). Inserting this in
(2.13) we obtain

(0% +05)g = 8- 1105 + 92)g. (2.14)

2.6 Helmholtz equation in polar coordinates

Let us analyze the change of coordinates (2.12) to the Helmoholtz equation.
It will be more convenient to focus on the inverse transformation

(u,v) — (x,y) (2.15)
and their interpretation in terms of the complex variable
f=ut+iv—ao+iy==z.
The equation (2.14) can then be rewritten as
0722(02 4 07) = 0 + 02 (2.16)
Consider the function z = ef, that means,
xz=-¢e%cosv, y=-e"sinwv.
Then dyz = e/, hence |9fz|? = e®*. Therefore,
2402 =e (00 +0)). (2.17)

To reduce it to a better known form, we substitute » = e and we rename
v into ¢. We then have 9, = 70, and (2.17) reduces to the well-known
expression of the Laplacian in polar coordinates:

1 1
2 2 2 2
0y + 0y =0, + ;@ + 2 0g- (2.18)

14



Let us now apply the following ansatz:

g(r.¢) = p(r)q(r). (2.19)
Then the Helmholtz equation
(r?02 + 10, + 05 + r*E) p(r)q(¢)
after dividing by p(r)q(¢) can be rewritten as
1 1
p(r) 4(9)

The lhs of (2.20) does not depend on r and the rhs does not depend on ¢.
Therefore, (2.20) equals a constant, which we can call C. (2.20) separates
into two equations

(r*07 + 10, +r*E) p(r) = 924(6) (2.20)

(r?02 + 10, — C +r*E)p(r) = 0, (2:21)
(03 +C) alo) (2.22)

(2.22) is solved by .
q(¢) = M m?2=C.

Hence (2.21) can be rewritten as
(r?02 + 19, —m?® +r*E) p(r) = 0. (2.23)

It can be reduced to the (standard or modified) Bessel equation.

2.7 Helmholtz equation in parabolic coordinates

Consider now the system of coordinates generated by the analytic transfor-
2
mation z = % We have then

drz = [, |0rz|> = u* + v% We can restrict the coordinates to v > 0. The
Laplacian is transformed as follows:

02+ 07 = (u* +v*)"HO; + 07).
Hence the Helmholtz equation in parabolic coordinates has the form

(02 + 02 + E(u® +v*))g = 0. (2.24)

15



The ansatz

9(u,v) = p(u)q(v). (2.25)
yieelds ) )
— (8? u?) p(u) = ——— (82 v?) q(v) = .
oy G B =~ S (@4 B a) =0 (220
which can be written as
(02 + Bu? = O) p(u) = 0, (2.27)
(02 + Bv? + C)q(v) = 0, (2.28)

which reduce to the harmonic oscillator eigenequation, also called the Weber
equation.

2.8 Helmbholtz equation in elliptic-hyperbolic coordinates

Consider now the coordinate system generated by the analytic function z =
cosh f. We then have

x = coshucosv, ¥y = sinhusinwv,

dz = sinh f = sinhucosv + icoshusinv, |d72|?> = sinh®u + sin?v. The
Laplacian is transformed as follows:

02 + 07 = (sinh®u + sin®v) 7' (0; + 87).
The Helmholtz equation becomes
(9% 4 02 + E(sinh?u + sin® v))g. (2.29)
The ansatz (2.25) yields

17(116) (02 + Esinh?u) p(u) = _q(lv) (90 + Esinv) qlv) =C (2.30)

which can be transformed into

(02 + Esinh®u — C) p(u) = 0, (2.31)
(63 + Esin®v + C)q(v) = 0, (2.32)

and reduces to the (standard or modified) Mathieu equation.

16



2.9 Transformations in R? separating the Helmholtz equ-
ation

Let
(z,y) = (u,v) € R?

be a transformation such that z = z + iy — w4+ iv = f is analytic. The
Helmholtz equation

(02 + 07)g = Eg,
in the new coordinates is
(07 + 03)g = (052" Bg.
This equation separates if [0;z|? has the form
0p2]* = a(u) + b(v).
This is equivalent to the condition
8u8v|8fz\2 = 0.

We are using now the variable f = u 4+ iv, so the analogs of the operators 0,
i 0z are now

1 1
op = 5(% —i0y), Of:= §(8u +i0y).

Using @ = 872 and

Ou =05+ 05, 0, =105 —i0y,
we obtain
0= 0uu|0s2> = (07— a%)afzafz
— i (072007 - 9y20%2)
Hence,
93z 0z
! 7
e 2.
afz 3?5 ( 33)

The lhs of (2.33) is holomorphic and the rhs is antiholomorphic. Hence (2.33)
equals a constant, which we call D and we obtain the equation

0}z = Doy, (2.34)

Let us classify solutions of (2.34) up to translations z — z + a, rotations
z — e'“z and scaling z — Az.

17



(1) D =0. Then z = Af? + Bf + C. If A = 0, it is a trivial change of
coordinates. If A # 0, this reduces to z = f2.

(2) D#0, z= AeVPI The change of coordinates reduces to z = ef.
(3) D#0, z= AeVPl 4 Be=VDI . The change of coordinates reduces to

z = cosh f.
3 Euler’s Gamma function

3.1 The Gamma function as a generalization of the factorial
and the II Euler’s integral

We define the Gamma function by the II Euler’s integral:
I'(z) := / e it*lat (3.1)
0
- 2/ e ¢2514¢, Rez > 0, (3.2)
0

t*~1 denotes the principal branch of the power function. We introduce also
the Pochhammer symbol:

(a)p:=ala+1)...(a+n—-1), n=0,1,2,...

- 1 —
(a)p := e n=...,—2,—1.
Obviously, (1), = n!.

Theorem 3.1 The following identities hold:

[(z+1) =2I(2), (3.3)
Fn+1)=n!l, n=0,1,2,..., (3.4)
I'(z+n)=(2).I(2), neZ. (3.5)

Proof. (3.3) follows by integration by parts. (3.4) follows from (3.3) and
I'1)=10

Define the set

Q, :={z : Rez>—-n}\{0,-1,...,—n+1}

18



and the function

If n > m, then
Th(z) =Thn(2), z € Qn,

which follows from the identity (3.74) On the set

U =c\{0,-1,-2,...}
n=1
we define
I'(z) :==T0(2), z € Q.

Thus defined function I' is the maximal analytic extension of the function
I'(z) defined with the integral (3.2).
There exist alternative ways of extending the Gamma function:

Theorem 3.2 (Prym decomposition)

T(z) =) n,((;lll) + /100 e ¥ ldt,  zeC\{0,-1,-2,...}.

Theorem 3.3 (Cauchy-Saalschiitz formula)

I'(z) = /000 =1 (e*t - z”: (_I:!)k>dt, —1 —n < Rez. (3.6)

k=0

Proof. Let I',,(z) be the rhs of (3.6). First we check that it is an analytic
function on —1 —n < Rez. Let us use the induction. Clearly,

I'_1(2) =T(2), 0<Rez.
Integrating by parts we obtain

o= S-S G (- S5 e
0

k=0

_ %Fn,l(z +1) = %I‘(z +1) =TI(2), (3.8)

where at the end we used the induction assumption, and then identity (3.13).
O
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3.2 I Euler’s integral and the Beta function
Theorem 3.4 (1st Euler’s integral)

F(’U,)F(U) _ ! u—1/1 _ p\v—1
el = /0 11— gyl (3.9)
= 2/2 cos? L psin?* "L ¢pdp, Reu > 0, Rev > 0.
0
L(w)l'(v) sintu  T'(l—u—v)l'(v) [ vl av—1
[(u+v)sinm(u+v) (1 —u) _/0 (1" de (3.10)

= 2/ cosh® 1 9sinh?~16, Rev >0, Re(l —u—v) > 0.
0

Proof. Substituting ¢t = 1 + 1 into (3.9) and using (3.14) we obtain (3.10).
Let us prove (3.9)
We have

T'(u)T(v) = 4 / / e &P 2umlp2u-lqeqy (3.11)
o Jo
We use polar coordinates

& =rcos¢, n=rsin¢.
Thus (3.11) equals

00 w/2
4/ eT2r2”+2”1dr/ cos?* 1 psin?? 1 pdo (3.12)
0 0

— T(u+0) /01 11— gLy, (3.13)

(In the last step we substituted ¢ = cos? ¢). O
Motivated by (3.9) one often introduces the so called Beta function:
I'(w)(v)
B = .

Theorem 3.5 The following identities hold:

™

Fz)Ira-=z) =

3.14
sinmz’ ( )

I(1/2) =7 (3.15)
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Proof. Assume for the moment that 0 < Rez < 1. Consider the holomor-
phic function C\[0,1] > ¢t — f(t) = t*"1(t — 1)~* (The functions t*~! and
(t —1)~# are understood in terms of their principal branches defined resp.
on C\[—00,0[ 1 C\[—00,1[. Hence f(t) is defined a priori on C\[—o0, 1], but
it analytically extends to C\[0, 1]).

Let v = [0,17,0"] be the contour called the bone. The residuum at
infinity of f is —1, hence

2im = — 2miResf(o0) = d 3.16
)= [ s (3.16)
=(el™ — ¢71™%) /1 271 — ) Fdt (3.17)
0
=(2isin7z)B(z,1 — z) = (2isin7mz)'(2)['(1 — 2). (3.18)

This implies (3.14) for 0 < Rez < 1. We extend it to all z € C by analyticity.
Substituting in (3.14) z = 1/2 we obtain

I?(1/2) = n.

We know that
I'(z) >0, z>0.

Ths implies (3.15). O
Corollary 3.6 (Gauss integral) If Rea > 0, then

> —at? ™
dt =4/ —. 3.19
e f (3.19)

Proof. Changing the variables in (3.15) we obtain

VT =T(1/2) = / e dt (3.20)
]—O0,00[
:/ e Pt (3.21)
]—\/&oo,\/&oo[
—JVa / e %" ds. (3.22)
]—O0,00[
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Corollary 3.7 (Fresnel integral) We have

R
. 2 i
lim ey = e /7
R—o0 R

Proof. We integrate on the sides of the triangle 0, R, R+iR. On the vertical

side we have R .
/ oY gy = / e =) Rat — 0,
0 0

using the Lebesgue Theorem. O

Note that the function I'(z) has 1st order poles at z = 0, —1, ... with the
residues

Resl'(—n) = zl—iEI_lnF(Z)(Z +n) (3.23)
_ (Z + TL)7T _ (_1)n
- T(1—2z)sintz n! (3.24)

Theorem 3.8 (The Legendre duplication formula)
227D ()T (2 4 1/2) = VaT'(22),

Proof.

1 1/2
= / 71—t lde = 2/ #7(1 — ) Lde.
0 0

Substituting s = 4¢(1 — t) we obtain

9l-2z /1 Szfl(l . s)’l/st _ 21722F(Z)F(%).
0 F(Z + %)

There exists a generalization of the above identity called the Gauss mul-
tiplication formula, which we will prove later:

n—1
T(nz) = (21) 2 n"* 2 11 P(z + %) (3.25)
k=0
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3.3 The Gamma function and integrals in the complex do-
main

Theorem 3.9 (The Hankel Formula)

1 1 .
= ss—21ds, 2
T(z+1) 2ni / es @ (3:26)

[700704_’700[

Proof. Assume temporarily that Rez < 0.

/ e®s* M ds = eI / e*(—s) " lds (3.27)
]_0070]

[700’0-’»7700[

4 em(===1) / e*(—s)~ds (3.28)
[0,—00[

_ (e—ifr(—z—l) o eiw(—z—l)) / et 14t (329)
0

2mi

Then we extend the identity to all z by analytic continuation. O
Theorem 3.10
Mu+v+1) 1 / w1 "
= — YT — )TV de 3.31
I‘(u + I)F(’U + 1) 2mi ]—00,0+,—00] ( ) ( )
1
= _— vl -, u+ov+1>0.
2mi }

00,17,00]

Proof. Note that | — 0o, 0", —co[ and Joo, 17, 00| yield the same integral:

/ t7e 1 — ) ae (3.32)
00,0~ ,00]
_ (_e—iw(v-‘rl) + ei7r(v+1))/ t_u_l(t o 1)—v—1dt (333)
1
.. (=)l +u+v) . TA+u+v)
— _9g = . .34
2isin v IO+ 21WF(1+U)F(1—|—U) (3.34)

a

If u4 v =€ Z, then a loop encircling 1 and 0 counterclockwise is located
on the Riemann surface of the function t*~1(¢—1)?"1. We obtain the identity
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Theorem 3.11 For n € Z we have

I'(u) (u—1)...(u—n)
= 3.35
F'n+ 1)I'(u—n) n! (3:35)
1 _1 —
=— Tt — 1), 3.36
271 Jiors o (t—1) (3.36)
Proof. Gdy zastosujemy homografic t = —s~! to dostaniemy
L Pl it = —— [ o — s (3.37)
27 [071+’0+] 2mi [0F]
1 /d\" S (u—1)...(u—mn)
O

Consider now the function (—t)*~1(¢t — 1)*~!, where both powers are
understood in the sense of the prinbcipal branches. Its domain is C\R. It is
a domain consisting of two connected componennts on which

_ B tu71<1 _ t)vflefiﬂ'(ufl)eirr(vfl) Imt > 0:
u—1 v—1 __ ) )
(_t) (t - 1) - { tu_l(l _ t)v—leiﬁ(u—l)e—iw(v—l)’ Imt < 0. (339)

Consider the contour ,double eight” [0,17,07,17,07]. It starts on the lower
sheet of the Riemann surface of the function (—)“~1(¢ — 1)*~1, on which
the first interval [0, 1] is situated. It is easy to see that [0,17,07,17,07] is
a closed curve on this Riemann surface. Riemanna. Note in passing that
the third interval on this contour is on the upper sheet mentioned in (3.39).
The integral of (—#)*~1(¢t — 1)*~! on the double eight can be expressed by
the Gamma function:

Theorem 3.12

1
I'(u+v)(1 = u)D(1 —v) (3.40)
= L _ =l yu—1
~(2m)? /[0,1+,0,1,0+]( O 1)L, (3.41)
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Proof. Assume Reu, Rev > 0.

(=)Lt — 1) Lde (3.42)
[0,1+,0—,17,01]

_ (eiw(u—l)e—iﬂ-(v—l) _ eim(u=1)gin(v=1) | —im(u—1)gim(v=1) _ e—iw(u—l)e—iw(v—l))

1
u—1lrq _ pyv—1
« /0 ¢ '(1 f) dt | (3.43)
= — (™ — 7)™ — e7 ™) B(u, v) (3.44)
= — (2isin7v)(2¢sin Tu M
- 12 ) ['(u+v) (3.45)
~em : (3.46)

IMNu+v)I'(1 —uw)(1 —v)

By analytic continuation the identity is extended to all u,v. O

3.4 Infinite products

Let us first recall the basic facts about series.

If there exists a finite limit 7 := lim ) , b;, we say that the series
n—oo ~J
o0 o
‘21 b; is convergent conditionally and we write I = 231 bj.
j= j=

o0 o0
If > |bj| < oo, we say that the series ) b; is convergent absolutely.
J=1 Jj=1

One can show that absolute convergence implies conditional convergence,
also after a change of the order of terms in the series, and its value does not

deepend on the order.

Lemma 3.13
oo
D an] < 0. (3.47)
n=1
iff only a finite number of terms a; equals —1 and
o0
Z |log(1 + ap)| < o0, (3.48)
n=1
where in the series (3.48) we removed all j with a;j = —1. (In the above

formula by |log(1 + a)| we understand the principal branch of the logarithm
extended by continuity to a function on na C\{—1}, which is unambiguous).
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Proof. Suppose (3.47) is true. Then lim; ,o a; = 0 and therefore a finite
number of terms a; equals —1. Besides, outside a finite number of indices,

1
la;| < = (3.49)
2
C\{-1} >t~ w is a positive continuous function. Hence for
|t] < % there exist 0 < C1 < Coq, such that
log(1+t
Cy < Og(t_‘_)‘ < Oy,

Hence
[log(1 + an)| < Calan|.

To prove the converse implication, it suffices to assume that all a; differ
from —1. (3.48) implies lim, o log(a, + 1) = 0, and hence (3.49) holds
outside of a finite number of indices, and then

jan| < C7 ' log(1 + ).

Suppose now that (aj);?‘;o is a sequence of complex numbers such that
n
none of a; equals —1. If there exists a finite limit / := lim [](1+a;), then
n—oo

Jj=1
oo
we say that the infinite product [] (1 + a;) is conditionally convergent and
et
. J
we write I = [] (1 + a;).
i=1

o0
We say that the infinite product [] (1 + a;) is absolutely convergent iff
j=1
(3.47) is true. Thus taking the logarithm of an absolutely convergent infinite
product we obtain an absolutely convergent series. Hence the value of an

absolutely convergent infinite product does not depend on the order of terms.
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3.5 Trigonometric functions as infinite products

Theorem 3.14 We have

o0
1 w2
Z( N2 T 2 ) (3.50)
= —J)? sin‘mz
1 > z & 1 TCOSTZ
z+ ZzQ—JQ nLH;oZ z+j sinmz (3:51)
7j=1 j=—-n
ad 22 sin 7wz
P (1 - 72) ===, (3.52)
=1

The infinite product in (3.52) is absolutely convergent.

Proof.

o

>
(z—7)? sin’nz

j=—o00

is an entire function. It is periodic with period 1 and converges to zero for
|Imz| — oco. Hence it is bounded. Therefore, by the Liouville Theorem it is
zero. This proves (3.50).

By (3.50), the derivative of

1 > z T COSTZ
—+2 — 3.53

sinmz

is zero. (3.53) is an entire odd constant function, hence it is zero. This
proves (3.51).
By (3.51) we have

d e 22 d sinmz
glog (zjl_ll(l - ]—2)) =% log ( - > (3.54)
Therefore,
ad 22 sinmz
zH(l—j—Q):C —. (3.55)
j=1

Comparing the drivatives of both sides in (3.55) at zero we obtain C' = 1.
This proves (3.52). O
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3.6 The Gamma function and infinite products
We define the Euler-Mascheroni constant
) n 1 o
v = lim (;k—logn> =1+ 2( + log ( 1—7.)) ~0,577....

Theorem 3.15 (The Gauss formula)

nln?
I'(z) = 1
(2) nl—g)loz(z—i—l)(z—i-n)

(The Weierstrass formula)
1 = z z
e :zeVZg(l—kn)exp(—n).
The above product is absolutely convergent.
Lemma 3.16 For 0 <t <n we have

0<(1-1i)y<e, lim(1-2i)"=e

n—oo

Proof. The function f,(t) := e’(1 — £)™ satisfies f,(n) =0, f,(0) =1
fot) = —et(1 = )" 1L <0.
Hence, 0 < f,,(t) < 1. O
Proof of Thm 3.15. We have

F(n+1)I'(z) n!
F(z+n+1) z(z+1)---(z+n)

1
| a-pysias -

Therefore,

" EN 1, nln
/0 (1_5)15 1dt_z(z+1)...(z+n)‘ (3.56)

But for 0 <t <

lim 0(n — t) (1 ~ %)"tz—l = otp= L, (3.57)

n—oo



By Lemma 3.16, we can apply the Lebesgue Dominated Convergence The-

orem with the dominating function e~ *tR¢*~1. Hence,
n t n [e.e]
lim (1 . 7) =1t = / et 14t (3.58)
n—oo Jq n 0
This proves the Gauss formula for Rez > 0.
To show the Weierstrass formula we note
27 11 (1 + E) exp(—i). (3.59)
n=1 n n
n
=z lim ex z( 1 lo n) I (1 + E) exp(—i) (3.60)
N L = k k '

n -z 1)---
~ im n_ZZH(1+%)zlimn 2z 41)---(z+1)
k=1

n—o00 n—oo 7’L'

(3.61)

The Gauss or Weierstrass formulas can be used to prove the results from
previous sections. For instance, using the Gauss formula we obtain

r | nlnztl
1) =1l
D)= S D
+1 H! 1)#
=z lim( " )Z i (n+1Din+1) = 2I'(2).
n—oo \n + 1 n—oo z(z+1)---(z+n+1)

Using the Weierstrass formula we get

1 —1
L)1 —2) =2I'(2)I'(—=2)

00 22 sinmz
=z II 1——2 = —.
n=1 n T

Proof of the Gauss multiplication formula (3.25). Let

m—1 k
at) =11 F(z + E)'
k=0
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Using the Gauss formula we obtain

nm+m—1

1 n (mz+k)
= lim n=0_ )

G(z) n—00 (n!)mnm2+§(m—1)mm(n+1)

I'(mz) = lim W

k=0
Hence,
F(mz) A (mn)!mmzfm(nJrl)n—%(m—l) mn+m—1
=1 k
G(2) nooo (nl)m k:n1;[n+1(mz+ )
1oyymz—mn—1), L (m—1)
_ iy (mn)tm nz _ (om) b me}

where we first used

nm+m—1

. mz+k _
lim H =mm
n—00 n
k=nm-+1

and then we applied the Stirling formula, see Corollary 3.28. O

3.7 A few integrals with a parameter

Proposition 3.17 Let t — f(t) be holomorphic for |argt| < a. Suppose
that € > 0 and

[f(I < Cl2™ [f(2) = f0) < Oz
Then for |arg z| < «

| o= e § = 10y 1og:

[ - sem®=( [ Lk

“ (o™ o107

d
| 0T =7002),

Proof.
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where in the final step r — 0, R — co. O

Here is a real version of the above proposition:

Proposition 3.18 Let f(t) be measurable on [0,00[ such that

| iroF <. /|f 01 <.

Then for z € [0, 00|
|- 1§ = 1o
0

Corollary 3.19 We have

logz = / (e7 — e_Zt)%. (3.62)
0

Proposition 3.20 We have the following integral representation of the Euler-

Mascheroni constant:
o0 1 1
= — — |d¢. 3.63
K /0 (et -1 tet> (3.63)

Proof. We have

/Ooo(let_lm dt = Z/ e tdt = Z—

o dt
/0 (1—e ™) — i = log(n +1).

Hence
v = lim (1+1+-~+l—log(n+1)) (3.64)
n—o00 2 n
L [e’e) (1 _ efnt) (1 _ efnt)
=Jm | (o e ) (3.65)

[ Gt [ (g oo

Now the second term on (3.66) is zero. O
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Proposition 3.21 (The Pringsheim formula)

1
1 1 1 o0 1 1 1ye 2t
— 4+ -log = = — dt .
7 T3983 /0 (1—e*t t 2) t (3:67)
< 1 1 1ye 3t
= - T4 dt. 3.68
/0 (et—l t+2> t (3.68)
Proof. Set
o0 1 1 1ye?
= ( _ = 7>—dt 3.69
/0 et —1 t+2 t (3.69)
1
o0 1 1 1ye 2t
= - — 4+ = dt. .
J /0 (et—l t+2> t (3.70)
Note that

1 1 1 1
et —1 ¢t + 2712
hence both integrands are continuous at 0 and therefore both I and J are
well defined. Change of coordinates yields an alternative expression for I:

t
> 1 2 1\ye 2
I._/O ( : —¥+§) —dt. (3.71)

ez —1

Now,

J=I+(J-1T)

_/°°< 1 1+1>etdt+/°0( 1 1 +1>e—édt
o Jo Net—1 t 2/t o \et—1 ot _1 t/ t

® g3 —et 1 o\ dt

= (7 — —€ )7

0 t 2 t
_t
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3.8 The logaritmic derivative of the Gamma function

The Weierstrass formula implies immediately that

logT'(z) = —yz — log z + = —log(1+ (3.72)
(a2
0. logl(z) = —y + i (L - = ! >7 (3.73)
=N +1 J7+=2
— 1

83 logl'(z) = - . 3.74
= Gr (3.74)

We also have

1 1

logI'(1) =0, logf(§> = §log m, O.logl'(1) = —7. (3.75)

Proposition 3.22

Fn+1+¢) —n'<1—|—e 'y—i-zl,))—i—O(eQ), n=12,..., (3.76)

1 |
[(—n+e) = ( 1—7+Zf,)+0(e), n=1,2.... (3.77)
Proof. First we note
0. logl(n+1) = —’y—i—Z

But I'"(z) =T'(2)0, logI'(z) and TI'(n + 1) = n!. This shows (3.76).

Next,
"1
=1+
=17

0, ( logT'(2) +

z+ n) z=-—n
But
8. (F(z)(z+n)) = () (2)+T(z2) = (z—l—n)F(z)@z(logF(z)+(2+n)_1).

|
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3.9 Asymptotic series

Suppose that a function f is defined on a set K (zp,7) N{a1 < arg(z — zp) <

ag}. We write
[e.e]
z) ~ Zaj(z —20)?,
7=0
if for any n there exists C), such that

‘f(z) - zn:aj(z - Zo)j‘ < Cplz — 2"
j=0

Obviously, if a function is given by a convergent series, then it is asymp-
totic to this series: if f(2) = > >72qa;(z — 20)) for z € K(z9,7), then

fz) ~ 2720 aj(z = z0).

Example 3.23 For —§ +e<argz < § —¢
1 > .
e = NZOZ].
§=0
Example 3.24 For —7 +te<argz <7 —ecand -] +e<arg—z< 7 —¢

% ZOZJ

1

In particular, all the derivatives of R > x — e «2 at zero vanish.

Example 3.25 (The error function)
Erf(z) := / e P dt.
0
Clearly, li_}m Erf(z) = /7.

Proposition 3.26 For —5 +e<argz < § —¢€
1 R
if — Erf(2) = / e Udt (3.78)
z

e (1+§: kl 3 22(22)12—1))

=1
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Proof. For simplicity, let us restrict ourselves to z > 0. We integrate by

parts:
X e L[ —t2\,—1
/e dt:—/ (O™ )t 1t
z 2 4

= iefz2 — 1 /OO e 124t
z

2z 2

]. 722 1 o0 7t2 —3
= —eF 4 e )t 3dt

22 22 . ( )

1 o 1 2 3 [ o,
= 28 S 722236 # + ? (S t—=dt.

Then we estimate:

> t2,—4 2 [ 4 21 3
)/ e "t dt‘ <e” / t *dt =% —2z7"°.
z V4 4

\/27? — Erf(z2) = e (% + O(Z—lg))

Continuing like this, we obtain the expansion (3.78). O

Therefore,

3.10 Binet’s identities
Theorem 3.27 (1st Binet’s identity)

1 1
log'(z) :<z - 5) logz —z+ B log 27 (3.79)

+/o°(1+ 1 1) L dt
- _ )t e
o \2 et—1 t t’

*° 1 IN o,
0. logI'(z) =log z + /0 (1 —i ¥>e dt; (3.80)
82logT'(z) = /OO e g (3.81)
# 0 1—et ' '

Note that the above integrals are convergent. In particular, the inte-
grands are continuous at 0:

1 1 1\ 1 1
i (L4 -1y L 32
e ta1 ) T 2 (382)
. 1 1 1
(=) =2 (3:83)
. t
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Proof. First we prove (3.81). Using (3.74) we obtain

[e.9]

2 logT'(z) = Z$

(n+2)?
= Z / Hztn)tqy
[e'e] te—tz
- /0 "t (3.85)

This proves (3.81). Hence,

oo _ 1 _
% logT'(2) :/0 e tzdt+/ ot t)te tzdt
1 & 1 1
= - — = )te "dt.
z+/0 (1—e t) ¢

We integrate this, using 0, logI'(1) = —:

0,log'(z) = 0, log'(1 / 82 logT'(y (3.86)
— D\ gy~
=—v+logz /0 <1 o E)e dt‘y:1 (3.88)
B & 1 1\ .,
— log —/0 (1 — ;>e at, (3.89)

where in the last step we used the integral representation of . This proves
(3.80). Therefore,

1 [, 1 11y,
8ZlogF(z)_lng_2z_/0 (1_e_t—¥—§)e 2dt.
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Hence,

logT'(z) = logF / Oy logI'(y

1 1 [#1

:10g7r—|—/ logydy—/ —dy — // —f—f) ~WAtdy
2 1 2 Ly 1—et ¢
11 + 1 l 1+ l + 1 L
5logm+2—logz—logo + o ogz+ log g
& 1 1 1 dt |y==

e D
0 1—e t 2 t y=3

1 e 1 1 1 dt
:(z—f)logz—z+ 10g27r+/0 (1—6_15_2_5)6_'52157

where in the last step we used the Pringsheim formula. This proves (3.79).
O

Corollary 3.28 Let € >0 and |argz| < 7 —e.
(1) The Stirling identity
. 1 1
zlggo <logF(z) —((z - 5) logz — z+ 3 log27r)) =0,
T
lim (2)

— =1
1 '
2900 ,Z=50—2./9

(2) Let

W=1—=-"7"7

Then f is bounded together with all its derivatives for t € [0, 00[ and

o
=> fat", |t]<2m
n=1

Moreover, the following asymptotic expansion of the Gamma function holds:

logI'(2) — ((z— %) 10g2—2+;log27r—zn:(j;_1j)!fj>

Jj=1

< Clz|™ L

Theorem 3.29 (Plana identity) Let m < n be integers, ¢(z) an analytic
function, |p(2)| < e=N™=l for € > 0 and m < Rez <n. Then

%gb(m) Fo(m 4 1)+ 4 6(n— 1)+ 2o(n) (3.90)
> ¢(n +iy) — ¢(n — iy) > ¢(m +iy) — ¢(m — iy)
_ / o dy + i e dy.
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Proof. Introduce the contours

Y+=[m ,(m+1)",...,(n—=1)",n",n+iR,m+ iR, m],
v =mt(m+1)*", ... ,(n—1)",nT,n—iR,m—iR,m].
Using
¢(2) ‘ _
Reseﬂﬂiz 1l = T o(k), keZ,
we obtain
9(2)
[ d(m + iy) ./°°¢(n+iy)
e 1/0 e — 1 dy +i ey — 1 dy
1 n—1
4P [ dat Jolm)+ 5 Y 60) + o)
j=m+1
9(2)
0 /7627”2_12 (3.92)
BNY R CELI PR L
Rose Jy 21 o e — 1

n (Z) 1 1 = . 1
_}_’P/m eZwiSchzldm + ng)(m) + B ' Z o(j) + qu(n)

j=m+1
Then we add (3.91) and (3.92), using the identity
(627riz . 1)71 + (ef2ﬂix _ 1)71 - 1.

O

Theorem 3.30 (2nd Binet’s identity)

% arctan &

1 1
logT'(2) :(z - 5) logz — z + 3 log 27, +2/0 @T—idt’ (3.93)

1 o tdt
. logI'(z) =1 - =2 3.94
9:logI'(z) =log z 9, /0 (22 + £2) (et — 1) (3.94)
1 1 o ztdt
2logT 4/ : :
0z logl'(z) = o2t ot (TR ) (3.95)
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Proof. (3.95) follows from the Plana formula applied to ¢(z) = (2 +t)~2.
Then we integrate it twice and we obtain

1 & arctané
Comparing with the 1st Binet’s identity for z ~ 0 we get A = %log 2,
B=-1.0

4 Homogeneous distributions in d =1

4.1 Homogeneous distributions of order —1 and 0

The function % is not in Li

ioes therefore it does not define a regular distri-
bution. However, it can be naturally interpreted as a distribution in several

ways:

P/iqﬁ(x)dx P == 1@)(/;+/6w)i¢(x)dx (4.1)

~ ( / ;+ / ) o) + / "2 (6(x) — (0)dr, (42)
. x)dz

¢(x)dx o( ‘
/(:r:iiO) _1{{%/ (z +ie)’ (4.3)

The letter P stands for the principal value and indicates that it is not the
usual integral. The Sochocki formula is relationship between three kinds of
order —1 distributions:

1
e R Ol

Here is an equivalent definition of the principal value %: Equivalently,

%:: ;((aziIO) * (x110)>'
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—ixk _ :Fi
/Q(ix)e dz = EFi0’

; 1
/sgn(x)e_“kdm = —21%,

/5(m)e_iwkd:n = 1,

e*lkx )
/x:ﬁ:iodx = TF2mif(+k),

e*lk‘aj
/ dr = —misgn(k),

—27if({)e™  ImA < 0;
/ (s —N)lds = {2mf(—€)e ™ Imh > 0;
—wisgn(g)e_iAg, Im\ = 0.

4.2 Homogeneous distributions of integer order

Define for n =0,1,2,...

r 1( 1 n 1 )
zrtl 2 \(z +10)7 T (z —i0)ntl )"

Clearly
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(4.5)
(4.6)
(4.7)
(4.8)
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/ e Ay = 27i"6™ (k), (4.12)

/x”@(:l:x)e_ixkd:n = im, (4.13)
/ z"sgn(z)e Wrdr = 2(—1)"+1n!kn1+1, (4.14)
/ 6 (z)e R = ik, (4.15)
/@i_;g;mdx - i%(;i!)nﬂkne(ik), (4.16)

/Z::rd:c = 7T(_;L)!nﬂ/~€"sgn(l€). (4.17)

4.3 Homogeneous distributions of arbitrary order I

For any A € C
(diz + 0)* := lim(Fiz 4 €)*.
e—0

is a tempered distribution. If ReA > —1, then it is simply the distribution
given by the locally integrable function

e 3 |52, (4.18)
The functions
x) = () (+2) (4.19)
define distributions only for ReA > —1. We can extend them to A\ € C except
for A= —1,-2,... by putting

1 . x
xj‘: = m( — e_laA(zFil' + O)A + eliA(iifE + O)A) . (420)
We will sometimes write x% instead of x7.. We have
+
oyt =g 2). (4.21)

Instead of o} it is often more convenient to consider

A

() = ﬁ (4:22)
= PO (82 (i 40— 8\ (i +.0)). (4.23)

Note that using (4.22) and (4.23) we have defined p} for all A € C.
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Theorem 4.1 The distributions pd satisfy the recurrence relations

Dop (2) = 2o} (@),

At integers we have

Their Fourier transforms are below:

[ e e = (g + 0

/ e 5 (FiE + 0)Mdé = 2mp T (w).

Proof. (4.25) follows from

n ln‘
pi" Y(2) = @12);' ((:n +i0)™" ! — (z F 10)—"—1> (4.26)
- (j;l) o ((x +i0)' — (z F iO)’1>. (4.27)

a

Theorem 4.2 Let —n —1 < Re\, A ¢ {...,—2,—1}. Then for any a > 0,

/ 2 é(a)dr = / P o(z)da

n—1

- [P (o - e 0) e

j:

SHW ) (-1
+JZ:%“HH¢ ZZ oFn- iy )

If —n — 1 < ReA < —n, we can even go with a to infinity

n—1

[ o= [ (o= S)dr (1)

42



Proof. We use induction. Suppose that the formula is true for A

/ dx—/mi@xgb(:v)dw (4.30)
= /00 220, ¢(x)dx (4.31)
"o (o) - S0 00 de
+ [ 0, (ota) 35 (0)d
§ 04 ) S (-1
+Za SEARYA )(O)Z :

=0 = (G-DMA+D) (A1)

Then we integrate by parts, obtaining the identity for A — 1. O

4.4 Homogeneous distributions of arbitrary order II

We also can define even and odd homogeneous distributions:

1
A : A : A
—( (= 4.32
]} = 2cos(g>\)(( iz +0)* + (iz +0)Y), (4.32)
1
A R A . A
|x|*sgn(z) = 218111(’27)\)( (—iz + 0)* + (iz + 0)%). (4.33)
The Fourier transforms:
i A—1
|k|*e 2k Ak = 105 : (4.34)
( A
2

s.gn(:lc)7 (4.35)

/|k])‘sgn(k)e_ixkdk =—

Especially symmetric expressions for Fourier transforms are obtained if
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we introduce

Moaa () = F(% + 1)71 (x—) Té

2
=i(2m) ' (- A)Z_%_% (G2 +0)* = (iz +0))

A1
2272

_ ﬁr(; +2) (@) - @),

We then have the following relations:

Batley = At Oaaa = Moy
any (@) = (A + Dndid (2), andga(x) = ni ! (2);
Fnee =y, Fgaq = —in;dﬁ‘l;
1 (—1)™V2
ey 2" (z) = W(S(M)(iﬁ)v m=0,1,...;
2/m
) (C1)"3
Noid () = 27 (1) §Em=U(z), m=1,2,
2/m
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(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)
(4.43)
(4.44)

(4.45)
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4.5 Anomalous distributions of degree —1

We introduce distributions which extend T\ = k3! and W
/ ki (k)dk = — / N log<k>¢<1><k>dk (4.47)
/ ok dk: + log(a)¢(0) + /OO (ﬁg{)dk (4.48)
=y\né(/€°°¢§€)+¢<> (). (4.49)
/ Eto(k)dk = — / ' log(—k)¢™Mdk (4.50)
0 o —a
=— 5 Mdk + log(a)p(0) — /OO d)gf)dk: (4.51)
—tim (- [ 60 (o) (15
1 _ _
i [ (4.53)
We have 1
== —k= + kT

For typographical reasons, sometimes we will write — for ki

Proposition 4.3 Here are the Fourier transform of various forms of ﬁ and
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the logarthm:

/k‘ile_izkdk: = —log(+iz +0) —y = —log |z| F lgsgn(:v) -7,

(4.54)

‘;eixkdk = —2log |z| — 27, (4.55)

/log |z]e %k dy = —7r|]1| —2my6(k), (4.56)

/ log(+iz 4 0)e *Fdz = —271'9(;;]{:) — 21y0(k), (4.57)
/ log(z Fi0)e *Fdx = —2rk! + (—2my F im)s(k), (4.58)

/log(x — Ne hdy = e_i)‘k( - 27?1{;1 + (—27y F iﬂ)é(k)), +ImA > 0.
(4.59)

Proof. We start from one of the formulas for the Euler constant. We change
the variable from k to yk, with y > 0:

—y = /Oooeklog(k)dk
= [ Motk
= 0 Ooe_ky Ooe_ky 0
— ylog(y) /O dk+y /0 log(k)dk
1 o]
_ ylog(y);— /0 (e — 1)) log(k)dk — /1 (Do) log(k)dk

1 —ky _ 1 oo —ky
- log(y)+/ edk+/ ¢ k.
0 k 1k

The rhs is analytic in y on the right halfplane. It is constant on the positive
halfline. So it is constant on the whole halfplane. Therefore, we can replace
y with iz. This proves (4.54), which implies (??) and (4.55).

By inverting the Fourier transform we obtain (4.56) and (4.58). We can
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also get (4.58) from (4.56):

/log(m$i0)e_izkdx = / (log || q:in(—x))e_ixkdx (4.60)
L (k) & (4.61)
= —mT— —27 T .
E (k +10)
1
= —27Tk— + (—2my Fim)d(k). (4.62)
:F
O
Here is an alternative approach:
1 1 1
— =i — — =4(k 4.63
L (e o), as
1 1 2
— =1 —— — =4k 4.64
%] J{%(\kﬂw ,0(8) (464)
Here is the computation of the Fourier transform by this method:
e—ikx e—ikm 1
~ 2 4,
[~ [ i (4.65)
1
=T'(v)(£ik+0)"" — " (4.66)
~ (2 =) (1~ viog(ik +0)) — (4.67)
v v’
~ —log(ik 4+ 0) — . (4.68)
4.6 Anomalous distributions of integral degree
Let H,, := % + % + -4 % be the nth harmonic number. Define
1 (FD" oy - npy 00 (k)
sgu(k) ng—n—
Theorem 4.4 We have
1 1 (F1)" 60 (z)
P 313% (:L‘jj”” o n! )’ (4.71)
o 1 (=1)" +1) 60 ()
|zt ll/lg% (]:):\1"‘”_” a v n! )’ (472)
sgn(z) . sgn(z) B ((—1)” — 1) (5(”)(33)
|z|t+n zllg(l) (]a:|1+”—’/ v n! ) (4.73)
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Proof. It is enough to consider only xjr"_l.

x—n—l—‘ru 2)dr = >~ (82+1x”)¢(113) T
[ ot ‘/o -1 (w—n)"

B ) $i¢(n+1)(x) N
_/0 S ECEDN

(
_ /°° (' = 1)t (z) da
o (1 -v)---(n-v)

> ¢+ ()
+/o Ca—0) )

_ /°° log(z)¢" ()
0

n!

1 ¢
+V(1—I/)~--(TL—V)

/xjr" Lo(x)dx

(n)
1600 o0
v n!

H, . + O(v).

|

Theorem 4.5
[ tmar = [ (60 - > 5 600))as
[ (o) Z = g0(0))da

(4.74)
(4.75)
(4.76)
(4.77)
(4.78)

(4.79)
(4.80)

(4.81)

(4.82)

Proof. Let a > 0. If we assume that Rev > —1, then we can use (4.28)
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with n replaced with n + 1:

1

Oo+
:/a #qﬁ(w)da:
A= COR 'no L0 0))ds

n

=3 ammHtrgl (o 1

NMQ

§=0
The last term of the sum in (4.84) is

n—1

1
; n—0Dn—-I0l-v) - (n—v)
_ re™ 1
L py )
= om)

+§¢<n><0>i,+log< J6(0) 1+ o (O) 2+ 0)

= 6M(0)- +log(a >¢<"><o>%+0<u>.

Thus we have proven that

[artotoe = [T ot

# [ (o0 = 5000 e

n—1

]—l Nn—1l—-v)--(n—v)

=0 1=0

¢™(0)

n!

+ log(a)

Then we take a — oo, noting that

/ ztdz = log(a).
1
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(4.83)

(4.84)

(4.85)

(4.86)

(4.87)
(4.88)

(4.89)

(4.90)



|

Proposition 4.6 The Fourier transform:

/ ki lemiTkdg = (:F;:f) ( ~log(+iz +0) —~ + Hn> (4.91)
_ (Fix)" i
o (—toglal = Seen(a) =7+ Hn> (4.92)
Proof. We use (4.71):
00 e—i:ck oo e—izk (:Fik?)n

——dk =i dk — 4.93
/0 fn+1 111{4% (/O kl+n—v vn! ) ( )

_ , nv _ (Fik)"
= 31{‘1% (F( n+v)(£iz +0) - ) (4.94)

= lim (=" (1 v+ Hn> (+iz)" (1 — vlog(+iz 4 0)) — (Fik)"
N0 n! v vn!

= (jF:f) (= + H, —log(<iz +0)). (4.95)

4.7 Infrared regularized distributions

Theorem 4.7 Letn-+1>2a >n. Then

oy 0(k)
w2 = (m (4.96)
- F(ai%f%)r(%Jr%) Ne)
) ; g (1Y) (4.97)
Proof. Clearly,
p(k) ., [ 1 nlyg 0
e 46 = /0 ,@(M) _jzoﬁd)] (0))dk (4.98)
is the limit as m — 0 of
00 1 n—1 kij '
/0 E+m2)e (¢(k) - Z;) ﬁdﬂ)(o))dk. (4.99)
j=
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Now

/°° kI G — Fla—4-Hri +1)

o (k24 m?)e 2m?2e=i—11 ()

O

Theorem 4.8 Let2p+1>2a>2p—1,p=1,2,.... Then

1y (;
k20~ m5o \ (k2 + m2)e

—20421+1 (_l)l

p—1 3
- —n (21)
; F(Oé) sin (7‘((@ _ %))QQZZ'F(% Y l) 21 ( ))

Proof. Clearly,

k 1 e
i(ga) dk = / 2 (0k) - 3 )k

is the limit as m — 0 of

1 L]
| g (o100 - >y 0)

Now

1 / k2l m72a+2l+1r(a —_]— %)F(l + %)

@) @rmre = T(a)(20)!

ng72a+2l+1(_1)z

~ D(a)sin (m(a— 1))2200(E —a +1)

|

Theorem 4.9 Letn =0,1,.... Then

1 0(k)
T H>10< 2 2241
+ m (k2 +m?)z"2
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(4.101)

(4.102)

(4.103)

(4.104)

(4.105)

(4.106)

(4.107)
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(4.109)



Proof. Clearly,

[0
kY
is the limit as m — 0 of
n—1,;
o0 1 ko
_ M 4)
| G (00 = 3 5000 a
7=0

_ /1 ™)
0 (k2+m2)%+% n!

Now for n = 2p + 1 we have

1 k2p+1
/0 CET

S k% Lotk
S +/ LI
2j(k2+m2)ilo  Jo k*>+m?

j=1
j=1
= _%Hp log(m) 4 o(m°).

For n = 2p we compute

1 k.Qp
|
0 (k? + mQ)P+§

k,2]+1

' /1 1 dk
e R ———
=0 (27 + 1)( k2+m2)]+% 0 Jo (k2—|—m2)%

1
=-> — - —|—10g(1—|—\/1—|— 2) —log(m

=~ Hy(5) +108(2) ~ log(m) + o(m®).
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(4.111)

(4.112)

(4.113)

(4.114)

(4.115)

(4.116)

(4.117)

(4.118)

(4.119)

(4.120)



4.8 Distributions on halfline

We will denote by C*°[0, oo[ smooth function having all right-sided deriva-
tives at 0. We set

CF10,00[ := {¢p € C®[0,00] : ¢ D) =0, m=0,1,...}, (4.121)
C[0,00[ := {p € C°[0, 0] : ¢*™(0) =0, m=0,1,...}. (4.122)

Sn[0, 00[, Sp[0, co[ have obvious definitions. We set S [0, oo[, S;[0, co[ to
be their duals.

Note that 9, and the multiplication by & map Sn[0, o[ into Spl0, 0o]
and vice versa, as well as S0, oo into S[,[0, co[ and vice vera.

The cosine transformation with the kernel

In(z, k) = \/Zcos(xk)

maps S( [0, co[ into into itself. We have
Likewise, the sine transformation with the kernel

In(z, k) = \/zsin(mk)

maps S}, [0, co[ into into itself.
Let I¢(x) := ¢(—x). I maps S(R), as well as extends to a map of S'(R)
into itself. We will write

Sev(R) :=={¢ € S(R) : Ip = ¢}, (4.123)
SL(R):={\e S (R) : IX= )}, (4.124)
Soaa(R) = {¢ € S(R) : I¢ = —¢}, (4.125)
'R :={Ae S (R) : Th=-\} (4.126)

If ¢ € Sx[0, 00|, we set
¢w®%:{mm 20
z <0.

Note that ¢V € Sev(R).
If A\ey is an even distribution in §’'(R), then we can associate with it a
distribution in S0, co[ by

1

/Ooo AN(z)p(x)dr = 2/)\ev(x)¢evu)d$‘
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Similarly, if ¢ € Spl0, oo[, we set

d)Odd(x) — {(]5(.%‘) x 2> 0;

Note that ¢°d9 € Syqq(R).

If Aoqq is an odd distribution in S’'(R), then we can associate with it a
distribution in S};[0, co[ by We set
= - 1 odd
Ap(z)d(z)dx := 5 Aodd ()% (z)dz.
0

The usual Fourier transform F preserves Sey(R) and Soqq(R). The Fo-
urier transform on even distributions is closely related to the cosine transform
and on odd distributions to the sine transform:

FNAN = (}—)\)N, A E Sév(R), (4.127)
FpAp = i(FA)p, A€ S q(R). (4.128)

An example of an even distribution is 7e,. Let ny denote the correspon-
ding distributtion in S0, col.

Likewise, an example of an odd distribution is 7,qq. Let np denote the
corresponding distributtion in Sj[0, ool.

We have

P = Fond =157 (4.129)

5 Homogeneous distributions in arbitrary dimen-
sion
5.1 Sphere S !

Consider the Euclidean space R, Introduce two varieties of spherical coor-
dinates on a d — 1-dimensional sphere

(Og—2,...,01,0) € [0,m] x -+ x [0, 7] x [0, 27],

(wd—Qa v 7w1’¢) € [077T] X X [0,7’[’] X [O’ 27T[7
with w; = cos 6, The spherical measure on S s
sind_2 (gdfgd@dfg - -sin 91d91d¢
= (1 —w2 )@ 2dwy_5---dwdg.
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Theorem 5.1 The area of the d — 1-dimensional sphere is

2
|Sd—1‘ = P
(%)
or, in a more elementary form,
27Tm+1
Somt1| = ———, m=0,1,...; (5.1)
m!
2™
ISom| = > m=0,1,.... (5.2)
(3)m

Proof. Method I. We compute in two ways the Gaussian integral: in the
Cartesian coordinates

/ex%“'x?idml coedrg = Wg,
and in spherical coordinates:
e 1_/d
]Sd1]/0 e i1y = §F<§) (5.3)

Method II. We compute the area of the sphere in the spherical coordina-

tes: - - o
Sur| = / sin?2 64 ydy_1 - / Sin gad g / don
0 0 0

Then we use

T F@ 2
/sink_lqﬁkd(bk—\w, k=2,...,d—1; / d¢y = 2m.
0 0

5.2 Homogeneous functions in arbitrary dimension

Theorem 5.2 Let —d < \ < 0. Then on R?

. [(2Ed) ¢ 1-r—d
/ |z[te %8 dg = t ( 2)\ ) ’§‘ : (5.4)
I'(—-3%) 2
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Proof. We use the spherical coordinates:

/|x’\e_i$£dm (5.5)
00 ™ )
_ / d’l“/ d¢d_1r)\+dfleflr|§|cos¢>d,1r)\+d71 Sil’ld72 ¢d—1|Sd—2| (56)
0 0

= T(A+d) /0 : ((i\ﬁl cos g1+ 0) " + (—il¢| cos pa1 + or“’) sin”? ¢g_1ddg_1[Sa—2|

A+
2

d \Nooiaea [2 o -
= F(A—l—d)?cos( ﬂ)]f\ A d/ cos My sin? 2 py_1ddg_1|Sa—a|-
0

Then we apply

or'T
m
’Sd72’ = d—11"
I(%
s “A—dt1\p(d—1
2 ad d-2 1T( I'(%%)
cos ¢dg—15n"" " pg_1dpg_1 = = )
/0 2 (-3
A+d A+d+1
TA+d) = = doiaip(2E )F( ret )
2 2
cos (Jﬂ') = T
2 F(A—Fg-‘rl)r(—)\—Qd—i—l) )
and we obtain (5.4) O
In order to express (5.4) in a more symmetric way, define
1 2\ %
A - Bl _
n (x).—F(AJZFd)(2> . A> —d.
We extend it to A < —d by setting
—2m —2)" m
() = L A ). (5.7
(= 2)m
Then
Ft =4,
22 = (A + )2,
At = M2 (5.10)



5.3 Renormalizing the |k|~¢ function

Define the distribution |[k|~¢ on R%:

—d o —d . —d
P/]k\ o(k)dk = /|k|<1]k\ (o(k) ¢(0))dk+/ |k| "o (k)dk..

|k|>1

Theorem 5.3 We have an alternative definition of |k|~%:
R = lim (187 = (k) ). 5.11
= = 1 (18 (k) (5.11)

Here is its Fourier transform:

r'(%) /’k‘deikzdk — _log (f) i liﬁ(g) _ 17

o 2) T27\2) 2
= —logr — 7, d=1,;
=—10g(§>—% d=2;
1. /1
:—logr—’y+§Hm<§), d=2m+ 1,
T 1
= —log (5)—7+§Hma d=2(m+1).
Proof. .
2m2
k|~vdk :/ k71 AE|[Sq_1| = : 5.12
| RIS = S 612
This proves (5.11).
/ |k|~dtve=ikzq (5.13)
d
r\—v m2I(%)
= () ——2& 5.14
&) -y .
T 5 v, ,d 2
m
< (1) o (1 D) )
d
or2 /1 1 gdy 1
~ T (7 -10e(3) + 30(3) - 3) (5.15)
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6 The Laplace method

6.1 The basic Laplace method

We consider an integral
b
I\) = / f(x)e@) dz.
a
for large A. We assume that f is once differentiable, ¢ is 3 times differentiable.
We also assume that ¢ has a global maximum in x¢ €]a, b[. Clearly, ¢'(zg) =

0. We assume that ¢"(zg) # 0. Obviously, ¢"(zo) < 0.
In a neighborhood of zy we have

8(z) = 9lwo) + 36" (20)(x — o) (6.1)

The biggest contribution to the integral on the curve ~ comes from a
neighborhood of zy3. We obtain

IN) = /[ b]f(:c)eWI)dx

| Hageetenrie ey

_ Ab (o) r
TN Sy

This can be formulated more rigorously:

Q

Theorem 6.1 Under the assumptions described above,

lim I\

A—00 f(xo)e)\d)(a:o) %

=1. (6.2)

Proof. Without limiting the generality, we can assume that ¢"(x¢) = —1,
d(zg) = 0 and zo = 0. We will find € > 0 such that for |z| < €

£ (@) = f(x0)| < cfz], (6.3)

6(0) + 2| < claf® (6.4
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Now

o) ac2
I(\) — / e Mrde =T+ 11+ IIT+1V,
I= / f(x)e @) dyz,
]a"b[\[_e’e[

1= [ (1)~ fa0)e s,

€ 12
111 = f(xg)<e)‘¢(z) — e_>‘7>dm,
e zz
IV = e M7 da.

R\ [—¢,¢€]

Now, with various constants ¢; > 0,
1] < |b—ale™,
|[I1] < cz/\x|e)‘¢(‘r)dx < 02/x|e’\63m2da: < %,

€
|[I11| < 05/ )\\x?’]e_)‘%x?dx = %,

—€

[TV| < e,

To obtain (6.12) we used |e® — Y| < |x — y|e™*(@¥) O

(6.10)
(6.11)

(6.12)

(6.13)

6.2 The oscillatory Laplace method (the stationary phase

method)

We consider now the integral

/f(x)euw(z)dx.

for large X\. We assume that f and ¢ are smooth and f is compactly sup-
ported. We also assume that 1 has a unique critical point xg € suppf, that
is, ¥'(x9) = 0. We assume that the critical point is non-degenerate, that is,

V" (x9) # 0.

i . 2w
1>\¢(z) ~ 1)\¢($0) [
s f(z)e" ¥ dz f(xo)e (o)

. im 7 2
_ iMp(20) , sgnyy’/(zo) [ 27
= xTo)e e4 .
flwo) AlY" (o)
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The proof of the previous subsection is no longer valid. First, we have a
problem with estimates far from the critical point. We can no longer use the
exponential decay. Instead, we can use rapid oscillations, which lead to small
errors by repeated integrations by parts. More precisely, suppose that x is a
cutoff function equal to 1 in [xo — 5,20+ 5] and 0 outside of [zg — €,z + €].
Set

f@) = fl@)x(@),  fa(2) = f(@)(1 - x(2)).

Note that [¢'(x)| > ¢y on suppfa. Now

b
[ s o
aonre ) b )
:/ fl(x)el’\w(x)dx+/ fo(z)e™ @ dy. (6.15)
To—€ a

For the second term of (6.15) we use the identity

; . .
B 0,eM4(@) _ (iro(x) 6.16
A¢!(x) o

hence / fo(z)e™¥ @ dg = / fa(z

:/ (o) (fz( )W( )>da: = O(A*l). (6.18)

a

@Az (6.17)

Repeating integration by parts, we can show that this term is O(A™") for
any N. This trick is sometmes called the non-stationary phase method.

For the first term of (6.15), in order to improve error estimates it is useful
to change the variable, so that for |z — z¢| < €

P(x) = (o) — ¥° (6.19)
Then we have
xo+e€ .
/ fi(z)e™ @ dg (6.20)
ro—€
= [ Ay i a4 [ fagdentay, o)

dz(y)

fitw) =5 (Aw) 552 = ran). (6.22)

Changing the variable ¢t = y? and Integrating by parts we show that the first
term of (6.21) is O(A71).
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6.3 The analytic Laplace method (the saddlepoint method)

Consider now the integral

I\ = / ’ f(x)e @ dy

for large A under analyticity conditions. We assume that f, ¢ extend to
analytic functions on €, which is a neighborhood of [a,b] in C, and that we
will find a path v C Q that connects a and b passing through a point zg
where ¢'(z9) = 0. We assume that at zy the function Re¢ restricted to v has
a maximum and ¢”(zp) # 0. In a neighborhood of zy we have

1
P(2) = ¢(20) + §¢"(Zo)(z — 20)%. (6.23)
Let || < T i¢"(20) = —[¢"(20)|e™2¥. Let us introduce the coordinates
R2 5 (t,5) — 2 = 2o + (t +1is)e¥.
(6.23) can be rewritten as
1 .
?(z) = ¢(20) — §|¢”(Zo)\ (752 — 4 21ts) .

Hence level sets of Re¢ around zy presemble level sets on a saddlepoint (a
mountain pass).

The biggest contribution to the integral on the curve ~ comes from a
neighborhood of zy. Besides v can be replaced with the line R > t — 29+t
We obtain

) = / F(2)eM9d

/OO f(Zo)e)“ﬁ(ZO)*%|¢>”(Zo)|tzeiwdt

Q

_ (o) 2w
= S N o
_ A¢p(z0) 2

- f(ZO)e _)\qb//(zo) °

Arguing as in the previous subsections we can show
Theorem 6.2 Ander the assumptions described above,
I(A

lim ()

A—00 f(ZO)e)\qb(zO) %

=1. (6.24)
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6.4 Asymptotics of the Gamma function at infinity by the
saddlepoint method

Theorem 6.3 Let e > 0. For |argz| < § — € we have

I'(z+1)
Nttt
eZ

lim

Z—00 27T

=1. (6.25)

Proof. We have
[o¢] o0
[(z+1) = / e A dt = 22 / ") dy,
0 0

where

We compute:
1
Qub(u) = 1+ -, Ro(u) =

Hence ¢(t) has a unique stationary point: for ug = 1. We have

$(ug) = =1, Diop(ug) = —1.

Therefore, the saddlepoint method yields

(o) ZZ
Tz + 1) & z7He26(w) / e320t0) gy — 2\ /o
z

oo e

6.5 Asymptotics of the Beta function at infinity by the sad-
dlepoint method

The asymptotics of B(u,v) can be obtained from that of I'(z). It can be also
computed directly by the saddlepoint method;

Theorem 6.4 Let e > 0. For |argu| < § —¢, |argv| < § — €, we have

B 1 1
i (u+1,v+1)

W00 | [ ubt1/2yvt1/2
27T (u+v)u+v+3/2

=1 (6.26)
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Proof. Clearly,

1
B(u+1,0+1) = / ¥y,
0
where
P(t) :==ulogt+vlog(l —1t).

We compute:

u v 9 u v
1) = — — )= —— — — .
atd}( ) t 1—¢’ 8t1/]( ) +2 (1 _ t)Q
Hence 9 (t) has a unique stationary pint: for to = .4, and
_ _% B P U
Y(ty) = ulog <u+v> + vlog (u+v>’ O (o) = -

If Reu > 0 and Rev > 0, then Rey(t) — —oco where ¢ approaches 0 or 1.
Thus it is easy to see that deforming the contour [0, 1] we can obtain a curve
v starting at 0, ending at 1 and passing through ¢y so that Rewy(t) attains
along this curve its maximum at ty3. Hence

Bu+1,v+1) = /ew(t)dt
g

~ / W (to)+ 0" (t0) (t—t0)? 34
8

U v ) v 2muv 1/2 Nor wuTL/2qv+1/2
N(u—i—v) (u—l—v) ((u+v)3> N W(u—i—v)“+”+3/2'

6.6 Matrices

Let ¢ = [c;j] be a d x d matrix. It defines a quadratic form defined for
r=[r;] € R as

d
TCT = E TiCijZy.
1,j=1

Every matrix by a change of coordinates y; = Zle aj;x; can be reduced to
a diagonal form:

d
xrexr = Z Ni(i)%
i=1
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The number of positive and negative terms on the diagonal does not depend
on coordinates and defines the signatures of a matrix (d4,d_). Obviously,
d > dy + d_. The index of ¢ is defined as indc := dy — d_.

We say that ¢ is non-degenerate if for any x € R?, z # 0, there exists
y € R such that

d
yexr = Z yicijx; # 0.
i,j=1
Equivalently, dy + d_ = d.
Assume that R? is equipped with the canonical scalar product z -y :=
Z?:1 z;y;. The matrix can be reduced to a diagonal form by an orthogonal
transformation. The sequence Aq,...,Aq up to a permutation does not de-

pend on the choice of such an orthogonal transformation. The determinant
does not change under such a transformation. Hence

d
det[cij] = H)\z
i=1
We say that a matrix ¢ is positive definite if for all z € R¢, = # 0,
xex > 0.

Equivalently, d4 = d.
6.7 Multidimensional Gauss and Fresnel integrals

Suppose that the matrix c is positive definite. Then

d
2

(NI

(6.27)

/dxexp(—xca}) =mz(detc) 2.

In fact, we make an orthogonal transformation diagonalizing c¢. We then
have dz = dzy - -dxy = dy; - - - dyg = dy so that (6.27) is

d d
Javes (- a00) = T [ eran- 115
i i=1 i=1 v

If ¢ is a nondegenerate matrix, then

lim da - - - dzgexp(izer) = 7%/2e 79| det c\*%. (6.28)
R—o0
|z|<R
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6.8 Multidimensional Laplace method

) = /@ f(2)e@ da,

for large \, where © is a subset of RY. We assume that ¢ possesses a global
maximum inside © at the point & belonging to the interior of ©® and is twice
differentiable at . We assume that the Hessian (the second derivative) of ¢
at 7, denoted V2¢(&), is negative definite. Then V(%) = 0 and

Consider the integral

)

Q

/f ) exp | Ao(@ va 2= )2, — 7)) | da

3,j=1

NI

— @ (2;) (det(~26(@) .

Note that we did not require nor used analyticity of the integrand. Of
course, the saddlepoint method has also a multidimensional analytic version,
in the spirit of Theorem 6.2, which we will not describe here.

6.9 Multidimensional stationary phase method

We assume that f and ¢ are sufficiently smooth. For large A we consider an

integral of the form
A) = / f(x)e**@) dg
(C]

where © is a subset of R?. We assume that ¢ possesses a unique critical
point in © at point Z belonging to the interior of ©. This means V¢(z) = 0.
We assume that the Hessian of ¢ at Z, denoted by V2¢(Z), is nondegenerate.
Then

ey

Q

/f Z)exp | iAp(Z ZVV(;S xi — &) (x5 — &) | do

zgl

d
ST T 3 T 2 _l
= f(3) TV N (QI) [det V2(@)| 2.
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6.10 The diffusion equation and the Schrédinger equation

The following equations differ only by the presence of the imaginary unit:
the free Schrédinger equation

.d 1

and the diffusion equation (also called the heat eqution)

d
&ft(iﬁ) = kA fi(x).

Introduce the momentum operator p; = —iV,,.. Then —A = p2. The
Schréodinger equation can be generalized to a dispersive Schrodinger equ-
ation, where w is an arbitrary smooth function:

d

i&\I/t(m) = w(p)¥s(x).

It is solved by
U, = ey,

Let us introduce the Fourier transformation in the unitary convention:

Be) = 2m) ¢ [ W@,

U(z) = (27) % / B (£)e*Ede.

It diagonalizes the momentum:

A

pU(€) = €U ().

More generally,

Therefore,

Mamy [ |¥|?(z)dz = [|¥o|*(x)dz.
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In the position representation
W) = [ Ui = ) o(w)dy,
Uy(z) = (2ﬂ)d/eitw(£)+ix§d€.

In particular, for the free Schrédinger equation with m =1

d i(z—y)?

\Ilt(a;):/(27rti)2e 2 Wo(y)dy.

For the difusion we obtain

d _ (z—y)?
2

fi(x) :/(471%15) et fo(y)dy.

Note that
(1) [ fe(z)dx = [ fo(x)dz;
(2) fo > 0 implies f, > 0;

(3) [1filP(@)dz = [|fol*()dw.

6.11 Legendre transformation

Let Q be an open convex subset of R? and

D3&—wl@eRr

(6.29)

(6.30)

(6.31)

a convex C? function. More precisely, we assume that for distinct &;, & € Q,

S #&, 0<7 <1,
Tw(€1) + (1 = T)w(&2) > w (76 + (1 —7)&2).

Then
Q3 &m () = Vw() e R?

(6.32)

(6.33)

is an injective function. Let € be the image of (6.33). We can define the

function

Q3v—£&w) e

inverse to (6.31). The Legendre transform of w is defined as

@(v) = v§(v) —w(E(v)).
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Theorem 6.5 (1) Va(v) =£&(v).

(2) V2o(v) = Vué(v) = <ng(§(v)))il. Hence @ is convex.

(2)
V20(v) = Vi€(v) = Veu(£(v)) ™ = (VEo(E(v))) ™
(3) ~
5() = €u(€) — v(€)E(W(E)) + w(E(w(€))) = w(v).
O

Example 6.6 (1) @ = R?, w(¢) = 3¢ —a)m (¢ —a) + v,
o) = %fmf +a€ —wv.

Q = R4,

2) @ =R% w(é) = V/E+m2, Q={veR : v <1}, &) =

—myv1— 2.
(3) Q=R, w(&) =€, Q=]0,00[, @(v) =vlogv —v.

6.12 Dispersive semiclassical Schrodinger equation

Introduce a small parameter h. Let us change slightly the definition of the

momentum and energy:

pi = —ihV,,, E =ihd,.

The dispersive Schrodinger equation in the semiclassical setting is

. d
1halllt(x) = w(p)Vy(x).

It is solved by
itw(p)
Uy=c n W

(6.34)

It is also conveneient to introduce the semiclassical Fourier transformation:

() = (QWh)_g/\Il(:U)e_mn&dx,
() = (2m)—3/¢(5)e v de.



Here are its properties:

/ U(w) Pdr = / W (e)[2de,
w(p)

U(E) = w(@V().

We have
Wy(z) = / Us( — 9)¥o(y)dy, (6.35)
Us(z) = (2rh) ™ / o T e, (6.36)

6.13 Semiclassical limit of dispersive evolution

Assume that W¢(x) evolves according to (6.34). We would like to find the
propagation for small / in function of W
Let v(§) and w(x) be defined as in Subsect. 6.11. Write W;(x) in the

o () = (2nh) ¢ / exp <lwt(x £)> (6

P, §) = —tw(§) + €.
We use the stationary phase method:

Veh(w,€) = —tVew(€) + =

Hence the critical point is at

where

z
t

Vew(€) =: v(9), (6.37)
¥ (2, 6(%)) = 26(5) —tw (£(%)) = tw(%). (6.38)

where we introduced the group velocity v(§) and the Legendre transform of
w(§), that is, w(v). Besides,

Vid(@,§) = —tViw(€) = —tVe(§).
The stationary phase method yields

Uy(x) ~ (20h)7%(27h)% exp (i%indV@(ﬁ(%)) (6.39)
Xt_% |det Vuf(%)) ‘% exp (i@(f)) \i/() ({(%)) .

Thus the wave packet with momentum & travels with group velocity v(&)
and its phase is given by the Legendre transform of w. Note that the L2
norm of the rhs of (6.39) does not depend on time.
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6.14 Wave and Klein-Gordon equation

The following equation for m # 0 is called the Klein-Gordon equation and
for m = 0 the d’Alembert or wave equation:

XV (t,x) = (A —m?)U(t,z). (6.40)

Theorem 6.7 V(t,-) and 0,V (t,-) for t =0 determine uniquely a solution
of (6.40) in all times by the formula

U(t) = —0,G(t)¥(0) + G(t)0:¥(0),

where the propagator G(t) is given by
Gt) = (—=A+m®) Zsin(tvV/—A+m?).
Proof. (6.40) can be rewritten in the form
<i(3t . m) (i@t n m) U =0

If W is its solution, we introduce

U, = % (1 Fi(—A+ mZ)*%at) .
Then ¥ = ¥, + ¥_ and

(i@t +V-A+ m2) U, =0

Hence

\I/i(t) =t 7A+m2\11:|:(0).
Therefore,
U(t) = VA (0) 4 VAT (0)

1 . .
_ i(ewm e VAT g )

+% <_(A + m2)—%eit\/T+m2 + (—A + m2)—%e—it\/T+m2) 61}‘1’(0)
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