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1 Hilbert spaces

1.1 Hilbert spaces

Let V be a vector space equipped with a scalar product v,w +— (v|w). It has then the norm

|lvl| = (v|v)%.We say that V is a Hilbert space if V with metric d(v, w) := ||v — w|| is complete

Example 1.1 Consider a measurable function Ja,b[> x — p(x) > 0. (a can be —oco and b can
be +00). We define L?([a,b], p) as the space of measurable functions

f:la,b) = C

such that

b
[ 11@Pota)dr < o

It is a Hilbert space if equipped with the scalar product

b_____
UW%:/ ﬂ@m@M@®afy€L%MMm)

Example 1.2 Let f,(z) =n®ze ™ and 1 < a < 3. Then sup f,, = oo and || f[2 = 0.

1.2 Orthogonal bases

Let V be a Hilbert space For W C V), the orthogonal complement of W is

Wh={veV : (wp)=0, weW}.

Note that W+ is always a closed subspace of V.
Let {f1, f2,---} € L?([a,b], p). We say that it is an orthogonal system if

(fn|fm) = 07 n 7& m.



If in addition (f,|fn) = 1, then we say that it is an orthonormal system.

We say that {f1, fo,...} is an orthogonal basis in V, if it is an orthogonal system, all its
elements are nonzero, and {f1, f2,... }+ = {0}.

We say that {f1, f2,...} is an orthonormal basis in V if it is an orthonormal system and
{fi, fas... 3= = {0}

Obviously, if { f1, f2,- - } is an orthogonal basis, then we can transform it into an orthonormal
basis by replacing f,, with H}C—Z”

Theorem 1.3 Let (f1, f2,...) be an orthonormal basis.

(1) Let (c1,c2,...) be a complex sequence such that

D leil? < oo (1.1)
j=1
Set .
hy, = Zijj. (1.2)
j=1

Then there exists h € V such that ||h — hy|| — 0.

(2) Let h € V. Set ¢j := (fjlh). Then (1.1) is true and if we define hy, as in (1.2), then
1A= hn]| = 0.

Proof. (1) For n > m we have

n

1B = hm||” = Z ‘Cj|2- (1.3)

j=m+1
From (1.1) we see that (1.3) converges to 0 when n,m — oco. Hence the sequence (h,) is a

Cauchy sequence. We know that the space V is complete. Therefore, (hy,) has a limit.
(2) First we check that
n
>l < Al
j=1

Hence
oo

> el < [hl?.

j=1
Therefore, (1.1) is satisfied. By (1) the limit h := lim,, o hy, exists. We check that (h—h|f;) = 0,
7j=12,.... Hence h—h=0. O

We will write
oo

Z ijj = h,

J=1

where h is defined as in the above theorem.



Example 1.4 In L?([-7,7]), e, = €™, n € Z, is an orthogonal basis and (e,le,) = 2m. If
f € L*([-n, 7)), we obtain

where

o= | f(o)e7"?d¢
are Fourier coefficients of f.

Example 1.5 Another related bases in L?([—n, 7)) are f,; := cosng, f, :=sinng,n=1,2,...,

(fEIfE) =7, fo:=1, (folfo) = 2.

Example 1.6 In L%([0,7]) we have an orthogonal basis ¢, := cosng, n = 1,2,..., (calcp) = 5

co =1, (colco) = 7. Another orthogonal basis in L*([0,7]): s, :=sinng, n =1,2,..., (sn|sn)
s

5.
There are functions, which have a more convenient expansions in cosines, other in sines:

= cn = — —_— 8
"7 2m 41 2"t

m=0
. 1 1 1
sing = s1= w"; <2m— 1 2m+ 1)C2m'

1.3 Fourier series
Example 1.7 h(¢) := (a —e'®)", a > 1. Then

- 2ra™ ", n=0,1,...;
0, n=-1,-2,....

Example 1.8 h(¢) := (e!* —a)™!, a < 1. Then

“ 0, n=20,1,2,...;
2ra™", n=-1,-2,....

Example 1.9 h(¢) := ¢. Then

. i2m(—1)"
hTL = n ? n # 0
0. n=0.

This follows from h(¢) = —ilog(1 + €) +ilog(1 + e~i?).

If we sum up

helnd
By (@) = Y 5 —
lil<n



then we will notice in the neighborhood of ¢ = 4 the so-called Gibbs phenomenon: the function
h(y) “overshoots"” the functioni h. In fact,

sin 6]

h( )( 7T+€ _—22

In a neighborhood of discontinuities of i we notice "‘wiggles"” of h(,), which get narrower as n
increases, but which does not reduce its height. This wiggle has a universal limiting shape. In

fact . .
. C S180
Jim gy (<7 + ) = —2/0 “Laa.

Thus if a function has a discontinuity of the form of a jump aw, in the partial sum of the
Fourier series there will be a jump 2ac, where ¢ = foﬂ = £dx > 7§ is the so-called Wilbraham-Gibbs
constant.

1.4 Orthogonal projections

We say that an operator P is a projection if P2 = P. A projection P is called orthogonal if
KerP = RanP~*. Equivalently: P = P*. We then say that P is the orthogonal projection onto
RanP.

If v is a nonzero vector, then the orthogonal projection onto Cuv is

_ o(vw)
B =)

|v) (v]
(vlv) *

Ifi v1,...,v, is an orthogonal basis of a subspace 1y, then the orthogonal projection onto Vg

ZW (vj
= UJ"UJ

is

Example 1.10 Consider L?([—m,7]). The orthogonal projection P, onto the space spanned by
€% 2 |j| < n has the integral kernel

gin Cr+D(E=1)

Py(¢,v) = W
7

27 sin ~——~

Example 1.11 Consider L%([0,7]). The orthogonal projection P, onto the space spanned by
sinj¢, j =1,...,n has the integral kernel

siny 2ntD(@+0)

Pn(¢7 ¢) - <217+¢

27 sin

(2n+1)(6=¢)

_sin 5
=1 1/)

27 sin



1.5 Gram-Schmidt orthogonalization

Let (g1,92,--.) be a sequence of linearly independent vectors in the Hilbert space V. Let V,, be
the subspace spanned by ¢g1,...,9,. Then V,, has dimansion n and V; C Vo C ---.
We define inductively

f] f]’gn _p
Z T O e

where P, is the orthogonal projection onto V,,. Then (f1, fo,...) is an orthogonal system.

2 Orthogonal polynomials

2.1 Density of polynomials in a weighted space

Consider the space L?([a,b], p) defined in Example (1.1) Recall that

b
P(atlp) ={f: i Tl [ 1Pows < oo}

with the scalar product

Suppose in addition that

b
/|a:|"p(:n)d:n<oo, n=0,1,....
a

Then the monomials 1,z,22,... are a linearly independent system in L?([a,b],p). Applying
the Gram-Schmidt construction we obtain orthogonal polynomials Py, Pi, P»,.... Note that
degP,, = n.

There exists a simple criterion which allows us to check whether it is an orthogonal basis.

Theorem 2.1 Suppose that for a certain ¢ > 0

b
/ e®lp(z)dz < oo.

a

Then polynomials are dense in L?([a,b], p). Hence, Py, Py, ... are an orthogonal basis of L?([a, b], p).

Proof. Let h € L*([a,b], p). Then for [Imz| < §

1 1

/ab Ip(x)h(z)e ™#|dx < (/ab p(ac)eﬁlzlda:> ’ (/ab p(x)\h(x)‘2d$> " e



Hence for [Imz| < § we can define

b
F(z) ::/ p(x)e *h(z)dz.

Therefore, the function F' is analytic in the strip {z € C : |[Imz| < §}. Let (2"|h) = 0,
n=20,1,.... Then

d?’b

b
@F(z) = (—i)”/a z"p(z)h(z)dz = (—1)"(z"|h) = 0.

z=0

But an analytic function which vanishes together with all its derivatives at one point is zero in
the whole domain (if the domain is connected). Hence F' = 0 in the whole strip, in particular on
the real line. Thus h = 0. Using the inverse Fourier transform we obtain h = 0.

Therefore, the orthogonal complement of the set of polynomials is zero. Hence polynomials
are dense in L?([a, b], p). O

2.2 Christoffel-Darboux formula

Let Py, P1, P,,... be a basis of orthogonal polynomials Let p,(z) = ﬁ;gfj‘)

orthonormal basis.
The matrix elements of the operator of multiplication by x are denoted

be the corresponding

b
Bim = (pslepm) = / p(@)ep; (2)pm () de.

Let k; be the coefficient of p; at the power .

Theorem 2.2
Bim = Bmj (2.1)
Bjm =0, i —m| =2, 2.2
k.
Bjj+1 = kij, (2.3)
J+1
We have the recurrent formula
Ipn = ﬁn,n—lpn—l + Bn,npn + /Bn,n+1pn+1~ (24)

Proof. (2.1) is obvious
Let us show (2.2). We can assume that m + 2 < j. Then xp,, is a polynomial of degree
m + 1 < j. Hence it is orthogonal to p;. Therefore, (pj|zpm,) = 0.
We have
kj

wpj = ke’ g = -
J+1

Dj+1+ 7,



where degq < j and degr < j. Hence

k- k.
(zpjlpj+1) = == (Pjt1lpjt1) + (rpj41) =
kj+1

kit
(2.4) follows from

o0
wpn = Y pj(pjlepn).
=0

a

Theorem 2.3 (The Christoffel-Darboux formula) The integral kernel of the orthogonal pro-
jection onto the space of polynomials of degree < n 1is

Py(z,y) = éopk(m)pk(y)

_ _kn Pn(¥Pnt1(z)=pnt1(y)pn(z)
kn+1 T—y

9

and on the diagonal

P, x) = (Pr (@)D y1(%) = P (2)p), (2))-

kn+1

Proof. Let @ be the orthogonal projection onto pg. Its integral kernel is

Qr(z,y) = pr(z)pr(y).
The integral kernel of [z, Q] is
2Qr(x,y) — Qu(z, y)y = xpr()pr(y) — pe(@)pe(y)y
= Br -1 (Pr—1(2)pk (y) — pr(@)pr—1(y))
+Brt1,k (Pr+1 ()P (Y) — Pr(2)Pr41(Y))-

Hence, [z, P,] = Y _o[z, Qx] has the integral kernel

TPy (2,y) — Po(2,9)y = Bunt1(Pnt1(2)pn(y) — pu(®)pni1(y))-

2.3 Chebyshev polynomials of the 1st kind

Consider the space

[SIE

L([-1,1], (1 — 2%~

).

Define
To(cos@) = cosng, 6 € (0,7,

To(z) =3i((z+iV1—2?)"+ (z—iV1—2?)"), z€[-1,1].



Theorem 2.4 The polynomials T,, form an orthogonal basis such that

™

ITolP=m ITl?=5, n=12....

They satisfy the equation
(1 = 2%)02 — 20, +n?)T,(x) = 0.
Proof. Define .
W LZ([_L 1]7 (1 - ‘/1:2)75) - LQ([O77T])7

Wf(¢) :== f(cos ).
Then

(2.5)

T T 1 1
W2 = / F(cos §)Pd = — / |F(cos ) sin~ d cos ¢ = / 1F@E( =2t e,

Hence W is a unitary operator. Besides,
WT,(¢) = T,(cos ¢) = cosno.

We have
(83, + n?) cosng = 0.

To see (2.5), we compute:

0pW f(¢) = —sin o f'(cos @),

W*0,W f(z) = —sin(arccosz) f'(z) = —(1 — xQ)%azf(x).

Hence
W*0,W = —(1 — 22)20,,
W*OW = (W*9sW)? = (1 — %)% — 20,
O
Properties:
Tu(z)] < 1, Jof <1,
T.(£1) = (£1)",
= 1—rx
To(a)" = ————
ng() @)r 1—2rz +r?
ZTn(x)r— = —log(l—2rz+1%).
n
n=1

10



2.4 Chebyshev polynomials of the 2nd kind

Consider the space
1
L2([_1a 1]7 (1 - 1.2)5)'

Define )
Un(cos ) = 2o, ¢ € [0,7),
Un(a) = CHMEREEC GRS, g e [-1,1)

Theorem 2.5 The polynomials Uy, are an orthogonal basts and
U 2=2, n=0,1,2,....
2
The satisfy the equation
(1 — 2%)02 — 320, +n(n + 2))Uy,(x) = 0. (2.7)

Proof. Define
Vo L3([-1,1], (1 — 2%)2) — L%([0, 7]),

V() = f(cos ¢) sin .
Then
s ™ 1 1
VI = [ 5o sin® 6o = - [ (cos ) sinodeoss = [ [f@)P(1 - o
0 0 -1
Hence the operator V is unitary. Besides,
VU, (¢) = Up(cos ¢)sin ¢ = sin(n + 1)¢.

We have
(03 + (n+1)?))sin(n + 1)¢ = 0. (2.8)

To see (2.7), we compute:

0V f(p) = — sin? ¢ f’(cos @) + cos ¢ f (cos p),

Hence,

N

VO,V = —(1 - 22)20, + a(1 — 2%) "2,
VO3V = (V*OsV)* = (1 — )92 — 320, — 1.

Properties:

Ua(@)] < (1—a?)7"2 o] <1,
Un(£1) = (£1)"(n+1),

ZUn(:r)rn = (1—2rz+r>)~L

11



3 Operators

3.1 Bounded operators

Let A be a linear operator from a Hilbert space V into W. We say that A is bounded if
sup{[|[Av]| : veV, |v]| <1} = [[A]

is finite. The set of bounded operators from V into W is denoted B(V,W). Ifi V = W, we write
B(V)=B(V,V).

3.2 Integral kernel

Consider the space L?([a,b],p). Often an operator A on L?([a,b],p) can be described by a
function [a, b] X [a,b] > (z,y) — A(x,y) such that

b
Af(@)i= [ A f)olo)dy.

For instance, if vy, .. ., v, is an orthonormalbasis of a subspace Vp, then Py, hence the orthogonal
projection onto V), has the integral kernel

Pyy(2,y) = > vj()v;(y)-
j=1

We can show that if f; |A(x,y)|?p(x)dzp(y)dy < oo, then A is a bounded operator.

3.3 Adjoint operators

Let A € B(V,W). Then
(w|Av) = (A*wlv), veV, weW

defines the operator A* (Hermitian) conjugate to A. We have A* € B(W,V). If the integral
kernel of A is A(z,y), then the integral kernel of A* is A(y, z).
We say that A is self-adjoint if

A= A"
We say that A is unitary if
AA* = A*A = 1.
A is normal if
AAT = A*A.

3.4 Point spectrum

Let A be a linear operator on a vector space V. Recall that A € C is an eigenvalue of A if there
exists a nonzero vector v € V such that Av = Av. The set of eigenvalues of A is called the point
spectrum of A and is denoted by sp,(A).

12



3.5 Spectrum

Assume in addition that V is a Hilbert space and B a bounded operator on V.. We say that B
is invertible if B is a bijection and B~! is bounded.

We say that A € C belongs to the spectrum of A if A — A is not invertible. The spectrum of
A is denoted sp(A).

If z € C does not belong to spA, then there exists the resolvent of the operator A
(z— AL

It is easy to see that the point spectrum of A is a subset of its spectrum, that is, sp,(A) C
sp(A). In fact, let v € sp,(A), or Av = Av, v # 0. Then (A — A)v = 0, hence A — A is not
injective, so that A € sp(A).

3.6 Spectrum in finite dimension

Assume that the space V is finite dimensional. Then there exist convenient criteria for the
invertibility of linear operators.

Theorem 3.1 Let B be an operator on V. Then the following conditions are equivalent:
(1) B is invertible

(2) KerB = {0}.

(3) det B#0

Therefore, in finite dimension the spectrum can be determined by several methoids:

Theorem 3.2 Let A be anoperator on'V and A € C. Then the following conditions are equiva-
lent:

(1) X is an eigenvalue of A.
(2) XA — A is not invertible
(3) det(A—A) =0.

In infinite dimension the first condition implies the second, but the third condition usually
is meaningless.

3.7 Spectral Theorem in finite dimension

Spectral Theorem in finite dimension belongs to the basic linear algebra course:
Theorem 3.3 Let A be a normal operator on a finite dimensional Hilbert space. Then there
exists an orthonormal basis of eigenvectors of A.

A is self-adjoint iff all its eigenvalues are real.
A is unitary iff its all eigenvectors have absolute value 1.

13



Example 3.4 Letej, j =1,...,n, be the canonical basis of C". Define the operator U by

Uej:=¢€jr1, j=1,....,n—1, Ue,=¢;.
Then U s unitary, its eigenvalues are e » , k=0,...,n — 1 with corresponding normed eigen-

vectors
ijk2m

n
1
wk:—g e n ey
\/ﬁ'l
J:

Example 3.5 Let vo = Z?:l v;o;, where vi,v2,v3 € R and o; are the Pauli matrices on C2.
Then vo is self-adjoint. It is unitary if v + v3 + v§ = 1. Eigenvalues are ++/v{ + v3 + v% and
ergenvectors

v+ —v2 + v
wy =+V1+ve; + \/217_’_7562, w_ =+vV1—uve + ﬁeg.
1 |

3.8 Continuous spectrum

In an infinite dimensional Hilbert space one can formulate a generalization of Spectral Theorem.
It is however more difficult. Below we discuss the first additional difficulty, which appears in
infinite dimension.

Eigenvectors corresponding to distinct eigenvalues are orthogonal to one another. There may
be a continuous spectrum.

Example 3.6 On L2([0,1]) we define (Af)(z) = xf(z). This operator is self-adjoint, but has
no eigenvectors.

Example 3.7 On L?*(Z), let ej denote the canonical basis. Define the operator U by Ue,, =
en+1- It is unitary, but has no eigenvectors.

3.9 Unbounded operators

One of the most inconvenient aspects of the operator theory on infinitely dimensional spaces,
is the unboundedness of many physicaly important operators. This is related to an additional
trouble: in practice such operators are not defined on the whole Hilbert space, only on its dense
subspace. This subspace is called the domain of a given operator. The domain of the operator
A will be denoted DomA.

This problem is absent in finite dimensions, where all operators are bounded.

Example 3.8 On L%(R), let us try to define the operator (Af)(z) = xf(x). The vector (z+i)~!
belongs to L?(R), but x(x +1)~! does not belong to L*>(R). Thus (x +1i)~1 does not belong to the
domain of A.

Example 3.9 On L?(R) let us try to define the operator pf(z) = 10, f(x). The vector O(z)e™®
belongs to L?(R), but 19,0(x)e™™ does not belong to L*(R). (0(x) denotes the Heaviside func-
tion). Therefore, O(x)e™™ does not belong to the domain of p.

14



3.10 Spectrum of unbounded operators

Let A be a linear operator, perhaps unbounded, with domain Dom(A) C V.

A € C is an eigenvalue of A if there exists v € Dom(A) such that Av = Av. The set of
eigenvalues is called the point spectrum of A. It is denoted by sp,(A4).

We say that A is invertible if it is a bijection Dom(A) — V and A~! (which is defined on the
whole V) is bounded.

We say that A € C belongs to the spectrum of A, if A — A is not invertible. The spectrum of
A is denoted by sp(A).

In the same way as for bounded operators we show that sp,,(A) C sp(4).

3.11 Hermiticity

For unbounded operators there exist more than one generalization of the concept of self-adjointness
(Hermiticity).

Consider a Hilbert space V. Let A be an operator with domain DomA, which is a dense
subspace of V. Let the image of A be in V. We say that A is Hermitian (or symmetric) if

(w|Av) = (Aw|v), v,w € DomA.

This is a condition which is easy to check in practice. Unfortunately, from the theoretical point of
view the more interesting concepts are the self-adjointness and essential self-adjointness, which
are more difficult to formulate. Every self-adjoint operator is essentially self-adjoint. Every
essentially self-adjoint operator is Hermitian. However, the converse statements are in general
not true.

The Hermiticity itself is enough to show the following properties:

Theorem 3.10 Let A be a Hermitian operator with domain DomA.
(1) If v € DomA is an eigenvector with eigenvalue \, that is Av = Av, then X € R.

(2) If M # Ao eigenvalues with eigenvectors v1 and ve, then vy is orthogonal to vs.

Proof. The proof is identical as in the finite dimensional case. To prove (1) we compute:
Av|v) = (v|Av) = (Av|v) = A(v|v).

Then we divide by (v|v) # 0.
Proof of (2):

(A — X)) (vi|v2) = (Avi|vg) — (v1]Avg) = (v1]|Ave) — (v1|Ave) = 0.

15



3.12 Self-adjointness and essential self-adjointness

The material of this subsection will not be used in what follows.
Let A be an operator with domain Dom(A) dense in V. The operator A* is defined as follows:
We say that w € Dom(A*) iff there exists u € V such that

(w|Av) = (ulv), v € Dom(A).

Using the density of Dom(A) we see that such a u € V is defined uniquely. We then set A*w := u.
We say that

A is self-adjoint, if A= A% (3.1)
A is essentially self-adjoint, if A= A"

We have implications
A is self-adjoint = A is essentially self-adjoint = A is Hermitian.

The best property is the self-adjointness. The Spectral Theorem can be generalized to infinite
dimension for self-adjoint operators.

Essntially self-adjoint operators extend uniquely to self-adjoint ones, hence this is also a good
property.

Hermitian operators can be somewhat bizarre. In practice, it may be non-trivial to check the
self-adjointness of a Hermitian operator.

4 Differential operators

Differential operators is an especially important class of operators. Unfortunately, they are
unbounded, and it can be quite nontrivial to check whether they are self-adjoint. This is related
to the so-called boundary conditions. Let us first discuss this in simple examples.

4.1 The momentum operator on an interval

Consider the operator pf(z) = 10, f(x) defined on the domain f € C®([—m,7]) treated as a
subspace of the Hilbert space L%([—,7]. Suppose we want to find its eigenvalues, that is, we

solve the equation
1
;amf =\f, [feC®(—m,n)). (4.1)

Clearly, this equation is solved by f(z) = ce'*® for any A € C. This means we have many solu-
tions, which indicates that this equation (and the operator p) is not very useful in applications.
Let us modify the problem by reducing the domain. Let us restrict ourselves to f €

C*°([—m, ]) that satisfy the boundary conditions

f(m) = ™ f(—m).

16



The operator 10, with this domain will be denoted py. (4.1) then has solutions A = n + x,
wher n € Z, and eigenfunctions e, (z) = el("tm)7  The eigenfunctions form an orthogonal basis
in L?([—m,7]). The operator p has spectrum spp,, = sppp = {n+k : n€Z}

The operator p,, is Hermitian (and even essentially self-adjoint). It is a useful operator, useful

in applications. The Hermiticity condition is easy to check by integration by parts:

(flprg) = m%&cg(ﬂc}dx

= [ (Gouso)) storta (70~ T7t) = oo

—T

where the boundary terms vanish by biundary conditions.
Let us compute the resolvent of p,, that is Re(2) = (2 — px)~!. Let (z — pe)g = f, or

(=~ $0.)(x) = S(@). (42)
The homogenous equation .
(= = <0.)g(x) = 0. (4.3)

is solved by g(r) = e'**. We use the variation of the constant method: g(x) = c(z)e’**. We
obtain

id (z)e** = f(x)

Hence,

o(x) = c@w>—3/xéWf@xm

= ¢(m) Jri/7T e f(y)dy.

g belongs to the domain of p, when g(7) = €™ g(—n), which yields
() = 272 ().

Therefore,

Hence,

o) = s | I)

T 1 - ei2m(k—2) _ﬂ_

— i ’ iz(z—y)
o) = Tz |

+ 1(,{_2)/ e £ (y)dy.

1— ei27r

17



1

Therefore, the integral kernel of Ry (z) = (2 — px)~" (called sometimes Green’s function) is

i iz(x—
Ry(2)(z,y) = me( V0(z — y)
i

+ 1 — ei27m(k—2)

Yy — ).
For z € Z + k, the resolvent R,(z) is not defined, for remaining z it is a bounded operator.

4.2 Laplacian on an interval

Consider the space L?([0,7]). Let Dy be the set of functions f € C*°(]0,7]) equal zero on a
neighborhood of 0 and 7. It is a dense subspace of L?([0,7]).
Define the operator on Dy, by the formula

Hminf = —3§f($)a f € Drnin-

Note that it does not possess eigenvectors. It satisfies the Hermiticity condition, which follows
by integration by parts:

(@ltunf) = = [ 5@ )
= - [ @) @ = Hungl). (14)
The operator H, is not very interesting, because its domain is too small.

Replace now Dypin with Dpyax consisting of all smooth functions on [0, 7]. The operator Hyax
is defined with the same formula as Hy,in, the only difference is that it has the domain Dyax:

Hyax f = —83]‘(90), f € Dmax-
All complex numbers are eigenvalues of Hyax, because f,(z) = el“T gatisfies
Hmax w = w2fw' (45)

Eigenvectors belonging to distinct eigenvalues are usually not mutually orthogonal. The operator
Hy.x is not Hermitian, because when we integrate by parts boundary terms appear:

(o Hoa]) = — /O“gm)aif(x)dx (4.6)
= G(0)0,£(0) — g(m)daf(m) + /0 " (0,9(2))0 f (2)dz
= G(0)2,£(0) — G(m)Ds (m) — (Da7(0)) F(0) + (Dag(m) f () — /0 " (02g(x)) f(x)da
= G(0)2,1(0) — g(m)u (m) — (D:5(0)) F(0) + (Dag(m) F(7) + (Humasl ).

This means that Hp,.x is not very interesting, because its domain is too large.
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4.3 Laplacian on an interval with Dirichleta boundary conditions

Let Hp be equal —92 on smooth functions satisfying f(0) = f(7) = 0. Then the operator Hp
defines a self-adjoint operator called the Laplacian with the Dirichlet boundary conditions. Its
eigenvectors can be organized in an orthonormal basis:

2
sn(z) = \/;sinxn, Hpsp, =n%sp,, n=1,2,.... (4.7)

Hence
spHp = sp,Hp = n? :n=12,...}.
We can compute its resolvent Rp(w?) = (w? — Hp)~!. Let
(07 + w?)g(z) = f(z), 9(0) = g(m)=0.
We use the variation of the constant method: ¢4 (7) = c¢_(0) =0,
g(x) = cy(x)sinwzr + c_(x)sinw(r — m),
d(x) = ci(@)wcoswr + c_(z)wcosw(z — ).
Hence , assuming that sinw # 0, we obtain
d (z)sinwz + _(z)sinw(z —7) = 0,

d (z)wcoswe + _(z)weosw(z —m) = f(x);

sinw(x — )

@) = f)

wsinwm
d(z) = sinwz
- wsinwm’
Tsinw(y — m)
= _— d
ot () /x w sinwm J(y)dy,

sin wy

c-(r) = /Owsinwrf(y)dy;

Tsinw(y — m)

f(y)dy

sin wy

g(x) = sinwx/ -
. wsinwm

+sinw(z — ) /

0 wsinwm

f(y)dy.

Therefore, the integral kernel of the resolvent Rp(w) (also called Green’s function for the DIrichlet
problem) is

sinwzsinw(y — m)0(y — x)

Rp(w?)(z,y) =

w sin wm
sinw(z — ) sinwyf(z — y)

w sin wm
It can be also computed by a different method:

o - 5

n=1
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4.4 Laplacian on an interval with Neumanna boundary conditions

Let Hy equal —92 on smooth functions satisfying f’(0) = f’(7) = 0. Hy defines the Laplacian
with Neumann boundary conditions. Its eigenvectors form an orthonormal basis

1 2
co = ﬁ’ en(z) = \/;cos zn, Hyen =n’cn, n=1,2,.... (4.9)

Hence

spHN = sp,HN = {n? : n=0,1,2,...}.
Here is its resolvent: Ry(w?) = (w? — Hx)™ L. Let

(0% +wg(z) = f(x), ¢'(0)=g'(x)=0.

By variation of the constant:: c4(7) = c¢_(0) =0,

g(x) = cy(x)coswr + c_(x)cosw(z —m),
d(x) = —ci(p)wsinwzr —c_(v)wsinw(z — ).
Hence
di(x) coswz + ¢_(z)cosw(z —m) = 0,
—d\ (z)wsinwz — ¢_(z)wsinw(z —7) = f(z);
) = j@ AT
, B COSWT
o) = [l wsinwn’
o) = [T pgpay,

w sin wm

(&) = /O TS gy,

Tcosw(y — 7
g(z) = COSW/ coswly ~7) )f(y)dy
. wsinwrm
—i—sinw(x—w)/ Mf(y)dy.
0 wsinwm

Thus the integral kernel of the resolvent Rn(w) (Green’s function for the Neumann boundary
conditions) is

coswz cosw(y —m)0(y — x)

Rx(w?)(z,y) =

w sin wm
cosw(z — ) coswyl(z — y)

wsinwm
The resolvent can be computed by another method:
1 >, 2cos(zn) cos(yn)
Ry (w? =— : 4.10
N(w )(x7y) T2 +nz:1 ﬂ_(wg_ng) ( )
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4.5 Laplacian with periodic boundary conditions

Let Hper be —02 on smooth functions satisfying f(0) = f(7), f/(0) = f'(n). Hper defines
the Laplacian with periodic boundary conditions. Here is an orthonormal basis made of its
eigenvectors:

en(r) = \}%eim, Hperen = 4n’e,, n=0,+1,42,.... (4.11)
Hence
spHper = sppHper = {4n2 :n=0,1,2,...}.
Note that its eignevalues corresponding to n = 1,2,... are doubly degenerate.

4.6 Laplacian with antiperiodic boundary conditions

Let Hper be —02 on smooth functions satisfying f(0) = —f(7), f(0) = —f/(7). Hant defines
the Laplacian with antiperiodic boundary conditions. Here is an orthonormal basis made of its
eigenvectors:

1 .
falz) = \ﬁem"*l)w, Hperen = (2n+1)%e,, neZ. (4.12)

Hence
SpHper = SppHper = {(2n + 1)2 :n=20,1,2,... }

and all its eignevalues are doubly degenerate.

4.7 Some series

Proposition 4.1

Z 1 _ 7 sin(2wm) (413
e (n—a)?—w?  2wsin(a — w)msin(a + w)r’ :
i 1 mcos(wr) (4.14)
n? —w?  wsinar .
n=—o0

Proof. f(z):= m is meromorphic on C, has a finite number of poles and lim,_,o 2f(2) =
0. Hence one can use the method of Prob. 4.6.1. J. Krzyz, “Zbiér zadan z funkcji analitycznych”
involving integrating cot(mrz)f(z) on a big square:

[e.9]

2i
0= —_— 4.15
P o
: cot(mz) ) cot(mz)
2miR 27iR 4.16
+amies (z — @)? — W? li=atw oremities (z — @)? —w? lz=a—w (4.16)
o .
2 t t -
_ Z 12 i + o T(w+a) 0,7 m(w— ) (4.17)
S (n—a)?—w w w
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Proposition 4.2 For x € [0, 27],

0 ei(nfoz)a: _ 7T( Sin(2w7r — wx) + e—2ia7r Sin(wm)) (4 18)
D e e B e (TS (P L |
Proof. Set . i(n—a)
e1 n—o)xr
J@) = foal)i= 3 g
We have 0o 0o
(ag n w2)f(:1:) _ Z ei(n—a)m _ 27Te—iax Z 5(:U _ 27-‘-m))7 (4.19)

In particular, (4.19) is zero in 0, 27[. Hence f(x) = a4e“% + a e % there. Now

f0)=ay +a_ :

f(27T) — a+eiw27r + a_efiw27r — efia27rf(0).

Hence
einﬂ' _ e—2ioc7r
- = o o=ziond (0); (4.20)
76—2iw7r 4 e—Qiom
a+ = eZimr _ e*?iu.)ﬂ' f(O), (421)
(Sin(2w7r —wzr) + e~ 2lam sin(wx))
= 4.22
i) sin(2wm) 1(0) (4.22)
_ 77( sin(2wm — wx) + e~ o7 sin(wx)) (423)
2w sin(( — w)m) sin((a + w)w) :
Od

4.8 Laplacian on an interval with twisted boundary conditions

Let H, be —92 on smooth functions on [0, 7] satisfying

™ f(0) = f(m), e™f(0) = f'(m). (4.24)
Then H, defines a self-adjoint operator. From its eigenvectors one can form an o.n. basis
1 .
en(x) = ﬁe‘(2”+“)x, Hye, = (2n+ k)%e,, n e Z. (4.25)

Hence
spHy, =sp,H, ={(2n+x)*> : n=0,1,2,... }.

The collowing cases are especially important:

(1) periodic k = 0;
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(2) antiperiodic, for k = 1.

Set
R;@(LUQ,.%',Z/) = (WQ - HH)_I(xay)

Equation

(07 + W) Ry(w®, ,y) = 8(x — y)
is solved by

_ izw b —ixw, <y
O T e (4.26)
are™ +bie ™ x>y,
Let y* =y, where we use the left- resp. right-sided limit. We get
Ry(w?,y7,y) — Re(w® y™,y) = (4.27)
Op R (w?, 4", y) — 0 Ru(w®,y ™, y) = (4.28)
e Ry (w?,0,y) = (w TY), (4.29)
", R (w?,0,y) = 0pRp(w?, 7, 7). (4.30)
We have 4 equations with 4 unknowns. According to W. Ciszewski this is solved by
. eiw(y—=) e—iw(y—z)
1 it(wtr) 1  ein(—wtkr)_1° T < Y;
Rﬁ(w27 x, y) = ﬂ {eeiw(zy) ! . ¢ efiw(zfz) ! > (431)
eim(w—r) _1 eim(—w—r)_17 Y.
Problem. Check (4.31) using (4.18) and
el(@ntr)(z—y)
Ry(w? 2,y) = (4.32)

2 mw? = @t )

4.9 Laplacian on an interval with Dirichlet and Neumann boundary condi-
tions
Problem. Using (4.18) and (4.33),

> 2S111 (zn Sm(yn)
2y

Rp (4.33)

n=1
check the following formula for the integral kernel of the resolvent of the Dirichlet Laplacian:

sinwzsinw(y — m)0(y — x)

Rp(w?)(z,y) =

w sin wm
sinw(z — ) sinwyf(z — y)

w sin wm

Problem. Using (4.18) and (4.34)

> 2(:os ) cos(yn)

Ry (@) (. s

(4.34)

n=1

23



check the following formula for the integral kernel of the resolvent of the Neumann Laplacian:

coswz cosw(y —m)0(y — x)

Rx(w?)(z,y) =

w sinwm
cosw(x — ) coswyb(x — y)

w sin wm

4.10 Second order differential operators in one variable
Second order differential operators in one variable
C:=o0(2)0? +71(2)0, (4.35)

are especially important in applications. Often it is convenient to write them in a different form.
Let p(z) satisfy

o()p (@) = (r(x) - o’ (2))o(a). (4:36)
Then
C = p(x) 1 0p(x)o(2)0,. (4.37)

Starting from now we assume that —oco < a < b < +00, 0, p are real differentiable functions
on Ja, b and p > 0.

Theorem 4.3 Let
D={fe€C™(]a,b]) : f=0 in aneighborhood of a,b}.

We define C as the operator on D given by (4.35). Then C is Hermitian in the sense of the
Hilbert space L*(]a,b], p).

Unfortunately, the above domain is usually too small to obtain an operator with eigenvalues.

4.11 Boundary conditions for the Sturm-Liouville problem

Let us consiser an operator given by the same differential formula, but on a greater domain.
Under appropriate conditions it is still Hermitian:

Theorem 4.4 Let —oco < a < b < +00 and

o(a)p(a) = o(b)p(b) = 0.

Then C is Hermitian on the domain C?([a,b]) in the sense of the space L?(]a,b[, p)
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Proof.
(glcf) = p(@)g(x)p(x) ™ 8y0(2)p(2)0, f(x)da

9(x)0p0 () p(x)0s f (x)dx

b

b
- / (0s(2))0 (2)p(2) D ()

b

b
= —T@e)o@) @) + / (Oupl) (2)05g (@) f (@) da

a

b
= /p(w)(p(fﬁ)‘laxa(%)p(fﬁ)@xg(w))f(ﬂf)dﬂf:(Cglf)-

Analogously we prove the following fact:
Theorem 4.5 Let
Jim_o(@p(@)lel" = lim_o(r)p@)al" =0, neN.

Then C is Hermitian on the domain consisting of polynomial functions in the sense of the space
Hilbert L?(] — oo, 00|, p).

Obviously, similar statements hold for | — 0o, b] and |a, ool.
Looking for eigenvalues of the operator C is often called the Sturm-Liouville problem.

5 Classical orthogonal polynomials
The following polynomials appear most often in applications:

Space Polynomial Equation

Hermite polynomials

L2(] = 00, 00, e") Hy(z) = S e gre—? 82 — 220, + 2n
Laguerre polynomials
L2(]0, cof, 2% ™) L (z) = LeTa—ogne Tgnte 202+ (a+1—2)0; +n
a>-—1

Jacobi polynomials
(- 1,1 (1-2)* 1 +2)%) PP@)=G0r0-a) 0 +2)7 (1-2)2+(B-a-(a+B+2)2)d,
a, > —1 x O (1 — x)*t"(1 4 )+ +n(n+a+p+1)

We will try to explain why these polynomials are distinguished and are often called classical
orthogonal polynomials (or even very classical orthogonal polynomials).
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5.1 Hypergeometric class polynomials
We are looking for second order differential operators whose eigenfunctions are polynomials of
all degrees.
Theorem 5.1 Let
C:=0(2)0* 4 7(2)0. + n(2) (5.1)

be a differential operator such that there exist polynomials Py, Py, Po of degree resp. 0,1,2 satis-
fying
CP, =\, P,.

Then

(1) o(z) is a polynomial of degree < 2,

(2) 7(2) is a polynomial of degree < 1,

(3) n(z) is a polynomial of degree <0 (is a number).
Proof. CPy = n(z)Fy, hence degn = 0.

CP, = 7(2) P + nP, so degr < 1.
CPy, = 0(2)PY + 7(2)Py(2) + nPs, therefore, dego < 2. O

It is thus enough to restrict our attention to operators of the form
C :=0(2)0% + 7(2)0., (5.2)

where
dego < 2, degr < 1. (5.3)

We will show later that for a large class of (5.2) for all natural n there exists a polynomial of
degree n which is an eigenfunction of (5.2).

Proposition 5.2 Suppose that o and 7 are as above. Let polynomial P — K of degree k satisfies
(0(2)02 + 7(2)9: + A\ ) Py = 0. (5.4)
Then

k(k — 1)

5 o + k' + X\ = 0. (5.5)

Proof. The kth derivative of (5.4) is (5.5) times 0¥ P, # 0. O
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5.2 Generalized Rodrigues formula

Many properties of polynomials eigenfunctions of operators described in Thm 5.1 can be derived
in a unified way without separating the arguments into distinct cases. (This subsection can be

skipped, all the material will be presented below for special cases).

Consider o, T satisfying (5.3). We fix o, however we manifestly indicate the dependence on

7. Let p satisfy the equation

0(2)0:p(2) = (7(2) — ' (2)) p(2).

(5.6)

Note that p can be expressed in terms of elementary functions. The operator C can be written

as

C(r) = p1(2)0:0(2)p(2)0:
= 0.p H2)0(2)0.p(2) — 7' + 0",

Define
1 — n__n
Pn(T;Z) = Ep 1(2)8,20 (Z)p(z)
_ 1 —1 n —n—1
= ) /[Oﬂa (2 + )p(= + )t~ Ldt.

Theorem 5.3 We have degP, (1) < n,

1

(U(z)af + T(z)@z) P.(t;2) = (nt’ +n(n— 1)%)Pn(7'; z),
(U(z)az +7(2) — G’(z)) Pyr;2) = (n+1)Pu(r—0';2),
0.Py(1;2) = (7" + (n — 1)U2> Py (1+0';2),
pett0)
FE D P

Proof. Introduce the following “creation and annihilation operators”

AH(r): = 0(2)0.+7(2) = ()up(2)o (),
A- = 0,.

Note that
A AN (1 -0 ) - AT (1A =7 - 0",

or more generally

ATAF (7 + (k= 1)0”) = A¥ (7 + ko') A™ =7/ = (k = 1)o”"
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Using

At (1) =

“H2)0.p(2)0(2),
AT (1 + o) 1

P
p_l(Z)U (Z)azp( ) 2( )v

AT+ (n=1)0") = p ()0 " Vap(2)0"(2),
we obtain
AT(r) - AT (T + (n = 1))y = p(2)71 82 p(2)0™ (2) Fo(2).
Consider now Fy = 1. We obtain
Palr,2) = AT (r) - AR (7 + (n = 1)),

Now
AT (1 =0 )Py(1,2) = (n+ 1) Pyyi(t — o', 2)
is obvious, which yields (5.11). Using the commutation relations (5.15) we obtain
(T"+7 40"+ +7 4+ (n—1)0")
n!
n(n—1) py

_ (' + e )A+(r+a')”'«4+(T+(”_1)0/)1

n!
= (7 + (=15 ) Pucr(r + 0",

—1(T+
which yields (5.12). (5.11) i (5.12) imply (5.10). By the Taylor formula,
"o (2)"

p Zt" —no';2),

A P, (1,2) =

At (r+0") - AT (T + (n—1)0')1

oot io(z) =S

n=0
or (5.13). O

5.3 Classical orthogonal polynomials as eigenfunctions of Sturm-Liouville op-
erators

We look for intervals |a, b[C R andd weights |a, b[> = — p(zx), for which there exist polynomials
Py, P1, ... w satisfying degP,, = n,

/Pn(at)Pm(x)p(x)dx = cpnm (5.16)

and being eigenfunctions of a differential operator of second order C := o(z)9? + 7(x)0,, that is,
for some A\, € R

(0(2)02 + 7(2)05 + An) Po(x) = 0. (5.17)
(We allow a = —o0 or b = o0). To this end we want that the operator C is Hermitian in the
sense of L?(]a,b[, p) on a domain containing polynomials. More precisely, we need to stisfy the
following conditions:
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(1) o has to be a polynomial of degree at most 2 and 7 a polynomial of degree at most 1. (See
Thm 5.1).

(2) The weight p is a solution of the equation

o) (2) = ((z) — ' (2))p(a), (5.18)
is positive and ¢ real. This guarantees that C, which can be written as
C = p(x) " up(x)o (2)0s,
is Hermitian in the sense of L?(]a, b, p), at least on functions vanishing in neighborhoods of

the endpoints of |a,b[. (See Thm 4.3).

(3) We want that C is Hermitian on a domain containing polynomials.

(i) If an endpoint, say, a, is a finite number, then it is equivalent to the condition
pla)o(a) =0. (See Thm 4.4).
(ii) If an endpoint is infinite, e.g. a = —oo, then

lim |z|"o(x)p(x) =0

Tr——00
should hold for any n.

In addition, P, should belong to the Hilbert space L?(]a,b|, p) for any n, hence we demand
that

b
/ p(x)|z|"dz < oo. (5.19)
a
The slightly stronger condition

/b eIl p(z)dz < oo (5.20)

for some € > 0 is sufficient to obtain an orthonormal basis. (See Thm 2.1).
We will find all such weighted Hilbert spaces L?([a, b], p) for which such orthogonal polyno-
mials exist. We will simplify our answer to standard forms

(1) by using the change of variables x +— ax + b for a # 0;
(2) by dividing (both the weight and the differential equation) by a constant

In this way we will obtain all classical orthogonal polynomials.

5.4 Classical orthogonal polynomials for dego = 0

We can assume o(x) = 1.
If degr = 0, then
C =0, + cdy.

It is easy to discard this case.
Hence degr =1 and
C= 85 + (ay + b)0y.
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Let us substitute x = L;' (y + g) We obtain

C=0?+220,, a>0 (5.21)
C=0%-229,, a<0. (5.22)
This yields p(z) = =",
o(x)p(x) = e**” is never zero, hence the only possible interval is | — o, 00|,
If a > 0, then p(z) = e®®, which is impossible by (3ii).
If a < 0, then p(z) = ¢~ and we obtain the Hermite operator. The interval | — 0o, oo| is

admissible, and even satisfies (5.20). We obtain the equation and weight for Hermite polynomials,
which will be discussed in the next subsection.

5.5 Hermite polynomials

Theorem 5.4 Define

—1)n
H,(z) = ( n‘) ez28;le_z2.

Then H,, is a polynomial of degree n and is (up to a multiplicative constant) the only eigenfunction
of the operator 0% — 2x0, which is a polynomial of degree n. It satisfies the Hermite equation

(0% — 220, + 2n)H,(x) = 0.

and relations

(=0y +22)Hy(x) = (n+1)Hpi1(x) (5.23)

O Hp(z) = 2H, 1(2), (5.24)

it”Hn(x) = Mt (5.25)
n=0

Proof. It is a consequence of Thm 5.3 for

2

olx)=-1, p=e"

Below we present an independent proof. Let us introduce the “creation and annihilation opera-
tors”

AT = 0O,
At = 0, +2z = —exZBIe*xQ.
They satisfy the relations
[A=,AT] = 2. (5.26)

We have H,, = (A (Here, 1 denotes the vector in L2(R,e~*") given by the function equal to

n!

1. On the other hand, in (5.26) 2 denotes the operator of multiplication by the number 2.) This
implies

ATH, = (n+1)Hy, (5.27)
AH, = 2H,_,. (5.28)
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To prove (5.28), we use (5.26).
(5.27) and (5.28) show that

AYA™H, = 2nH,, (5.29)
—02 + 220, = ATA™. (5.30)

Multiplying the definition of the Hermite polynomials by t"e~%* we obtain

2 (—t)n 2
t"e™" Hp(z) = oy ove .

The Taylor formula yields
[ee)
e H () = e,
n=0
which implies (5.25). O

Theorem 5.5 {H, | n € Ng} is an orthogonal basis in L2(R,e™*") with the normalization

/w2
nl

/ Hn(x)Qe_xQd:c =

Proof. Suppose that n > m. Then

= — e—$Qa;Hm(;p)dm. (5.31)

(5.31) is 0 for n > m.
Let n =m. (5.24) and Hy = 1 imply 0} H,,(z) = 2". Hence (5.31) is
27’L o0 2TL

e dg = W\/TT

n! J_o

Remark 5.6 The definition of Hermite polynomials that we gave is consistent with the general-

ized Rodrigues formula (5.8). In the literature one can also find other conventions for Hermite
. 2 _ 2

polynomials, e.g. Hy(x) := (—1)"e* 0le™™".
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5.6 Classical orthogonal polynomials for dego =1

It is enough to consider the case o(y) = y.
If degr = 0, then
C = yd + cd,
But such a C always lowers the degree of a polynomial. Hence if CP = AP for a certain poly-
nomial, then A = 0 and P(x) = =", Thus we do not obtain polynomials of all degrees as

eigenfunctions.
Hence degr = 1. Therefore, for b # 0,

y(?fl + (a + by)0,. (5.32)
After rescaling we obtian an operator that appears in the Laguerre equation
C=—20?+ (—a—1+1)0,.

We check that p = 2% . p(z)o(x) = —2%le™® is zero only for = 0 and a > —1. The
interval [—o0, 0] is ruled out by the condition (3ii). This condition allows for the interval |0, co[
for & > —1, which then satisfies the condition 5.20.

We obtain the equation and weight for Laguerre polynomials, which will be discussed in the
next subsection.

5.7 Laguerre polynomials
Theorem 5.7 Forn € N and a € C, set

1 _ _
Lo(x) = ﬁexx Qe Tyt

1
_ 1+ —;'a)nF(—n;l+a;a:).

Then LS is a polynomial of degree m. It is a unique (up to a coefficient) eigenfunction of the
operator x0? + (a+1— )0, which is a polynomial of degree n. LY satisfy the Laguerre equation,
which is the confluent equation with modified parameters:

(:Uag + (a+1—12)0y +n) Ly (x) = 0.
The following relations are true:

(20, + 0 —2)L3(x) = (n+1)LS5L(x), (5.33)
0:L%(x) = —L°(2). (5.34)
Proof. We can use Thm 5.3 for

o(x) =z, p(r)=e "x“

Below we present an independent proof.
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Introduce “creation and annihilation operators”

A = o,
AL = 20, +a—z= x0T et 9, %",
They satisfy the relations
ATAY - AL AT = 1 (5.35)
We have T
Lo = —otl - atn” (5.36)

(1 in (5.36) denotes the vector equal 1.) This implies

AYLY = (n+1)L%, (5.37)
ATLY = Lo (5.38)
(5.38) follows by (5.35).
Finally, (5.37), (5.38) show
AL L ATLY =nLs. (5.39)
Ale
202 — (a+1—2)d, = Al A" (5.40)
O

Theorem 5.8 Ifa > —1, then Laguerre polynomials form an orthonormal basis in L*(]0, co[, e~ *z®)
with the normalization

e 'l
/ Lo(x)?x% "dx = [d+a+n) n)
0 n!
Proof. Let n > m. Then
[e.e] 1 o0
/ Ly (z) Ly, (z)z%e ™ de = — (Opa" e ") Ly (z)da
0 n:Jo
_ (_1)n o n+toa, —ranra
= ‘ "IN LY (z)da. (5.41)
n. 0

(5.41) is 0 for n > m.
Let n =m. By (5.34) and L§ = 1 we obtain 0L%(z) = (—1)". Hence (5.41) is
i [e'e] l,n—i-ae—mdx _ F(’I?, + o+ 1) ‘
n! Jo n!
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5.8 Classical orthogonal polynomials for dego = 2,
o has a double root

We can assume that o(z) = 2.

If 7(0) = 0, then
C = 2%9% + cx0,.
c—2

Its eigenfunctions are polynomials ", but the weight p(z) = x is not appropriate.
Let us assume that 7(0) # 0. After rescaling we can assume that

T(x) =1+ (v 4+ 2)z.

This yields p(z) = e~wz7. The only poin where p(z)o(z) = e~ =272 can be zero is z = 0.
Hence the only possible intervals are | — oo, 0 and [0, oo]. Both are ruled out by (3ii).

5.9 Classical orthogonal polynomials for dego = 2,
o has two roots

In this subsection we assume that the roots are distinct. If one of them is not real, then the
other has to be its complex conjugate. Then it is enough to assume that o(z) = 1+ 22. We can
suppose that 7(z) = a + (b4 2)z. Then p(z) = e®¥nz(1 4 22)b 5(x)p(z) is nowhere zero,
and therefore the only possible interval is | — 0o, 00[. This case has to be discarded, because
limy )00 p(2)]2|" (1 + 2%) = oo for sufficiently large n.

Hence we can assume that the roots are distinct and real. It is enough to consider o(z) =
1 — % Let

T(z) =p—a—(a+ [ +2)z.

We obtain p(z) = |1 — 2|%|1 4+ z|®. Similarly as above, the condition (3ii) rules out the intervals
| — o0, —1[ and |1, 0o[. What remains is the interval [—1, 1], which satisfies (3i) for a, 5 > —1. It
leads to Jacobi polyn omials discussed in the next subsection.

5.10 Jacobi polynomials
Theorem 5.9 Letn € {0,1,...} and o, € C. Set

Peo@) = U0 ao(1 ey Pap - ) (14 2y (5.42)
= WF(—mn%—a—Fﬁ—l-l;a-Fl;l;x)- (5.43)

Then Pff’ﬂ satisfy the Jacobi equation, which is a slightly modified hypergeometric equation:
(1- )02+ (B—a— (a+B+22)0 +n(n+a+4+1)) P2 (z) =0,

and the relations

0.0 w) = CTPENELprtian (5
1 —22)0, —a— a—1,6—
M0t pesta) = (et )P ), (545)

2
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i Pomm BT ()2m" = (14 ¢(1+ )" (1 — (1 - x))ﬁ. (5.46)
n=0

Pﬁ"ﬁ is a polynomial of degree at most n. More precisely:

(1) Ifa+B8&{-2n,...,—n — 1}, then degPﬁ‘”B =n. It is then up to a coefficient the unique
eigensolution of the operator C := (1—x2)02+(B—a— (a+B+2)x)d,, which is a polynomial
of degree n.

(2) Ifa+8e{-2n,...,—n—1}, but a & {—n,...,—1} (or, equivalently, B & {—n,...,—1}),
then degPﬁ’B =—a—0F—n—1.

(3) Ifa+pBe{-2n,...,n—1}, but o € {—n,...,—1} (or, equivalently, B € {—n,...,—1}),
then PP = 0.

Proof. We can use Thm 5.3 for

2?2 —1
o(z) = —5—, p(r) = (1 —2)*(1+2)°.

Below we present an independent proof. Introduc the “creation and annihilation operators”

AT = axa
A, = —% (1220, + 8 —a— (a+ B)z)
- _%(1 — &) L1+ 2) P, (1 — 2)°(1 + 2)P.

They satisfy the relations

ATAL = A g A = O‘;rﬁ. (5.47)
We have m e .
pob — at1,6+1 ~ atn,fin” (5.48)
Hence,
AL PP = (n+ 1) Pe (5.49)
A—poP = Wngﬁﬂ. (5.50)

To prove (5.50) we use (5.47) and sum up the arithmetic series.
Finally, (5.49), (5.50) shows

nla+B+n+1)

AL g AP = 5 PP, (5.51)

Ale
11 Ho? L B B)x)d, = AT A 5.52
—5( — %) z+§(_ tat(a+pB)r)0y=A7 5,4 (5.52)
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Let us replace in the definition of Jacobi polynomials «, 8 with o — n, 8 — n and multiply
them by 2"¢"(1 — x)%(1 + z)®. We obtain

ongn po=mBn(1)(1 — 2)*(1 + z)? = (_nt!)n (1—2)™(1 +2)""(1 — 2)*(1 + z).

After summing up, the Taylor formula yields
1—2)*(L4+2)P Y 2m" Py P Ma) = (1—z+t(1—2)(1+2)" (1 +z—t1-2)(1+ )’
n=0

which implies the formula for the generating function (5.46).
(5.44) and P” =1 yield

PSP () =2""(a+B+n+1)--(a+ S+ 2n). (5.53)

Clearly, degPy # — n when the right hand side of (5.53) is different from zero.
Suppose that two polynomials P;, P> of degree n satisfy

C+m)Pr=(C+mn)P,=0.

By Prop. 5.2,

m=m=nn+a+f+1).
Hence P; — Py, a polynomial of degree k € {0,1,...,n—1}, solves the Jacobi equation. Applying
again Prop. 5.2 we obtain

—k(k+a+p8+1)+nn+a+pF+1)=0.

This equation has two solutions: k =nand k= -n—a—-5—-1¢{0,1,...,n—1}. The second
soltion has to be discarded. O

Theorem 5.10 Ifa, 3 > —1, then Jacobi polynomials form an orthogonal basis in L*([—1,1], (1—
2)*(1 + )8) with the normalization

! I(14 a+n)T(1+ B+ n)20+8+1
a, 3 2 o o B _
/I(P” @) =2+ o) de = o AT A Y a s B )’ (5:54)
Proof. Let n > m. Then
1
/ PP ()PP (2)(1 — ) (1 + z)Pda
-1
_ (_1)n /1 n a+n B+n a,B
= St | (0201 = )= (1 + )" P (@)de
1
_ ! / (1= 2)° (1 + )97 PP () da. (5.55)
2”77/' -1
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(5.55) is 0 for n > m.
Let n = m. Then (5.41) is

1 1
7227%] / (1_33)0““"(1+$)ﬂ+"(a+ﬁ+n+1)-"(a+ﬁ+2n)dm
FJ-1
ga+fp+1 rl
= - / A=) M+ B+n+1)- (a+ B+ 2n)dt
: 0

I'(14 a+n)T(1 4+ 3+ n)20H8+1
(1+2n+a+B)nT1+a+8+n)

For each «, f we have a representation of s/(2,C) on

PP paTmA

(1) If «+ B & {0,1,2...}, this representation is irreducible and degP™ ™" = .

(2) Let o+ €{0,1,2...}. Besides we suppose that o € Z (equivalently, 5 & Z),
or avef...,—2,—1}, or fe{...,—2,—1}.
Then this representation is reducible but indecomposable and we have

deng,f‘_"’ﬂ_” =n, n=0,1,...,a+f;
degPo ™A " —p —(a++41), n>a+B+1.

The space spanned by (5.57) is invariant. Besides, by (5.43),

p—f-l—a-1 _ (=Blatptr _ (=B)(=B+1)-- (a -1
atftl (a+p+1)! (a+p+1)!

(3) f a€{0,1,2...} and B € {0,1,...}, then

degP,f*”’B*":n, n=0,1,...,a+0;
pemBTr — 0, n>a+ B+ 1.

and the space spanned by (5.59) is invariant. Besides,

— 1\ —ekn 1oy —Ben
p) = (F) () R @,

Proof of (5.61). By (5.42),

A 2" sy — 1\—atn g+ 1\ —B+n T —1\a/x+ 1\8
Pﬁnﬁn(@;ﬁ(z) (2) ag<2><2>'
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Setting n = a+ 4 in (6.11) we obtain
1

—p—a - = (r—1)° ango+B(,. _ 1\« B
Py (@) = 2a+ﬂ(a+5)[(x DF(1+x)0; P (x —1)*(1 +x) (5.63)
r—1I\B/1+z\
_(2)(2) (5.64)
By the recurrence relation (5.44) we obtain
—B+n,a+n o z np—B,—a . 2 n(T—1 Brx+ 1\
P @) = Sl ) = —on (=) (B ) (5.65)

Comparing (5.65) and (6.11) we obtain (5.61). O

Let us rewrite some of the identities, e.g. (5.54), in terms of the parameters a + 8 = 2m,
a—B=2k,n=101—m:

_ 1 w—1\—k—m w4 1\ k-—m w— 1INFE rw 4 1\ 1k
k+m,—k+m _ l—m
Fiom (w)_(l—m)!(2) (2) 8“’(2) (2)
(1= w?)d2 = 2((m + Dw + k) + (I —m)(l +m + 1)) P77 () = 0. (5.66)
m,—k+m 1 mrL,—kTm
OB M w) = S+ m4 DR ), (5.67)
((w? = 1)3y + 2maw + 2k) P57 () = 20— m+ )P BT ) (5.68)
! _ 1 —a\mtk 14 p\m—k (1 + 1+ K)T(1+1 — k)
prtkmek )2 = . 5.69
/ (EE @2 (55) () Ax—mratizm 06
If1=0,31,... and k,m = —1,...,1,
k+m,—k+m w— 1\ —m=k qw + 1\ —mtk —k—m,k—m
et (M) () e e
1 l+ w_l -k w+1 I+k
= m —_— 71
o () (%) (571)

5.11 Ultraspherical polynomials (or Jacobi polynomials with «a = 3)

Consider the special case of Jacobi polynomials for a = = m. To be consistent with later
applications, we change the name of the variable from = to w. Thus,

o) = L ) = (1w,
Theorem 5.11 Set
prmw) = SO y2ymman 2ymen
2nn!
= WF(—H,H—FZm—i-l;m—kl;l;w),

38



If
—2m & {n+1,...,2n},

(5.72)

then Py"™ are polynomials of degree n. They are then (up to a coefficient) the only eigensolution

of the operator C := (1 — w?)92 — 2(m + 1)wdy,, which is a polynomial of degree n.

They satisfy the equation

(1 —w?)02 — 2(m + )w)dy + n(n +2m + 1)) P (w) = 0.

and the relations

20, P (w) = (2m+n+ )Pt

(1 —w?)0y — 2

= T prmw) = (n+1)PmIm

2

(w).

o
D P w)2M " = (14 2tw + £ (w? — 1)),
n=0

(m—l—l)n‘

ppom() = L

5.12 Legendre polynomials

Jacobi polynomials with o = 8 = 0 are especially important. We then have

w? —1

o(w) = 5 p(w) = 1.

They are called the Legendre polynomials:

Pi(w) = P*(w) = (—1)181

oy Ow(l = w’)'

They satisfy the Legendre equation

(1 — w92 — 2wdy, + U(L+ 1)) Py(w) = 0.

They form an orthogonal basis of L?([—1,1]) with the normalization

1 ) 9
/_1Pl(w) dw = Ao

We have Py = 1, Pi(w) = w, Py(w) = 3(3w? — 1).

(5.73)

(5.74)

(5.75)

(5.76)

(5.77)

Theorem 5.12 Legendre polynomials are the only polynomial solutions of the Legendre equation

satisfying Pi(1) = 1.

Proof. By induction we check that for k =1,...,1,

(1 — w?) = (—1)FEw)kl- - (1 — k+1)(1 — w?)F + C(w)(1 — w?) kL,

where C(w) is a polynomial. Setting k = [ and using the Rodrigues formula we obtain Fj(1) = 1.
Using the more general fact about the Jacobi equation we conclude that all polynomial

solutions are proportional to F;. O
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6 Spherical harmonics on S?

6.1 Spherical coordinates in R?

Spherical coordinates in R? are defined by

xr=rsinfcos¢, y=rsinfsing, z=rcosb.

12 + 2
r=vz2+y?+ 22 H:arctang, gb:arctang.
z x

The Jacobi matrix is

g; % % sinfcos¢ sinfsin¢g cosf
09 00 00 _ cos 0 cos ¢ cos 0 sin ¢ sin @
oz oy 0z - r r T
0p 09 09 __sing cos ¢ 0
or Oy 0z rsin 6 rsin 6
Instead of @ it is often convenient to use w = cos§ = —=2——. Note that

Bp = (1 — w?)20,.
Spherical coordinates can be treated as a map
10, 00[xS? — R3\{0}

where (w, ¢) €] — 1,1[x[0, 27| parametrizes S? without both poles. Its Jacobian is r?drdwd¢ =
r2sin #drdfdeé. The standard measure on the sphere is sin #dfd¢ = dwde.
The Laplacian in spherical coordinates is

2 1,1 92
a2, “ L . [
A =07 + rar + 2 <7sin989 sin 00y + sin2«9>
2 1
=02+ 20, + 5 Age. (6.1)
T T

Age is the operator acting on S? called the Laplace—Beltrami operator on the sphere. It is

2
Ao = L gysimoo, 1
827 Sing 08 b sin? 6
82
= 0u(l = W)+ 5 _¢’w2 (6.2)
62

Proposition 6.1 Ag» with domain C*(S?) is Hermitian in the sense of the Hilbert space L*(S?).
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Proof. We can identify L?(S?) with L?([—1, 1] x [0, 27[) with help of the coordinates w, ¢. Using
(6.2), integrating by parts and taking into account that we have periodic boundary conditions

in ¢ we obtain

1 2m
~agg) = [ aw [ a0 (010911~ 02)ou(w.0) + 1=z DT (0. 91059 0.0
(

—(As2flg)-

6.2 Reminder about ultraspherical polynomials

We will need Jacobi polynomials for a« = = m. In view of their applications to spherical

harmonics it is convenient to write their degree as n =1—m

_1\l-m
‘Pl’r:L:n’f’:l(w) = Ql(mEll))(l - )7maf;m(1 — w2)l.

They satisfy the equation
(1 — w02 —2(m+ L)wdy + (I —m)(I +m+ 1)) P (w) = 0.
Adapted to the present notation, the recurrence relations for P, read

20, P (w) = (I+m+ 1P (),

l—m—1

1
5 (1= 0o = 2m) P w) = (= m+ DRI (w)

For m > —1 and [ = m,m + 1,m +2,... they form an o.n. basis of L?([-1,1], (1 — w?

with the normalization

/ 1-w )mdw:(1+2z

S

F(l +l)222m+1
(I —m)IT (1414 m)
(l')222m+1

(= m)!(l+m)!’

where in (6.8) we assume that [, m are integers.

Theorem 6.2 Letl=0,1,..., m € Z. Then Jacobi polynomials satisfy

—_ w2 % e 1\ o
<—1)m<1 y > pm (w) = 25((1_1?,71)|<1 _ w2) £ a,lu m(1— w2)l
—_ ’LU2 -z o \+m ™
- (1 4 ) P)l-l-m (w) = 2(l(l1—|)—m)'(1 — ’w2) 2 af:'m(l _ w2)l

If in addition m < —1 or 1 < m, then (6.9) is 0.
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This is a special case of (5.61). Below we present an independent proof.

I—m I'(21+1)
2= (I—m) T (I+m+1) "

Lemma 6.3 The term at the highest power of P (w) is w

Proof. For large w

(-

) = et
l—m2l(l+m+1)
20=m(] —m)!

Proof of Thm 6.2. Note first that
(1 —w?)™ (1 = w?)d2 — 2(m + Dwdy + (I —m)(l +m +1)) (1 —w?) ™™

= ((1—w?)d2 —2(—m + D)wdy + (I +m)(l —m +1)) . (6.10)

Hence the operator (6.10) anihilates both (1 —w?®)™ P ™ (w) and P77~ (w).

Assume first that m > 0. Both functions are polynomials, the first has the highest term
wl*mHm(—l)m%, the secon has the highest term w”m%. The con-
dition (5.72) is satisfied, hence by the uniqueness of polynomial solutions of the Jacobi equation
both functions are proportional to one another.

Next we note that the identities (6.9) do not change if we replace m with —m. Hence the
theorem is true also for m < 0.

If m < —I, then PIT—:: =0, and if [ < m, then ﬂn_l;;n =0. O

In applications, equation (6.4) is often transformed as follows

(1—w?)? (1 —w?)dZ — (24 2m)wdy + (I —m)(l +m +1)) (1 —w?) "2
m2
= (1 —-w?)d2 —2wd, — oz i+, (6.11)

The equation given by (6.11) is called the associated Legendre equation.

6.3 Standard basis of spherical harmonics in L?(S5?)

Spherical harmonics are defined as eigenfuctions of the Laplace-Beltrami operator. That is,

(Agz + \)Y = 0. (6.12)
We make the ansatz Y (6, ¢) = f(cosf)e™?. We obtain the equation
2 m?

which is recognized to be the associated Legendre equation with A = [(l 4+ 1). Setting f(w) =
(1 — w?) 2 p(w) we obtain the Jacobi equation

v[3

((1 —w?) 2 (1 —w?)d2 — (24 2m)wdy + (I —m)(l +m + 1)) (1 — w?)~ )p(w) =0. (6.14)
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Hence . .
(=)™ (1 — w?) 2 P (w) = ™0 (1 — w?®) "2 P (w). (6.15)

are eigenfunctions of Ag» with eigenvalues [(I 4 1), where
m=—l,—l+1,....1. (6.16)

They are called spherical harmonics of degree l.
One of standard normalizations of harmonics (6.15) is

m)!l—m)! /1 —w\N% o .

Yim(w,¢) = (—1)’“W+ l)!'(l )'(1 y ) P (1p)eim? (6.17)
L+m)(l—m) /1 —w\N~"% rm im
_ \/( + l)!( )(1 . ) PH—m’ (w)e ¢‘

Theorem 6.4 The functions Y, for (6.16) form an o.n. basis of L*(S?) satisfying

[ smoas [ aolYiumteos(0). 00 = 1
0

. 1+20
Proof. Let
em = €m? (6.18)
oo = RS A TR, o
where €, =1 for m <0 and €,, = (—1)™ for m > 0. We have then
Yim(w, @) = fing @ em. (6.20)
Clearly, e,,, m € Z, form an o.n. basis of L?([—m, 7], d¢).
Let us fix for a moment m = 0,1,.... Then for [,I’ > m,
R m 22 1] (| —m 4 1
[ B pzm ) - atyraw = s 2 (D
(See (6.8)). Therefore, fr,, [ =m,m+1,..., is an orthogonal basis of L*([0, 7], dw).
Hence

fmi®em, meZ, l=mm+1,...

is an orthogonal basis of

L2([0, 7], dw) @ L*([—m, n],d¢) ~ L*([0, 7] x [—m, 7], dwd¢) ~ L3(S?).

The following special cases are important:

Y 0(cos b, ¢) = Pi(cosb), (6.21)

Tsinld ..
Vi 11(cos b, ¢) = (1) @Meiw.

g (6.22)
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6.4 Lie group SO(3)

The group SO(3) acts on R? and on S2. It also acts on functions on R and on S%:

R.f(z) = f(R 'z).

In particular, we have the rotations

(6.23)

Introduce the generators of rotation L, Ly, L,. We first describe them in the Cartesian

coordinates, and then in the spherical coordinates:

cos f cos ¢

Lac - z = —si - .
Y0, — 20y sin ¢0y e~ "

= —singpV1 — w29, + % cos 0y,

V1 — w2
cos @ sin ¢

L = a;t - z — - N
y z x0 cos Py <0

Dy

= cos PV 1 — w20y, + ———= sin @0y,

w
VI a?
L, =x0,—y0; = 0.

Their exponentials are rotations in the x, y and z axis:

(eesz) (x,y,2) = f(z,cos Oy + sin Oz, sin y — cos z),
(egLy f) (z,y,2) = f(sinfz — cos Oz, y, cos 0z + sin Ox),
(eesz) (z,y,2) = f(cos Oz + sin Oy, sin fx — cos by, z).

The operators Ly, Ly, L. span the Lie algebra so(3):
Ly, Lyl =—L., [Ly,L.]=—Ls, [L,Ly]=—L,.
We also have the generator of dilations:
A =20, +y0y + 20, = r0,.

A commutes with L, Ly, L.
Direct calculations show that

Age =L+ L2+ L2

(6.24)
(6.25)
(6.26)

(6.27)

(6.28)

This can be also seen quite simply, almost without using spherical coordinates. First we easily

check that A = r0,. Then we compute
PA=AA+1)+ L+ L)+ L2

and compare this with (6.1).

(6.29)

The operator Age is invariant wrt the group SO(3). Therefore, it commutes with Ly, Ly, , L.
This can be also easily checked directly. Therefore, L;, L, and L, preserve eigenspaces of Age.

44



Spherical harmonics are chosen so that they diagonalize simultaneously —Ag2 and L,:

—Ag2 Y =114+ 1)Yy, —iL. Y, = mYy,. (6.30)
Clearly, the following operators preserve the eigenspaces of Age:

Ly =i(Ly+iLy) =—(1—w?)20,e? +i—el%d,, (6.31)

(1— w2}
L =i(Ly—iL,) = (1—w?)20,e " +i —e19,, (6.32)

(1—w?)h

(6.27) imply

[_iLZ> Li] = :l:L:tv (633)
[Ly, L ] = —=2iL,. (6.34)

Hence if |m) is an eigenvector of —iL, with eigenvalue m, then Ly|m) is an eigenvector of —iL,
with eigenvalue m =+ 1.

Using
(1 — )5 9y (1 — w?) T8 = (1—w2)50wj:m(1w2)§, (6.35)
—w
we can rewrite (6.5) and (6.6) in the form
1 w 1_w2% m,m 1_w2)% m-+1.m
(“ Ty wz)é) ) = (e ) R ),
2\ 1 w (1 — wQ)% m,m (1 — w2)771 m—1,m—1
T w0 mo T )T W) = (e D BT ()
—w
Therefore
_iLz}/l,m = m}/l,ma
LiYim = v/ —m)(+m+1)Yime1,
LYy = V/I+m(I—m+1)Y, 1. (6.36)

6.5 Spherical harmonics as a basis of a representation of so(3)

It is well known that irreducible representations of so(3) can be labelled by the spin I, which
can take values 0, %, 1, %, .... Only for integer spins these representations can be integrated
to representations of the group SO(3). These representations can be realized in the space of

polynomials of degree 2] with basis
(20)!

= l=m ltm =1, —1+1,....1
B e T A R
1
—ILZ = 5( +8z+ —Z_az_),
L :=z0.,,
L+ :z+8_
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(Note that this definition gives automatically u;,, = 0 for m = -l —1,-1 —2,... and m =
I+ 1,14 2,..., because % =0forn=—-1,-2,...). We have

_iLzul,m = MU m,
L+ul,m = (l +m + 1)ul,m+la
L v, = (I—m+1um. (6.37)

We will show that properly normalized spherical harmonics realize this representation. Let us
change the normalization of spherical harmonics:

1—w?)% om, <

Vim(w,¢) 1= (~1y L L pmm s (6.38)
1— 27% —m,—m im

_ (21_””311+m7 (w)e™?. (6.39)

The standard spherical harmonics differ from Y ,,, by appropriate coefficients:

Vim(w,¢) = Yy, ), (6.40)

We obtain relations identical with (6.37):
_iLzyl,m = myl,n’m

L+yl7m = (l +m+ 1)yl,m+la
L_Yim (I=m+1)Vim-1. (6.41)

6.6 Legendre functions

We introduced the standard basis of spherical harmonics with help of Jacobi polynomials. In
literature usually one can usually find a different, less convenient definition based on the so-called
associated Legendre functions, which are solutions of the associated Legendre equation (6.13).
In the literature one can find two varieties of these functions:

2" (1 +m)!

PMw) = (1 —w?) TP (w)

(_1)m+l

= oy - w?) 2™ (1 — w?),

_1)m2m(l +m)!

!
—1)! m
_ (21”) (1 o w2)5&{v+m(1 _ w2)l’

(1 —w?) "2 P (w)

S
-
e
S
[

The first variety uses the so-called Condon-Shockley convention, which we will adhere.
For m > 0 associated Legendre functions can be expressed in terms of Legendre polynomials:

PM(w) = (~1)™(1—w?) 2o Fi(w),
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We have the identity:
(I —m)!
—— = P"™"(w).

Here are spherical harmonics expressed in terms of associated Legendre functions:

B w) = (=)™

6.7 Projection onto [th degree spherical harmonics

Consider the Hilbert space L?(S?). Let IP; denote the orthogonal projection onto spherical har-
monics of degree [. In other words,

—Age =Y I+ 1)P,.
=0

We can assume that they are given by an integral kernel

PLf(E) = / Py, n) f (n)dn,

wheree £,7 € S? and dn denotes the standard measure on the sphere.

Proposition 6.5
C20+1

Py(&,m) = yp Fi(&-n). (6.42)

Proof. P;(£,n) is invariant wrt rotations. Hence it depends only on the angle between £ and 7.
Note that
—AgP =1(l+1)P;.

On the level of the integral kernel it means

_ASZ]PI(§777) = l(l + 1)]P>l(‘£a 77)1

where the operator Age2 acts on the variable £. Hence,for a fixed ), the function £ — Py(€,n) is
a spherical harmonics of degree [ invariant wrt rotations around 7.

If we set 7 = (0,0, 1), then P;(&,(0,0,1)) is invariant wrt rotations in the z axis. In other
words, it depends only on the z-component ofj £, that is on w = £+ (1,0,0). Spherical harmonics
of degree [ invariant wrt rotations in the z axis are proportional to Y o, which is proportional to
the Legendre polynomial P;(w). Hence,

]P)l (57 (07 07 1)) = clPl(w)7 (643)
or Pi(&,m) = P(E-n). (6.44)

P; is a projection, therefore
P? =P,
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which yields
[ B P =P )
Setting £ = ¢ = (0,0, 1) we obtain

1
01227r/1 P?(w)dw = ¢ P(1).

Finally, we use

2

1
PA(w)dw = ——, P(1) = 1.
[ P =57 R

6.8 Harmonic functions and solid harmonics

We say that a function F' is harmonic if AF = 0. For instance, a function depending only on
x 41y or only on z — iy (that is, iterpreting R? as C, analytic or antianalytic) is harmonic.
We say that a function F' is homogeneous of degree [ if

F(\x, Ay, \z) = M F(z,y,2), A>0. (6.45)
Differentiating in A we obtain the equivalent condition
(0y + yOy + 20,)F = [F. (6.46)

In spherical coordinates the operator on the left hand side is rd,.. Every function homogeneous
of degree [ in spherical coordinates can be written as

F(r,0,6) = r'G(0,9), (6.47)
where G is the restriction of F to S2.

Theorem 6.6 If F' is harmonic and homogeneous of degree I, then

“AeF =10+ 1)F. (6.48)
Proof.
_ _ (2429 0L
0=AF = (ar + 200+ ASQ)F (6.49)
1
- 5 (r@r(ra,, +1)+ AS2>F. (6.50)
Od

We say that H is a solid harmonic of degree [ if it is a harmonic polynomial of degree I.
By Thm 6.6, if H is a solid harmonic, then its restriction Y to the sphere is a smooth function
satisfying

Ag2Y = —l(l+1)Y, (6.51)

or it is a spherical harmonic. One can also show the converse statement:
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Theorem 6.7 FEwvery spherical harmonic is a restriction of a certain solid harmonic to the sphere.

Here are examples of solid and the corrsponding spherical harmonics:

1= 70 ~ Y00,
r+iy=r(1- 7,02)561‘Zb ~rYiq,
z = rw ~ Y10,
r—iy= r(l-— wQ)%e_i‘z’ ~rYi_q,
(z+iy)? = (1 —w?)e®  ~r?Ya,,
z(x+iy) = 31— wz)%wei‘b ~ 1Yy,
222 — 2 — % = r?(3w? — 1) ~ 7"2Y270,
z(x —iy) = r3(1 - wz)%we*w ~ 1Y 4,

(x—iy)?= r2(1—w?e 2 ~r?Y, .

6.9 Electrostatic potential
We have

1

Az + % + 2%)72 = —4nd(x)d(y)d(2).

2 is harmonic on R3\{(0,0,0)}. After a translation it is still harmonic.

Hence (22 + 2 + 22)72

Hence )
(22 + >+ (z-1)%)"2 (6.52)
is harmonic on R3\{(0,0,1)}
Theorem 6.8 For |r| <1 and —1 < w = —cosf < 1 we have
1 o0
(r* —2rcosf+1)"2 =) rP(w (6.53)
=0

Hence,

P(w) = —Ol(r —2rw+1)" 3

70 (6.54)

r:O'

Proof. The function r ~— (r? — 2rcos 6 + 1)_% has branch points at zeros of 12 — 2rcos 6 + 1,
that is, at 7 = w £ iv/1 — w?. Therefore, it is analytic in the disc |r] < 1 and can be expanded
in a series in 7.

The function (6.53) is spherical coordinates is (72 — 2rcosf + 1)

1
2.
0 = A(G2—2rw+1)2

2 1

- Zrl 21 =1) + 20+ (1 — w?) — 2wdy) Pr(w).
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Hence Pj(w) satisfy the Ith Legendre equation.
(1 — w92 — 2wdy, + U(1 + 1)) Pi(w) = 0. (6.55)

The formula (6.55) easily implies that Pj(w) are [th degree polynomials. Therefore, P;(w) are
proportional to Legendre polynomials.
We set w = 1:

(r2—2r+1)2 = (1—r)_1:irl:§:rlpl(l).

Hence Pj(w) are Legendre polynomials. O

Corollary 6.9 The electrostatic charge 4w situated at (0,0,7) generates the following potential
at the distance R from the center and at the angle cosd = w:

> rlR_l_lpl(w), R >
1 =0
(R* —2Rrw +r*) "2 =

> er_l_lpl(w), R<r.
=0

Proof. We apply (6.54) to

NI

R_1(1—2w%+1%)_ , r<R;

(R? — 2Rrw +1r2)"2 = - (6.56)
1"_1(1 —2w§—{—%2) 2, R<r.
6.10 Solving second order equations
Consider the equation
g(t) = (87 — A*) f (1), (6.57)
where A is a positive operator.
Theorem 6.10 Depending on the problem, we have the following solutions of (6.58):
(1) Given f(0), f(0):
otA / t
70 =55 (A1) + 70) + [ e gt
o—tA / b
+ 5 (Af(O) — 1(0) - /0 o g(u)du). (6.58)

(2) Jim f(t) =0, given £(0):

o—tA [t olA _ o—tA

(@) :e*tAf(O) Y ; (e*“A — e“A)g(u)du + A /too e*“Ag(u)du; (6.59)
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(3) lim f(t) =0, given f'(0):

t—o00

—tA e—tA

_ ! ! uA —uA e_tA+etA > —uA
f(t)=- 2 f1(0) — oA /0(6 +e )g(u)du—zA/t e "““g(u)du. (6.60)

Proof. We rewrite (6.58) as

h=(0,+A)f, (6.61)
9= (0 — A)h 6.62
We obtain

¢
F(1) = et F(0) + / (= Ap(5)ds, (6.63)

0
h(s) = e*h(0) + /8 WA () du. (6.64)

0

Then we substitute (6.65) into (6.64), which yields (6.59).
Suppose now that there exists tlim f(t). Then the first term of (6.59) has to converge to 0.
—00

Therefore,
Af(0)+ f'(0) + / e "Ag(u)du = 0.
0
To daje (6.60) i (6.61). O

For example, consider the Dirichlet/Neumann problem on the halfspace (t,x1,xz2), t > 0.
Consider the equation

0=2sf = (7~ (V=02)°) 1, 2y=07+33.
p (—tv=A7)

The operator = Ny has the integral kernel

exp(—t@)(x ) = 1
V=242 Y 21\ /12 + (x — )%

This can be obtained as follows:

1 / elk(@—y)—|k[t "
(27)? 14

S 2m
:/ d|k:|/ dgpelFl (le—y| cos o—1)
0 0

B 1 /27r d¢
C2m)2? ), t—i|lr —y|cosg’

(6.65)

Then we insert

/2” dp ~ 2n
o t—iacos¢ 2 +a2
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6.11 Laplace equation on the ball

Consider the Laplace equation on the 3-dimensional unit ball. Write the Laplacian in the coor-
dinates 7, w, ¢. Substitute » = e~!. We obtain 0, = —e'0;. Therefore,

A= th(ﬁf - at + ASQ) = €2t((8t - %)2 + Agz - %) (666)
Hence
2
e FAck = F+Ap-t=07-(y/-As+]) (6.67)
exp (—t\/—ASQ-‘ri)

Let us compute the integral kernel of the operator

V-t
We have -
—Ag = Z ((l + %)2 - %)]P)l.
=0
Hence,

i (z+ %)Pl =\/-Ag + 1.

After substitution » = e, the multipole decomposition leads to

1 1 _1
%e_%(e_% — 27+ 1)_% = ?(2 cosht —2¢-n) 2
1 1
LS etiipgey (6.65)
=0

0 9o (+3)t

= ZT—l—lPl(é’n)

= (& n)- (6.69)

7 Spherical harmonics in any dimension

7.1 Space L*(RY)

Consider the space L?(R%). Here are various unitary operators that act on this space: translations

. — F 3 4
e % rotations e %L and scaling e¥(P+2) where
Li; = «Tz‘aacj - wjal‘w
D: = 210y + -+ 2404,
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7.2 Laplacian
We define the Laplacian:

d
A=) 02,
i=1

It is easy to see that A is invariant wrt translations and rotations:

e On A = Ae 0
e Vhin = Ae vl

7.3 Laplace-Beltrami operator on S¢!

L*:=> "L

1<j

Define

Note that for any ij,
e Vhii[? = [Ze vl
Hence the operator L? is invariant wrt rotations. It is also invariant wrt scaling and multiplication
by r:
e—s(D-s-g) 1?2 —

rL? = L%

LQG—S(D-F%),

The operator L? is made out of differentiations tangent to the d — 1-dimensional sphere. It
can be viewed as an operator on functions on the unit sphere S¥~1. With this interpretation it
will be called the Laplace’-Beltrami operator on S*!, and will be denoted Age.

7.4 Spherical coordinates

Suppose that Q = (w1,...,wq—1) are coordinates on the sphere.
Adjoining r := /2?2 + -+ 22 to Q@ = (w1,...,ws—1) We obtain coordinates on R?. (These

coordinates can be called “generalized spherical coordinates”).¢

Theorem 7.1 We have

D = ro, (7.1)
1
A = g d-lg 4 s
d—1 1
= P+ — 0+ 54 (7.2)

Besides, L;j and Ag2 depend only on the coordinates €2 on the sphere.
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Proof. We can write

d—1
D = cy(r,Q0)0, + cj(r,§2) 0y,
j=1
We have
Dyfa3+---+a3 = yJai+-- a2,
D i -0, j=1,....d

The second formula implies Dw; =0, j = 1,...,d — 1. The first yields co(r,2) = r. This proves
(7.1).
We have
ng = x?@%ﬂ_ + :L'?é?gl — 1§02, 0p; — 10z, — T;0y;.

Therefore,

YLY = ) 4id Zfﬂiwjaxi@xj—(d—l)zxi@xi

i<j i#£j i#]
= 2.1‘282 Z-fz-f]axlaxj —\a—= 1 Zxa’m
= ZZL‘282 Zl'z x, d 2 21:1 x;
,J
= r2A—D2—(d—2)

This proves (7.2).
We have L;;jr = rL;; . Therefore, L;; does not contain a derivative wrt 7.
We also have L;; D = DL;j. Using D = r0, we see that L;; does not involve r.
The definiton Aga-1 involves only L;;. Hence Ags—1 does not contain 0, nor r. O

7.5 Space L?(S%1)
The unit sphere in R? is denoted

S = {(21,...,xq) €R? 22 4. 422 =1}

dQ) stands for the natural measure on Sdil This measure is invariant wrt rotations and the
271'2

L(g)’

/|f(Q)|2dQ < 0.

(flg) = / F@g(2)d0

sphere has the d—1-dimensional volume The Hilbert space L?(S%~!) consisits of measurable

functions on S 1 such that

Its scalar product is
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The change from the Cartesian to sherical variables ccan be interpreted as the unitary map
U : L2(RY) — L2([0, 00[xS%!, 74=1drdQ) defined by

UH(r,Q) = f(x1,...,2q).

The operator Ue¥% U~ and UAga-1U~! act only on the variables Q. Therefore, they can
be interpreted as operators on L?(S?"!). Abusing slightly the notation, these operators will
be denoted simply by e¥%ii and Aga—1. The operators e¥%is are unitary on L2(S*1dQ). The
operator Aga-1 is self-adjoint on L?(S?"1d€Q) and is called the Laplace-Beltrami operator on the
unit sphere. We would like to diagonalize Aga-1.

7.6 Multivariable polynomials

A polynomial depending on the variables x1, ..., x4 is a finite linear compbination of expressions
of the form
:E]fl e xsd.

Thus, every polynomial has the form
k
P(z1,-3g) = Y Py gzt -2l
k1,....kq

The degree of a polynomial P is defined as
degP :=max{ki +---+kq : Py, . 1k, # 0}

7.7 Homogeneous polynomials
We say that a polynomial P is homogeneous of degree [ if
Pz, Axg) = NP2y, 24).

In other words,
_ k kq
P(xy, - xq) = E Py, gyt ot
keyte+hg=l
Here is an equivalent condition:

ro.P = IP. (7.3)

Let Pol’ denote the space of polynomials homogeneous of degree .

Theorem 7.2 The dimension of the space of polynomials of degree | of d variables is

d+1-1 > _(d+1-1)

d—1 e (7.4)

dim Pol’ = (
Proof. Consider a row of d + 1 — 1 white balls. We paint black d — 1 balls. We obtain d smaller
rows of white balls. In the jth row there are k; balls, altogether k1 +- - -+kg = d+I—-1—(d—1) = L.
The number of such configurations is the same as the number of d — 1 element combinations in
an [ 4+ d — l-element set, that is, (7.4). O
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7.8 Harmonic polynomials
We say that a polynomial H is harmonic if
AH =0.

Let Har! denote the space of harmonic polynomials homogeneous of degree . (The second
implicit parameter is the dimension of the space d).
Harmonic polynomials homogeneous of degree [ are sometimes called solid harmonics of degree

.

Theorem 7.3 (1) dim Har! = dim Pol’ — dim Pol' 2 = %W.

(2) Pol! = Har! @ r?Pol' 2.
(3) The operator A is injective on r>Pol' =2,
Proof. Let P € r?Pol'"2 and AP = 0. We can write
P =1 P_y,
where P_o € Pol'=2* is not divisible by 2 and k > 1.

Ar*P g, = (Ar®)Pgp + 2(Vr**)VP gy + r** AP o
= 2k(2k—2+ d)T%_ZPZ_gk + 4kr? 7200, P_gy, + 1R APy,
= 2Kk(—2k —2+d+20)r** 2P o, + 1 * APy

We have 2k(—2k — 2 +d + 21) > 0. Hence P,_g, is divisible by 72, which is a contradiction and
proves (3).
Consider the linear operator A; : Pol’ — Pol'~2. Using (3) we obtain

dim Pol’"2 > dim RanA; > dim r?Pol’ "2 = Pol' 2. (7.5)
Hence dim Pol'"2 = dim RanA;. But
dim Pol’ = dim RanA! + dim KerA! (7.6)

and KerA; = Har!. This proves (1). Finally, (1) and (3) implies (2). O

Here are examples of solid harmonics:
d = 2. For m > 1 in the Cartesian and polar coordinates:

(z +iy)™ = rmetime,

dim Har = 1, dim Har! = 2, [ > 1.
d = 3. Solid harmonics for [ > 1 in Cartesian and spherical coordinates:

(zsiny —ycosh % iz)! = r!(sin O sin(¢ — ) + icos )’

dim Har! = 21 + 1.
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7.9 Spherical harmonics

We say that a funtion Y : S%~! — C is a spherical harmonic of degree [, if there exists a solid
harmonic H of degree [ such that Y is a restriction of H to S¥~!. An equivalent condition:

! T1,...T
42
is a harmonic polynomial.
Here are examples of spherical harmonics:
d=2
oEime.
d=3

(sin O sin(¢p + v) £ icos ).
Lemma 7.4 Let P € Pol'. Then there exist Hy_op, € Har'=2F k= 0,...[1/2], such that

/2]
P, = kZOHl_%)Sdl. (7.7)

Proof. We use induction wrt [.
We have
Pol’ = Har’, Pol! = Har!.

Hence the lemma is obvious for [ = 0, 1.
Suppose that the lemma is true for I replaced with [ — 2. By Thm 7.3, we have

P=7r’P_5+Q;, P_ycPol™? @ eHar (7.8)
By the induction assumption,

(/2]

Ps i1 = ZQ%%‘S(H, Qi—o), € Har' 2", (7.9)
k=1

But on S we have r? = 1. Therefore, (7.8) and (7.9) imply (7.7). O

Theorem 7.5 Let Y; be a spherical harmonic of degree I. Then

Aga 1Y) = —l(l+d—2)Y].
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Proof.
1
0=Ary; = <7‘d+18ﬂ‘d18¢ + TQASd—1> ry;

= Il +d—2)r""2Y + ' 2 Aga1 V).

Spherical harmonics of degree I form a subspace of L?(S?1) denoted H;.

Theorem 7.6 (1) H; is the subspace of eigenfunctions of the operator —Aga—1 on L?(S%1)
with eigenvalue [(I + d — 2).

(2) H; are orthogonal to one another for disctinct 1.
(3) Linear combinations of elements of H; are dense in L*(S41).

(4) Rotation operators e preserve H,;.

Proof. (2) follows from (1) and from the self-adjointness of Aga—1 on L?(S%1).

Lemma 7.4 shows that harmonic polynomials restricted to S*~! coincide with all polynomials
restricted to Sd — 1.pokazuje, ze wielomiany harmoniczne obciete do sfery. Then we use the
Stone-Weierstrass Theorem, which implies that polynomials are dense in continuous functions
on S9! in the supremum norm. Continuous functions are dense in L?(S9~!). This shows (3).

(4) follows from e¥Lii Aga 1 = Agare¥lii. O

o0

(2) and (3) cn be together expressed by the identity L2(S?1!) H.

=0

7.10 Gegenbauer polynomials

Gegenbauer polynomials are defined with the help of the following generating function:

oo
(1—2wr+7°) =) "r"Cp(w), |r|<1. (7.10)
n=0
Hence,
1
A . an(,.2 -
Cr(w) = n!@, (re—2wr+1) —
We have -
_ _ (2))
(r2—2r—|—1) )‘:(r—l) QA:Z n!nr”
n=0
Hence,

Cr(1) = (2\)n.
Substituting R = 1, (7.10) can be rewritten as

(1-2wR+ R =) R "C)(w), |R>1.
n=0
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Proposition 7.7
«LﬂﬁWi—ﬂ+2MM%+nm+2Mym@Q:O

Proof. Clearly,

(02+22) @+ = @)X+
1
5@,(1:2 +y2)7 = (2?42
Hence,,
2\ _
(aﬁ +07+ 383,)(9:2 +y5)™ = 0.
Therefore,,

(%+%+?@ﬂ@m+fyA=o. (7.11)

Introduce polar coordinates:

We have then

1 1
R4, = 2+ ~O0r+ T—2<(1 —w?)d? — w8w>,

1 1 w
58@, = ;&« — T—Qﬁw.
(7.11) can be rewritten as
142 1
(£+}t'“&+Vawhwfwi—O+ZMW%D02—mw+1YA=0 (7.12)

Thus Gegenbauer polynomials satisfy the same equation as ultraspherical (Jacobi) polyno-
A—ia-1
mials with o = A — % Hence C is proportional to P, 2 2. Comparing the value at 1 we
obtain (2))
A—L1 -1
CMw) = ———2" Py 277 2 (y).
)= G W
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Comparing the generating functions we obtain the relations between Gegenbauer and Cheby-
shev polynomials:

T,(w) = %(%\Cfl‘(w)
U(w) = Cl(w).

A=0’

7.11 Electrostatic potential in higher dimensions
The Laplacian in dimension d on radial functions is

9% + ?@. (7.13)

Therefore,
r =l 2

for A = % — 1 is harmonic on R% outside zero.
Similarly, the function

@2+ 422+ (wa— 1) (7.14)
is harmonic outside of (0,...,0,1). Introducing w := %4 we can rewrite (7.14) as
(1+ 7% — 2wr)~. (7.15)

For functions depending only on r, w, the Laplacian is

d—

1 1
o+ o

T—Q((l —w?)d? — (d— Dwdy).

w

This operator annihilates (7.15), which yieds an alternative proof of (7.12) (which unfortunately
works only for A\ = %, 1,...).
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