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ABSTRACT
Hypergeometric class equations are given by second order differential operators in one variable whose coefficient at the second derivative
is a polynomial of degree ≤2, at the first derivative of degree ≤1 and the free term is a number. Their solutions, called hypergeometric class
functions, include the Gauss hypergeometric function and its various limiting cases. The paper presents a unified approach to these functions.
The main structure behind this approach is a family of complex four-dimensional Lie algebras, originally due to Willard Miller. Hypergeo-
metric class functions can be interpreted as eigenfunctions of the quadratic Casimir operator in a representation of Miller’s Lie algebra given
by differential operators in three complex variables. One obtains a unified treatment of various properties of hypergeometric class functions
such as recurrence relations, discrete symmetries, power series expansions, integral representations, generating functions and orthogonality
of polynomial solutions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0265766

I. INTRODUCTION
This paper is devoted to the family of equations of the form

(σ(z)∂2
z + τ(z)∂z + η) f (z) = 0, (1.1)

where σ(z), τ(z), η are polynomials with
deg σ ≤ 2, deg τ ≤ 1, deg η = 0. (1.2)

Their solutions include some of the most useful special functions with many applications in physics and mathematics.
In the literature one can find several names for this family. In this paper, we will use the name hypergeometric class equations for equa-

tions of the form (1.1) satisfying (1.2). (In the book by Nikiforov–Uvarov,1 and also in Refs. 2 and 3, this family is called equations of the
hypergeometric type. However, Slavianov-Lay’s book4 suggests to use the term “type” for smaller families, such as the families (1)–(5) listed
below5 calls this family the grounded Riemann class. The name Riemann class, following the suggestions of Slavianov-Lay, is reserved in Ref.
5 for a somewhat wider family, where η(z) is allowed to be a rational function such that ησ is a polynomial of degree ≤2. See Appendix B for
more comments.)

Let us start with a short review of basic nontrivial types of hypergeometric class equations. We will always assume that σ ≠ 0. Every class
will be simplified by dividing by a constant and an affine change of the complex variable z.

(1) The 2F1 or Gauss hypergeometric equation

(z(1 − z)∂2
z + (c − (a + b + 1)z)∂z − ab) f (z) = 0.
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(2) The 2F0 equation

(z2∂2
z + (−1 + (1 + a + b)z)∂z + ab) f (z) = 0.

(3) The 1F1 or Kummer’s confluent equation

(z∂2
z + (c − z)∂z − a) f (z) = 0.

(4) The 0F1 equation, closely related to the Bessel equation,

(z∂2
z + c∂z − 1) f (z) = 0.

(5) The Hermite equation

(∂2
z − 2z∂z − 2a) f (z) = 0.

In our work we collect various results about hypergeometric class equations that can be stated and proven in a unified way, with
as few restrictions on σ, τ, η as possible. We believe that such an approach has a considerable pedagogical and theoretical value. The
pedagogical advantage of the unified approach is obvious: it reduces the need for repetitive arguments. From the theoretical point
of view, in this way we easily see the coalescence of various types. The properties of hypergeometric class equations that we describe
depend analytically on the coefficients σ, τ, η. These properties include a pair of recurrence relations, a discrete symmetry, integral
representations, power expansions around singular points, generating functions, the Rodriguez formulas for polynomials and their
orthogonality.

The unified approach has its limitations. There are some properties that are not easy to formulate in a unified way. For instance, only
one pair of recurrence relations depends analytically on the coefficients. If we restrict ourselves to specific types, then we often find a bigger
number of recurrence relations (e.g., at least 12 in the case of the Gauss hypergeometric equation). Another family of important properties
not included in our presentation are quadratic identities, which link various types of hypergeometric class functions. Thus this work should
be compared to other studies of hypergeometric class equations, such as Ref. 2, where specific types are described one by one.

The central structure behind the properties described in this paper is a certain family of Lie algebras mα,β, described in Sec. II, which we
propose to call Miller’s Lie algebra, since it was probably first introduced by Willard Miller in Ref. 6. Miller’s Lie algebra is defined as the span
of four elements N, A+, A−,𝟙 satisfying the commutation relations

[N, A+] = A+,
[N, A−] = −A−,

[A+, A−] = 2αN + β𝟙,
(1.3)

where α, β are complex parameters.
Let σ be a polynomial of degree ≤2 [as in (1.1)] and κ a polynomial of degree ≤1. Miller’s Lie algebra with α = σ′′

2 and β = κ′ can be
represented by the following first order differential operators acting on C3:

N ∶= t∂t − s∂s,

A+ ∶= t∂z + σ′(z)∂s,

A− ∶= s∂z + σ′(z)∂t +
κ(z)

t
.

(1.4)

The operators (1.4) can be restricted to functions on the quadric

σ(z) − ts = 0. (1.5)

Miller’s Lie algebra mα,β commutes with

Cα,β := 1
2
(A−A+ + A+A−) + αN2 + βN, (1.6)

which will be called the Casimir operator of Miller’s Lie algebra. In the representation (1.4), the operator (1.6) restricted to the quadric 1.5 and
to the eigenspace N = 0 is a second order differential operator in z, which we denote H(σ, κ). Its eigenvalue equation

(H(σ, κ) + ω) f = 0 (1.7)
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is precisely the hypergeometric class Eq. (1.1), where

τ(z) = κ(z) + σ′(z), η = κ′

2
+ ω. (1.8)

The operators A+ and A− can be treated as “root operators” w.r.t. the “Cartan algebra” spanned by N. They lead to recurrence relations
for ladders of solutions. The involution of the quadric (1.5) (t, s, z)↦ (s, t, z) generates a “Weyl symmetry” of Miller’s Lie algebra. It leads to
a discrete symmetry of hypergeometric class equations.

We devote Sec. III to the properties of hypergeometric class equations and functions which follow directly from the action of root
operators and Weyl symmetry of Miller’s Lie algebra: the basic recurrence relations and the basic symmetry. Thanks to the recurrence relations,
once we know a solution of a certain hypergeometric class equation, we know its solutions for a whole ladder of parameters labeled by n ∈ Z.

Certain ladders are special. One of them contains solutions which can be expressed in terms of elementary functions. We call it the
Chebyshev ladder, because it contains the well-known Chebyshev polynomials. It is described in Subsection 3.6. See also Ref. 7 Subsections 3.3
and 4.5, Ref. 8, Sec. 31.

Another ladder of solutions consists of polynomials. In the convention that we adopted, this ladder is descending—its elements are zero
for n > 0. We devote to this ladder the whole Sec. VII. The basic symmetry produces from the polynomial ladder an ascending ladder, which
needs no separate discussion.

For the Hermite equation the polynomial σ does not have a zero. For other types, that is for equations reducible to the 2F1, 1F1, 2F0 and
0F1 types, σ has at least one zero. We devote Sec. IV to these equations, where without loss of generality we assume σ(0) = 0. We can then
write a formal power series F(σ, κ, ω; z) which solves the equation

(H(σ, κ) + ω)F = 0, (1.9)

normalized to be 1 at zero. This power series is convergent if σ′(0) ≠ 0, that is for 2F1, 1F1, and 0F1. If σ′(0) = 0, that is for 2F0, it either
terminates and is a polynomial, or is divergent. Nevertheless, even in the divergent case this series is asymptotic to a well-defined function
2F0, which we separately discuss in Appendix A. Thus we obtain a unification of four types of hypergeometric functions in a single function
F(σ, κ, ω; z), which we call the unified hypergeometric function. It depends meromorphically on five complex parameters (two parameters for
σ, two for κ and one for ω).

If σ(0) = 0 and σ′(0) ≠ 0, it is natural to assume σ′(0) = 1 and to normalize the unified hypergeometric function by dividing it by
Γ(m + 1), where m = κ(0)

σ′(0) . This is sometimes called Olver’s normalization. Thus we obtain the Olver normalized unified hypergeometric
function F(σ, κ, ω; z), which depends analytically on four complex parameters (one parameter for σ, two for κ and one for ω).

If σ(0) = 0 and σ′(0) ≠ 0, the hypergeometric class has an additional discrete symmetry, which we call the power symmetry. This
transformation involves gauging with the function xm, that is, (⋅)↦ xm(⋅)x−m. (In the literature this transformation is sometimes called
an F-homotopy.)

If σ(0) = 0, and σ′′ ≠ 0 or κ′ ≠ 0, that is for the 2F1, 1F1 and 2F0 equations, we have yet another discrete symmetry, which we call the
inversion symmetry. For the 2F1 equation it involves the change of the variable z ↦ 1

z and the transformed equation is still of the form 2F1. In
the confluent cases it interchanges the 1F1 and 2F0 equations, and it involves z → − 1

z . It is however not defined for the 0F1 equation.
In Sec. V we describe a unified approach to representations of hypergeometric class functions in terms of integrals of elementary

functions. The 2F1, 1F1, 2F0 and Hermite functions can be represented as Euler integrals, that is,

∫
γ

p(s)(s − z)−n−1ds, (1.10)

where p is an elementary function, n ∈ C and γ is an appropriate contour. 1F1, 0F1 and Hermite functions possess representations in the form
of the Laplace integral

∫
γ

q(s)ezsds, (1.11)

where q is an elementary function and γ is an appropriate contour.
As we mentioned above, some ladders of solutions of hypergeometric class equations consist of polynomials. These polynomials include

the famous classical orthogonal polynomials (sometimes called the very classical orthogonal polynomials). They allow for a very elegant unified
treatment, which includes not only recurrence relations, but also generating functions, the famous Rodrigues formula and the orthogonality
relations. All of this is briefly described in Sec. VII.

As we mentioned above, if σ(0) = 0 and σ′(0) ≠ 0, that is in the cases equivalent to types 2F1, 1F1, and 0F1, we have the power symmetry.
Because of that, these equations have two linearly independent solutions with a distinct behavior at zero: the unified hypergeometric function,
which is analytic at zero, and another solution behaving as ∼ zm, where m = κ(0)

σ′(0) . The linear independence breaks down for m ∈ Z, when
both solutions are proportional to one another. This case is called degenerate and is discussed in Sec. VIII. The Olver normalized unified
hypergeometric function in this case has an additional integral representation and an elegant generating function.
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The present work should be used only as an “invitation” to hypergeometric class functions. It leaves out many of their properties,
which are difficult to describe in a unified way. For instance, as we mentioned above, various types of hypergeometric class functions possess
additional recurrence relations and additional symmetries. However only those derived directly from Miller’s Lie algebra can be described in
a fully unified fashion.

Almost all our discussion is algebraic, without functional analysis. We are aware that it is natural to view hypergeometric class operators
as closed (or self-adjoint) Sturm-Liouville operators on appropriate weighted L2 spaces. It would be also interesting to consider representations
of Miller’s Lie algebra in Hilbert spaces. This would, however, require breaking our discussion into separate types. The only place where we
use some elements of functional analysis is Sec. VII about classical orthogonal polynomials. We show how to view them as eigenfunctions
of certain self-adjoint Sturm-Liouville operators on weighted L2 spaces with appropriate boundary conditions—this can be done in a rather
unified fashion.

The literature on hypergeometric class equations is very large. Usually, each type is considered separately, without an attempt of a unified
treatment. Let us list some of the more famous treatises about these equations:9–15

Under the name “equations of the hypergeometric type” they were considered in a unified way in the book by Nikiforov–Uvarov.1 This
book was one of the two main inspirations for our article. A part of the material of our work is adapted from Ref. 1, notably the material of
Subsections 3.5, 5.1, 7.2, and 7.6.

We use also ideas of Miller, notably in Sec. II. As we mentioned above, Miller’s Lie algebra was defined in Ref. 6. Miller was an early
champion of the use of Lie algebras in the theory of special functions. To my knowledge, he was the first to note that various types of
hypergeometric class admit a larger symmetry algebra. This topic was further developed in Ref. 3.

There are many works that contain elements of a unified theory of hypergeometric class equations, the idea of recurrence relations and
factorizations. Among early ones let us mention the classic work of Infeld and Hull16 and of Truesdell.17 Later treatments include.18,19

More complete analysis of various types hypergeometric class equations, including the Lie-algebraic interpretation of their recurrence
relations and discrete symmetries, can be found in the literature, notably in the works of Miller, and also in Refs. 2, 3, 20, and 21.

The family of hypergeometric class polynomials that form an orthogonal basis in an appropriate weighted Hilbert space consists essen-
tially of Jacobi, Laguerre and Hermite polynomials, often called classical orthogonal polynomials. It has an especially large literature, e.g., Refs.
1 and 13. In the more recent literature the name “classical orthogonal polynomials” is sometimes given to a broader family, given by the
so-called Askey scheme. Some authors proposed to use the name very classical orthogonal polynomials for the family consisting of Jacobi,
Laguerre and Hermite polynomials.

II. MILLER’S LIE ALGEBRA
In this section we introduce a certain two-parameter family of four-dimensional Lie algebras, which to our knowledge was first intro-

duced by Miller. We will call it Miller’s Lie algebra and denote by mα,β with α, β ∈ C. We will also describe its Casimir operator Cα,β, that is, a
quadratic expression in elements of mα,β, which in any representation commutes with the whole Lie algebra. In other words, Cα,β belongs to
the center of the enveloping algebra of mα,β. We will also describe a family of representations of mα,β by first order differential operators on
certain second degree surfaces in C3.

In appropriate coordinates the eigenvalue equation for the Casimir operator equation will have the form of a hypergeometric class
equation. A number of properties of hypergeometric class equations will have a simple interpretation in terms of properties of Miller’s Lie
algebra. They include the basic symmetry, basic factorizations and basic recurrence relations. They will be described in Sec. III.

A. Three low-dimensional Lie algebras
Let us first introduce three low-dimensional complex Lie algebras.

1. sl(2,C). It is spanned by N, A+, A− satisfying the commutation relations

[N, A±] = ±A±,
[A+, A−] = 2N.

(2.1)

The operator

C ∶= A−A+ +N(N + 1) (2.2)

= A+A− +N(N − 1) (2.3)

= 1
2
(A−A+ + A+A−) +N2 (2.4)

commutes with all elements of sl(2,C). It is often called the Casimir (operator).
Here is a typical representation of sl(2,C):

N ∶= x∂x − y∂y, (2.5)
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A+ ∶= x∂y, A− ∶= y∂x. (2.6)

2. The so-called complex oscillator Lie algebra, denoted osc(C). It is spanned by N, A+, A−,𝟙 satisfying the commutation relations

[N, A±] = ±A±,
[A+, A−] = 𝟙,
[𝟙, A±] = [𝟙, N] = 0.

(2.7)

The following operator commutes with osc(C), and will be called the Casimir of osc(C):

C ∶= A−A+ +N + 1
2

(2.8)

= A+A− +N − 1
2

(2.9)

= 1
2
(A−A+ + A+A−) +N. (2.10)

Here is a typical representation of osc(C):
N ∶= 1

2
(−∂2

x + x2), (2.11)

A± ∶=
1√
2
(x ∓ ∂x). (2.12)

Note that N is the quantum harmonic oscillator, which justifies the name of this Lie algebra.
3. The Lie algebra of Euclidean movements of the plane, denoted C2 ⋊ so(2,C). It is spanned by N, A+, A− satisfying the commutation

relations
[N, A±] = ±A±,
[A+, A−] = 0.

(2.13)

The following operator commutes with C2 ⋊ so(2,C), and will be called the Casimir of C2 ⋊ so(2,C):

C ∶= A−A+ (2.14)

Here is a typical representation of C2 ⋊ so(2,C):
N ∶= x∂y − y∂x, (2.15)

A± ∶= ∂x ± i∂y. (2.16)

Thus N is the generator of rotations of the plane and A± generate translations.

B. The family of Lie algebras introduced by Miller
The three Lie algebras introduced in Subsection II A can be joined in a single family depending on two complex parameters α, β. This

family will be denoted by mα,β. It was introduced by Miller in Ref. 6. We will call it Miller’s Lie algebra.
mα,β is defined as the complex Lie algebra spanned by N, A+, A−,𝟙 satisfying the commutation relations

[N, A±] = ±A±,
[A+, A−] = 2αN + β𝟙,
[𝟙, A±] = [𝟙, N] = 0.

(2.17)

It is easy to see that
mα,β ≃ sl(2,C)⊕C, α ≠ 0; (2.18)

mα,β ≃ osc(C), α = 0, β ≠ 0; (2.19)

mα,β ≃ C2 ⋊ so(2,C)⊕C, α = 0, β = 0. (2.20)
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Define the linear map ε : mα,β → mα,−β by

ε(N) ∶= −N, ε(A±) ∶= A∓, ε(𝟙) ∶= 𝟙. (2.21)

Then ε is an isomorphism. The identity automorphism together with ε form a group isomorphic to Z2, which will be called the Weyl group of
mα,β.

Similarly, for n ∈ C, the linear map πn : mα,β → mα,β−2nα given by

πn(N) ∶= N + n𝟙, πn(A±) ∶= A±, πn(𝟙) ∶= 𝟙, (2.22)

is an isomorphism.

C. Casimir
Consider a representation of mα,β on a vector space Z. Following Miller,6 introduce the following operator C, called the Casimir of mα,β:

Cα,β = C ∶= A−A+ + αN(N + 1) + β(N + 1
2
) (2.23)

= A+A− + αN(N − 1) + β(N − 1
2
) (2.24)

= 1
2
(A−A+ + A+A−) + αN2 + βN. (2.25)

As Miller noted, C commutes with the whole Lie algebra:

N C = CN, A± C = CA±. (2.26)

Extend the isomorphisms ε and πn defined in (2.21) and (2.22) to the algebra of operators on Z. Then

ε(Cα,β) = Cα,−β, (2.27)

πn(Cα,β) = Cα,β+2nα + (αn2 + βn)𝟙. (2.28)

D. Ladders
By a two-sided ladder we mean a subset of C of the form n0 + Z, where n0 ∈ C. A subset of the form n0 +N0 or n0 −N0 will be called a

one-sided ladder (ascending or descending). A subset of the form {n0, n0 + 1, . . . , n0 + n} for some n ∈ N0 will be called a finite ladder.
It is easy to see that if the representation of mα,β on Z is irreducible and N possesses an eigenvalue, then the spectrum of N is a ladder. In

fact this follows from
Nv = nv⇒ NA±v = (n ± 1)A±v. (2.29)

For n ∈ C we define
Zn ∶= {v ∈ Z : Nv = nv}. (2.30)

Let Cn, resp. A
n± 1

2
± , be the operator C, resp. A±, restricted to Zn. (2.26) can be rewritten as

A
n± 1

2
± Cn = Cn±1A

n± 1
2

± . (2.31)

An irreducible representation with a one-sided or finite ladder with the lowest, resp. highest element 0 will be called a lowest, resp.
heighest weight representation. It follows from (2.23), resp. (2.24) that

C0 = β
2

for highest weight representations, (2.32)

C0 = −β
2

for lowest weight representations. (2.33)

J. Math. Phys. 66, 083503 (2025); doi: 10.1063/5.0265766 66, 083503-6

Published under an exclusive license by AIP Publishing

 02 August 2025 15:05:10

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

E. Representation by first order differential operators
Let σ be a polynomial of degree ≤2 and κ of degree ≤1. Consider C3 with elements denoted by (t, s, z). Define the operators

N ∶= t∂t − s∂s,

A+ ∶= t∂z + σ′(z)∂s,

A− ∶= s∂z + σ′(z)∂t +
κ(z)

t
.

(2.34)

A+, A−, N,𝟙 span a Lie algebra with commutation relations

[N, A+] = A+,
[N, A−] = −A−,

[A+, A−] = σ′′N + κ′𝟙.
(2.35)

Thus it is a representation of Miller’s Lie algebra mα,β with

α = σ′′

2
, β = κ′. (2.36)

The operators (2.34) commute with the multiplication by σ(z) − ts. Therefore, we can restrict them to analytic functions on Ω, the
universal cover of the manifold

{(s, t, z) ∈ C3 : σ(z) − ts = 0, t ≠ 0, s ≠ 0}. (2.37)

Let A(Ω) denote the space of analytic functions on Ω. The Lie algebra mα,β represented by (2.35) acting on A(Ω) will be denoted m(σ, κ).
By (2.25), the Casimir of m(σ, κ) is following differential operator on A(Ω):

C = st∂2
z + σ′(z)(s∂s + t∂t + 1)∂z + κ(z)∂z

+ σ′′

2
((t∂t)2 + (s∂s)2 − 2t∂ts∂s + t∂t + s∂s)

+ (σ
′(z))2

ts
t∂ts∂s +

κ(z)σ′(z)
ts

s∂s + κ′(t∂t − s∂s +
1
2
).

(2.38)

Clearly, C commutes with m(σ, κ).
Introduce new coordinates on C3:

v = σ(z) − ts, w = t, ž = z. (2.39)

The inverse transformation is

t = w, s = σ(z) − v
w

, z = ž.

We have

∂z = ∂ž + σ′(z)∂v , ∂t = ∂w − s∂v , ∂s = −t∂v

Clearly, (2.37) is v = 0. Therefore the operators (2.34) in new coordinates, after restricting to the surface (2.37) (and dropping “checks”),
are

N = w∂w ,

A+ = w∂z ,

A− =
1
w
(σ(z)∂z + σ′(z)w∂w + κ(z)).

(2.40)

The Casimir operator is

C = A−A+ +
σ′′

2
N(N + 1) + κ′(N + 1

2
)

= σ(z)∂2
z + (κ(z) + σ′(z)(w∂w + 1))∂z +

σ′′

2
w∂w(w∂w + 1) + κ′(w∂w +

1
2
).
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Consistently with (2.30), for n ∈ C let

Zn ∶= {g ∈ A(Ω) : Ng = ng}.

As in Subsection II D, Cn, resp. A
n± 1

2
± denote the operator C, resp. A± restricted to Zn. Clearly, in the coordinates (2.39)

Zn = {wnF(z) : F ∈ A(Θ)},

where Θ is the universal covering of C/{zeros of σ}.
We have

Cn + ω ∶= σ(z)∂2
z + (κ(z) + σ′(z)(n + 1))∂z +

σ′′

2
n(n + 1) + κ′(n + 1

2
) + ω. (2.41)

A
n+ 1

2
+ ∶= ∂z , A

n− 1
2

− ∶= σ(z)∂z + κ(z) + nσ′(z).

F. Implementation of isomorphisms
Let us go back to C3 in the coordinates s, t, z. An implementation of the isomorphism πn defined in (2.22) is simple:

πng(⋅) = t−n ⋅ tn. (2.42)

Let us now describe an implementation of the isomorphism ε. Let ρ(z) solve

(σ(z)∂z − κ(z))ρ(z) = 0, (2.43)

(which defines ρ(z) up to a coefficient). We introduce the following transformation on A(Ω):

Tg(t, s, z) ∶= ρ(z)g(s, t, z).

Theorem 2.1.
TNT−1 = −N, (2.44)

TA+T−1 = A−, (2.45)

TA−T−1 = A+. (2.46)

T CT−1 = C. (2.47)

where on the left we have the operators from m(σ, κ) and on the right from m(σ,−κ).

Proof. (2.44) is immediate.
Consider g(t, s, z) ∈ A(Ω). Then

T−1g(t, s, z) = ρ−1(z)g(t, s, z),

A+T−1g(t, s, z) = (tρ−1(z)∂z −
κ(z)
σ(z) tρ−1(z) + σ′(z)ρ−1(z)∂s)g(s, t, z)

= (tρ−1(z)∂z −
κ(z)

s
ρ−1(z) + σ′(z)ρ−1(z)∂s)g(s, t, z)

TA+T−1g(t, s, z) = (s∂z −
κ(z)

t
+ σ′(z)∂t)g(t, s, z).

This proves (2.45). The proof of (2.46) is similar.
To show (2.47) we use the second line of (2.38), (2.44), (2.45), and (2.46). ◻
In the coordinates (2.39) the symmetry equals

Tg(w, z) = ρ(z)g(σ(z)
w

, z) .
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Let Tn be T restricted to Zn. Clearly,
CnTn = C−nT−n. (2.48)

We easily see that in the coordinates (2.39), for all F ∈ A(Ω),

TnF(z) = ρ(z)σn(z)F(z).

III. BASIC PROPERTIES OF HYPERGEOMETRIC CLASS EQUATIONS
In this section we introduce hypergeometric class equations. They will be presented as the eigenvalue equation of a certain second order

differential operator H(σ, κ). We discuss a number of properties of these equations that can be described in a unified way: the basic symmetry,
basic factorization and basic recurrence relations.

The operator H(σ, κ) is essentially the Casimir C of Miller’s Lie algebra at N = 0, and all its properties discussed in this section follow
from the properties of Miller’s Lie algebra analyzed in Sec. II. However, this section can be read independently.

A. Remark about notation
Let a, b, c be complex functions. Instead of saying that we consider the equation

(a(z)∂2
z + b(z)∂z + c(z)) f (z) = 0, (3.1)

we will usually say that the equation is given by the operator

A ∶= a(z)∂2
z + b(z)∂z + c(z) (3.2)

Instead of A, we will sometimes use the notation A(z,∂z) to indicate the variable that is used in the given operator. This is useful when
we consider a change of variables.

B. Parametrization of hypergeometric class operators
As was described in the introduction, the main topic of the paper are equations given by operators of the form

σ(z)∂2
z + τ(z)∂z + η, (3.3)

where σ, τ, η satisfy the conditions (1.2). However, the parametrization of these equations with σ, τ, η is not always convenient. We will usually
prefer to use a different parametrization, described below.

Let σ(z), κ(z), ω be polynomials with

deg σ ≤ 2, deg κ ≤ 1, deg ω = 0 (in other words ω ∈ C). (3.4)

Let us define the differential operator

H(σ, κ) ∶= σ(z)∂2
z + (σ′(z) + κ(z))∂z +

1
2

κ′ (3.5)

= ∂zσ(z)∂z +
1
2
(∂zκ(z) + κ(z)∂z).

Clearly, the class of operators (3.3) coincides with the class of operators

H(σ, κ) + ω (3.6)

Note that H(σ, κ) coincides with C0, the Casimir operator for Miller’s Lie algebra restricted to the subspace N = 0, expressed in the
variable z, see (2.41).

C. Basic symmetry
Recall from (3.16) that ρ(z) is defined as a solution of

(σ(z)∂z − κ(z))ρ(z) = 0. (3.7)

We have the identity

H(σ, κ) = ρ−1(z)∂zσ(z)ρ(z)∂z +
1
2

κ′. (3.8)
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The following theorem describes a certain symmetry of the entire family of hypergeometric class equations. We will call it the basic
symmetry.

Theorem 3.1. We have
ρ(z)H(σ, κ)ρ−1(z) = H(σ,−κ). (3.9)

Hence,
(H(σ, κ) + ω)F = 0 ⇒ (H(σ,−κ) + ω)ρF = 0. (3.10)

Proof. Using σ(z)∂zρ−1(z) = −κ(z)ρ−1(z), we obtain

ρ(z)H(σ, κ)ρ−1(z) = ∂zσ(z)ρ(z)∂zρ−1(z) + 1
2

κ′ (3.11)

= σ(z)∂2
z + (σ′(z) − κ(z))∂z −

1
2

κ′ = H(σ,−κ). (3.12)

◻
Applying twice the basic symmetry we get the identity. Hence we obtain a group of symmetries of the hypergeometric class isomorphic

to Z2.
Note that the basic symmetry of Theorem 3.1 corresponds to the symmetry ε of Miller’s Lie algebra, see (2.21) and Theorem 2.1.

D. Basic pair of factorizations
It is often useful to represent a second order operator as a product of two first order operators plus a constant. In this section we describe

a pair of such factorizations of hypergeometric class operators, which can be easily formulated in a unified way. It is convenient to formulate
them for a family indexed by n ∈ C. These factorizations lead to recurrence relations for hypergeometric class functions.

Fix σ, a polynomial of degree ≤2, κ0, a polynomial of degree ≤1 and ω0 ∈ C. We set

κn(z) ∶= nσ′(z) + κ0(z), (3.13)

ωn ∶= n2 σ′′

2
+ nκ′0 + ω0. (3.14)

Note that H(σ, κn) + ωn coincides with Cn + ω0, where Cn is the Casimir for σ, κ0 restricted to N = n, see (2.41).

Theorem 3.2.

(1) Factorization properties

H(σ, κn) + ωn = (σ(z)∂z + κn+1(z))∂z + n(n + 1)σ′′

2
+ (n + 1

2
)κ′0 + ω0

= ∂z(σ(z)∂z + κn(z)) + n(n − 1)σ′′

2
+ (n − 1

2
)κ′0 + ω0.

(2) Transmutation properties

∂z(H(σ, κn) + ωn) = (H(σ, κn+1) + ωn+1)∂z ,
(σ(z)∂z + κn+1(z))(H(σ, κn+1) + ωn+1) = (H(σ, κn) + ωn)(σ(z)∂z + κn+1(z)).

(3) Recurrence relations

(H(σ, κn) + ωn)F = 0⇒ (H(σ, κn+1) + ωn+1)∂zF = 0,
(H(σ, κn+1) + ωn+1)F = 0⇒ (H(σ, κn) + ωn)(σ(z)∂z + κn+1(z))F = 0.

The argument used in the proof of the implication (1) ⇒ (2) is typical for the so-called supersymmetric quantum mechanics and is
described in the following lemma:

Lemma 3.3. Suppose that for n ∈ C, An+ 1
2

+ , An− 1
2

− , Hn are operators and ηn± 1
2

are numbers satisfying
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Hn = An+ 1
2

+ An− 1
2

− + ηn− 1
2
,

= An− 1
2

− An+ 1
2

+ + ηn+ 1
2
.

Then

An− 1
2

− Hn = Hn−1 An− 1
2

− ,

An+ 1
2

+ Hn = Hn+1 An+ 1
2

+ .

Proof of Theorem 3.2. (1) follows by a direct computation. (1) implies (2) by Lemma 3.3 if we set

An+ 1
2

+ = ∂z , An− 1
2

− = σ(z)∂z + κn(z), ηn+ 1
2
= n(n + 1)σ′′

2
+ (n + 1

2
)κ′ + ω,

Hn ∶= H(σ, κn) + ωn.
(3.15)

(2) easily implies (3). ◻

E. Ladders of solutions
Let κn, ωn be as in (3.13) and (3.14). Let ρ0 solve (3.8) for σ0, κ0, that is,

(σ0(z)∂z − κ0(z))ρ0(z) = 0. (3.16)

Suppose we have a solution
(H(σ, κ0) + ω0) f = 0. (3.17)

Then from f we can construct a two-sided ladder of solutions. More precisely, for any n ∈ N0

H(σ, κn) + ωn annihilates ∂n
z f , (3.18)

H(σ, κ−n) + ω−n annihilates σnρ−1
0 ∂n

z ρ0 f . (3.19)

To see (3.19), we note that

σ(z)∂z + κ−j(z) = σ(z)j+1ρ0(z)−1∂
j
zσ(z)−jρ0(z), (3.20)

hence

(σ(z)∂z + κ−n(z)) ⋅ ⋅ ⋅ (σ(z)∂z + κ(z)) = σ(z)nρ0(z)−1∂n
z ρ0(z). (3.21)

Consider now special cases ω0 = ∓ κ′0
2 :

H(σ, κ0) −
κ′0
2
= σ(z)∂2

z + (σ′(z) + κ0(z))∂z , (3.22)

H(σ, κ0) +
κ′0
2
= σ(z)∂2

z + (σ′(z) + κ0(z))∂z + κ′0. (3.23)

They have elementary solutions:

H(σ, κ0) −
κ′0
2

annihilates 1, (3.24)

H(σ, κ0) +
κ′0
2

annihilates ρ−1
0 . (3.25)

(3.24) is obvious. To see (3.25) we differentiate

(σ(z)∂z + κ0(z))ρ−1
0 (z) = 0,

obtaining
0 = (σ(z)∂2

z + (σ′(z) + κ0(z))∂z + κ′0)ρ−1
0 (z). (3.26)

J. Math. Phys. 66, 083503 (2025); doi: 10.1063/5.0265766 66, 083503-11

Published under an exclusive license by AIP Publishing

 02 August 2025 15:05:10

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

Alternatively, we can derive (3.25) from (3.24) by the basic symmetry (3.10). Indeed, (3.24) and (3.10) imply that H(σ,−κ0) − κ′0
2 annihilates

ρ0. Then we switch the sign of κ0, which corresponds to replacing ρ0 with ρ−1
0 .

The special solutions (3.24) and (3.25) lead to a pair of one-sided ladders: for any n ∈ N0

H(σ,−nσ′ + κ0) − (n + 1
2
)κ′0 + n2 σ′′

2
annihilates σnρ−1

0 ∂n
z ρ0 (3.27)

H(σ, nσ′ + κ0) + (n + 1
2
)κ′0 + n2 σ′′

2
annihilates ∂n

z ρ−1
0 . (3.28)

(3.27) consists of polynomials, which we will analyze in more detail in Sec. VII. The ladder (3.28) consists of functions of the form ρ−1
0 σ−nPn,

where Pn ∶= σnρ0∂
n
z ρ−1

0 are polynomials.

F. Chebyshev ladder
Let us fix σ, as usual a polynomial of degree ≤2, and ω ∈ C. The equations given by the following two operators can be easily solved in

elementary functions:

H(σ,−σ′

2
) + ω + σ′′

4
=
√

σ(z)∂z
√

σ(z)∂z + ω (3.29)

= σ(z)∂2
z +

σ′(z)
2

∂z + ω, (3.30)

H(σ,
σ′

2
) + ω + σ′′

4
= ∂z
√

σ(z)∂z
√

σ(z) + ω (3.31)

= σ(z)∂2
z +

3σ′(z)
2

∂z +
σ′′

2
+ ω. (3.32)

In fact, set

y(z) = ∫
z

0

dx√
σ(x)

, (3.33)

which solves the equation dy
dz =

1√
σ(z)

. Then

H(σ,−σ′

2
) + ω + σ′′

4
annihilates (A sin (ωy(z)) + B cos (ωy(z))), (3.34)

H(σ,
σ′

2
) + ω + σ′′

4
annihilates

1√
σ(z)

(A sin (ωy(z)) + B cos (ωy(z))). (3.35)

We can embed the parameters of (3.29) and (3.31) into a single ladder as follows. We set κ0 = 0 and ω0 = ω + σ′′
8 , so that

κm = mσ′, ωm = ω + (m2 + 1
4
)σ′′

2
, (3.36)

then
(3.29) = H(σ, κ− 1

2
) + ω− 1

2
, (3.37)

(3.31) = H(σ, κ 1
2
) + ω 1

2
. (3.38)

By using the recurrence relations (3.18) and (3.19) we obtain elementary solutions for

H(σ, κm) + ωm = σ(z)∂2
z + (m + 1)σ′(z)∂z + (m + 1

2
)

2 σ′′

2
+ ω (3.39)

with m ∈ Z + 1
2 .

Remark 3.4. Chebyshev ladders are very special, since κ is determined by σ. The only two nontrivial hypergeometric types where they appear
are 2F1 and F1. However, they are quite important. One can note that Bessel functions of half-integer parameters are elementary functions because
they correspond to the Chebyshev ladder of the F1 type.
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IV. SINGULAR POINT
Throughout this section we assume that

σ(0) = 0. (4.1)

We will discuss solutions of hypergeometric class equations given by power series around 0. We will also describe some symmetries which
exist if (4.1) holds.

A. Solutions around a singular point
(4.1) usually means that 0 is a singular point of the Eq. (3.6). In fact, rewriting the Eq. (3.6) as

1
σ(z)(σ(z)∂

2
z + τ(z)∂z + ω) f (z) = (∂2

z +
τ(z)
σ(z)∂z +

ω
σ(z)) f (x) = 0 (4.2)

we see that τ(z)
σ(z) or ω

σ(z) will usually have a singularity at 0. Straightforward calculations (known under the name of the Frobenius method15)
lead then to the following result

Theorem 4.1. There exists a unique formal power series F(z) solving

(H(σ, κ) + ω)F(z) = 0, F(0) = 1. (4.3)

It is equal to

F(σ, κ, ω; z) =
∞

∑
n=0

Πn−1
j=0 (ω + ( j + 1

2)κ
′ + j( j + 1) σ′′

2 )
Πn−1

j=0 (κ(0) + ( j + 1)σ′(0))n!
(−z)n. (4.4)

If σ′(0) = 0 and σ′′ ≠ 0, then σ(z) has a double root at zero and then the series (4.4) either terminates and defines a polynomial, or is
divergent. However, it is always asymptotic to one of the solutions of (3.6) defined on C/[0,∞ [ (see Sec. 6.3 and Appendix A). In all other
cases the series (4.4) has a nonzero radius of convergence. The function F(σ, κ, ω; z) given by (4.4) will be called the unified hypergeometric
function. It depends meromorphically on σ′(0), σ′′, κ, ω.

Recall that κn and ωn were defined in (3.13) and (3.14). The basic pair of recurrence relations is as follows:

∂zF(σ, κn, ωn; z) = −ωn + 1
2 κ′n

κn+1(0)
F(σ, κn+1, ωn+1; z), (4.5)

(σ(z)∂z + κn+1(z))F(σ, κn+1, ωn+1; z) = κn+1(0)F(σ, κn, ωn; z). (4.6)

B. Olver’s normalization
Assume now σ′(0) ≠ 0. We set m ∶= κ(0)

σ′(0) . Without sacrificing the generality we can suppose additionally that σ′(0) = 1. Thus

σ(z) = z + σ′′

2
z2, κ(z) = m + κ′z. (4.7)

0 is a regular singular point and 0, −m are its indices, see Ref. 15 or Appendix B.
In this case often instead of the function (4.4) it is more convenient to use the function

F(σ, κ, ω; z) ∶= F(σ, κ, ω; z)
Γ(1 +m) =

∞

∑
n=0

Πn−1
j=0 (ω + ( j + 1

2)κ
′ + j( j + 1) σ′′

2 )
Γ(m + n + 1)n!

(−z)n. (4.8)

Note that F is holomorphic in σ′′, κ, ω. Dividing by Γ(1 +m), as in (4.8), is sometimes called Olver’s normalization, since it was made popular
by Olver’s textbook.22 Here is the basic pair of recurrence relations for the Olver normalized unified hypergeometric function:

∂zF(σ, κn, ωn; z) = −(ωn +
1
2

κ′n)F(σ, κn+1, ωn+1; z), (4.9)

(σ(z)∂z + κn+1(z))F(σ, κn+1, ωn+1; z) = F(σ, κn, ωn; z). (4.10)
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C. Power symmetry
We keep the assumptions of Subsection 4.2. Let us introduce a certain transformation of the parameters. We keep σ the same, and the

transformed κ and ω are

κ○(z) ∶= −m + (κ′ −mσ′′)z, ω○ ∶= ω −mκ′ +m2 σ′′

2
. (4.11)

Consequently, m○ = −m.

Theorem 4.2.
zm(H(σ, κ) + ω)z−m = H(σ, κ○) + ω○. (4.12)

Proof. Using

zm∂zz−m = ∂z −
m
z

, zm∂2
z z−m = ∂2

z −
2m
z
∂z +

m(m + 1)
z2 (4.13)

we compute

zm(H(σ, κ) + ω)z−m (4.14)

= zm((z + σ′′

2
z2)∂2

z + (1 +m + (σ′′ + κ′)z)∂z +
κ′

2
+ ω)z−m (4.15)

= (z + σ′′

2
z2)∂2

z + (1 −m + ((1 −m)σ′′ + κ′)z)∂z +
σ′′

2
m(m − 1) − κ′(m − 1

2
) + ω (4.16)

= H(σ, κ○) + ω○. (4.17)

Note that κ○○ = κ and ω○○ = ω. Thus we obtain a Z2 symmetry of the hypergeometric class. It is different from the basic symmetry of
Theorem 3.1.

As a consequence of (4.12), both F(σ, κ, ω; z) and z−mF(σ, κ○, ω○; z) are annihilated by H(σ, κ) + ω. If m ∉ Z they form a basis of
solutions of the corresponding equation. The situation for m ∈ Z will be discussed in Sec. VIII about the degenerate case.

D. Inversion symmetry
We still assume σ(0) = 0. Besides, we suppose that

σ′′ ≠ 0 or κ′ ≠ 0. (4.18)

Suppose that ζ ∈ C solves the equation
σ′′

2
ζ2 + (σ′′ + κ′)ζ + κ

2
+ ω = 0. (4.19)

Note that (4.18) guarantees that (4.19) has a solution. Set

σ△ ∶= σ′′

2
w − σ′(0)w2, (4.20)

κ△ = (κ(0) + 2(ζ + 1)σ′(0))w − σ′′(1 + ζ) − κ′, (4.21)

ω△ ∶= −σ′(0)(1 + ζ)2 − κ(0)(ζ + 1
2
). (4.22)

Theorem 4.3. Consider the substitution w = − 1
z . Then we have

− z−ζ+1(H(σ, κ; z,∂z) + ω)zζ = H(σ△, κ△;w,∂w) + ω△. (4.23)

Hence
H(σ, κ) + ω annihilates z−ζ F(σ△, κ△, ω△;−z−1). (4.24)

Proof. Indeed, using ∂z = w2∂w and ∂2
z = w4∂2

w + 2w3∂w , we obtain

− z(H(σ, κ; z,∂z) + ω) (4.25)

= σ(−w−1)w3∂2
w + (2σ(−w−1)w2 + σ′(−w−1)w + κ(−w−1)w)∂w + (

κ′

2
+ ω)w−1. (4.26)
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Then we use wζ∂ww
−ζ = ∂w − ζ

w
and wζ∂2

ww
−ζ = ∂2

w − 2ζ
w
∂w + (ζ+ζ2

)

w2 to obtain

wζ(4.26)w−ζ (4.27)

= (σ′′

2
w − σ′(0)w2)∂2

w + ((κ(0) + 2ζσ′(0))w − σ′′

2
− ζσ′′ − κ′)∂w (4.28)

− σ′(0)(ζ + ζ2) − κ(0)ζ + (κ′

2
+ ω + σ′′

2
(2ζ + ζ2) + κ′ζ)w−1 (4.29)

= σ△(w)∂2
w + (σ△

′(w) + κ△(w))∂w +
κ△′

2
+ ω△. (4.30)

◻
Note that σ△△ = σ, κ△△ = κ, ω△△ = ω. Hence the inversion symmetry generates a group isomorphic to Z2 acting on the hypergeometric

class.

Remark 4.4. It is easy to see that the substitution z ↦ 1
w

also generates a symmetry of hypergeometric class equations. This follows
immediately from Theorem 4.3 and the trivial fact that z ↦ −z leads to a symmetry of the hypergeometric class as well.

V. INTEGRAL REPRESENTATIONS
Hypergeometric class functions possess useful integral representations. Most of them have the form of an Euler transform of an elemen-

tary function. In Subsection V A we will show how to derive these representations in a unified way. Note that typically for a given equation
one can choose various contours of integration, obtaining various solutions.

Some important integral representations have a different form—they can be viewed as Laplace transforms of certain elementary
functions. They will be described in Subsection V B.

In this section we will often deal with multivalued functions s↦ f (s) defined on a certain Riemann surface. These functions are
analytically continued along a certain curve γ contained in this Riemann surface. We will use the notation

f (s) ∣s1

s0
= f (s1) − f (s0), (5.1)

where s1 and s2 are the endpoints of the curve γ.
As usual, we fix σ, κ0, and for n ∈ C, as in (3.13), we set

κn(z) ∶= nσ′(z) + κ0(z).

In this section ω0 = κ′0
2 , so that according to (3.14),

ωn ∶= n2 σ′′

2
+ (n + 1

2
)κ′0. (5.2)

A. Euler transforms
As usual, we assume that

(σ(z)∂z − κ0(z))ρ0(z) = 0. (5.3)

Theorem 5.1. Let n ∈ C. Suppose that the curve [0, 1] ∋ τ
γ↦s(τ) satisfies

σ(s)(s − z)−n−2ρ−1
0 (s) ∣

s(1)
s(0)
= 0 (5.4)

and
fn(z) ∶= ∫

γ
(s − z)−n−1ρ−1

0 (s)ds (5.5)

is well-defined. Then fn is annihillated by

H(σ, κn) + ωn (5.6)

= σ(z)∂2
z + (κ0(z) + (n + 1)σ′(z))∂z + κ′0(n + 1) + σ′′

2
n(n + 1). (5.7)
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Besides, if fn+1 is also well-defined, then
∂z fn(z) = (n + 1) fn+1(z), (5.8)

(σ(z)∂z + κn+1(z)) fn+1(z) = −(κ′0 +
σ′′

2
n) fn(z). (5.9)

Proof. For simplicity, we will assume that both fn and fn+1 are well defined. (5.8) is obvious. Let us prove (5.9). Using the Taylor
expansion of the polynomials σ(z) and κ(z) we obtain

(σ(z)∂z + κ0(z) + (n + 1)σ′(z)) fn+1(z) (5.10)

= (n + 2)∫
γ
(σ(s) + σ′(s)(z − s) + σ′′

2
(z − s)2)(s − z)−n−3ρ0(s)−1ds (5.11)

+ ∫
γ
(κ0(s) + (z − s)κ′ + (n + 1)σ′(s) + (n + 1)(z − s)σ′′)(s − z)−n−2ρ0(s)−1ds (5.12)

= −(n
σ′′

2
+ κ′0)∫

γ
(s − z)−n−1ρ0(s)−1ds (5.13)

+ ∫
γ
((n + 2)σ(s)(s − z)−n−3 − σ′(s)(s − z)−n−2 + κ0(s)(s − z)−n−2)ρ0(s)−1ds (5.14)

= −(n
σ′′

2
+ κ′0) fn(z) (5.15)

+ ∫
γ
(∂sσ(s)(s − z)−n−2ρ0(s)−1)ds (5.16)

+ ∫
γ
(s − z)−n−2(σ(s)∂ρ0(s)−1 + κ0(s)ρ0(s)−1)ds. (5.17)

(5.16) vanishes because of (5.4). (5.17) is zero by (5.3). ◻

It is sometimes useful to consider differently normalized Euler integrals:

fn(z) ∶=
fn(z)

Γ(n + 1) =
1

Γ(n + 1)∫γ
(s − z)−n−1ρ−1

0 (s)ds. (5.18)

Then the recurrence relations (5.8) and (5.9) are modified:

∂zfn(z) = fn+1(z),

(σ(z)∂z + κn+1(z))fn+1(z) = −(n + 1)(κ′0 +
σ′′

2
n)fn(z).

(5.19)

B. Laplace integrals
Suppose that σ′′ = 0. We still assume (5.2), which now can be rewritten as

ωn = (n + 1
2
)κ′0. (5.20)

Let
(σ(−∂s)s + κ0(−∂s))δ0(s) = 0, (5.21)

which defines up to a coefficient an elementary function δ0.

Theorem 5.2. Assume that [0, 1] ∋ τ
γ↦ s(τ) satisfies

(sn+2σ′ + sn+1κ′)δ0(s)esz ∣s(1)
s(0)
= 0, (5.22)

and the following integral exists:
gn(z) = ∫

γ
δ0(s)snezsds. (5.23)

Then gn is annihillated by

H(σ, κn) + ωn (5.24)
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= σ(z)∂2
z + (σ′(z)(n + 1) + κ0(z))∂z + (n + 1)κ′0. (5.25)

Besides, if also gn+1 is well defined, then
∂zgn(z) = gn+1, (5.26)

(σ(z)∂z + κn+1(z))gn+1(z) = −(n + 1)κ′0gn(z). (5.27)

Proof. For simplicity, we will assume that both gn and gn+1 are well defined, and we will prove the recurrence relations, which directly
imply (5.25).

(5.26) is obvious. Let us show (5.27):

(σ(z)∂z + (n + 1)σ′ + κ0(z))gn+1 (5.28)

= ∫
γ
(σ′δ0(s)sn+2z + σ(0)δ0(s)sn+2 + (n + 1)σ′δ0(s)sn+1)ezsds (5.29)

+ ∫
γ
(κ′0δ0(s)sn+1z + κ0(0)δ0(s)sn+1)ezsds (5.30)

= ∫
γ

ds∂s(σ′δ0(s)sn+2ezs + κ′0δ0(s)sn+2ezs) (5.31)

+ ∫
γ
(−σ′sδ′0(s) − σ′δ0(s) − κ′0δ′0(s) + σ(0)sδ0(s) + κ0(0)δ0(s))sn+1ezsds (5.32)

− (n + 1)κ′0 ∫ δ0(s)snezsds. (5.33)

Now (5.31) vanishes because of (5.22) and (5.32) due to (5.21). ◻
Sometimes it will be more convenient to present the integral representation (5.23) in a different form, with the variable s replaced with

t = 1
s :

gn(z) = ∫
γ̃

δ0(t−1)t−n+2e
z
t dt, (5.34)

where the contour γ̃ is obtained by the change of variable and reversing the orientation.

VI. APPLICATIONS CASE BY CASE
Hypergeometric class operators can be divided into several types. By an affine transformation z ↦ az + b and division by a constant, an

operator of each type can be reduced to its normal form. There are five nontrivial types, with normal forms listed in the introduction. For
instance, if σ has two distinct roots, then the equation belongs to the 2F1 type, if it has a double root, it belongs to the 2F0 type, etc. The
hypergometric class contains also four “trivial types,” which can be solved in an elementary way. All these nine types are listed in the table in
Appendix B.

Strictly speaking, this table is devoted to types of the Riemann class, which is larger than the hypergeometric class. Therefore, this table
contains ten types. It includes one additional type: the Airy operator, which cannot be reduced to the hypergeometric class. However, all the
nine other types of the Riemann class are represented in the hypergeometric class.

In this section we describe the properties of all five nontrivial types of the hypergeometric class that are direct consequences of the unified
theory, discussed in the previous sections. We try to follow the same pattern. Here is the list of items that we will give for each hypergeometric
type, if available:

● Operator that generates the equation, that is H(σ, κ) + ω, expressed in the traditional form.
● Parameters σ(z), κ(z), ω; see (3.4) and (3.5).
● Weight ρ(z), see (3.16) or (3.7).
● Basic symmetry, see (3.9).
● Power symmetry (if available), see (4.12).
● Inversion symmetry (if available), see (4.24).
● Theorem about integral representations, see Theorems 5.1 and 5.2.
● Standard solution annihillated by H(σ, κ) + ω [typically a special case of the unified hypergeometric function (4.4), but for the

Hermite equation we need to make an exception].
● Olver normalized standard solution (if available), see (4.8).
● Basic pair of recurrence relations for standard solutions, see (4.5) and (4.6) or (4.9) and (4.10).
● Integral representations of standard solution (obtained by an application of Theorems 5.1 or 5.2).
● Chebyshev solutions (if available), see Subsection III F.
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We will often use the Pochhammer symbol

(a)j ∶= a(a + 1) ⋅ ⋅ ⋅ (a + j − 1), a ∈ C, j ∈ N0. (6.1)

A. The 2F1 equation

2F1 operator:
F(a, b; c) ∶= z(1 − z)∂2

z + (c − (a + b + 1)z)∂z − ab. (6.2)

Parameters:

σ(z) = z(1 − z), κ(z) = c − 1 − (a + b − 1)z, ω = −(a − 1
2
)(b − 1

2
) − 1

4
.

Weight:

ρ(z) = zc−1(z − 1)a+b−c.

Basic symmetry:

zc−1(z − 1)a+b−c F(a, b; c)z1−c(z − 1)−a−b+c = F(1 − b, 1 − a; 2 − c).

Power symmetry:

zc−1 F(a, b; c)z1−c = F(b + 1 − c, a + 1 − c; 2 − c).

Inversion symmetry:

(−z)1+a F(a, b; c; z,∂z)(−z)−a = F(a, a − c + 1; a − b + 1;w,∂w), w = z−1.

Theorem 6.1 (about integral representations). Let [0, 1] ∋ τ
γ↦t(τ) satisfy

tb−c+1(1 − t)c−a(t − z)−b−1 ∣γ(1)
γ(0) = 0.

Then
F(a, b; c) annihilates ∫

γ
tb−c(1 − t)c−a−1(t − z)−bdt. (6.3)

Proof. We check that
F(a, b; c)tb−c(1 − t)c−a−1(t − z)−b = −b∂ttb−c+1(1 − t)c−a(t − z)−b−1. (6.4)

◻

2F1 function: For ∣z∣ < 1 defined by the following power series, then analytically extended:

F(a, b; c; z) =
∞

∑
j=0

(a)j(b)j

(c)j

z j

j!
, ∣z∣ < 1.

Olver normalized 2F1 function:

F(a, b; c; z) ∶= F(a, b, c, z)
Γ(c) =

∞

∑
j=0

(a)j(b)j

Γ(c + j)
z j

j!
.

Integral representation:

∫
∞

1
tb−c(t − 1)c−a−1(t − z)−bdt (6.5)

= Γ(a)Γ(c − a)F(a, b; c; z), Re(c − a) > 0, Rea > 0, z ∉ [1,∞[ .

Basic pair of recurrence relations:
∂zF(a, b; c; z) = abF(a + 1, b + 1; c + 1; z), (6.6)
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(z(1 − z)∂z + (c − (a + b + 1)z))F(a + 1, b + 1; c + 1; z) = F(a, b; c; z). (6.7)

Chebyshev solutions for k = 0, 1, . . .:

F(1 + k + λ, 1 + k − λ;
3
2
+ k;

1 −w
2
) = (1 −w

2) 1
2+k

2
√

π(−2)k ∂k
w

(w + i
√

1 −w2)
λ
+ (w − i

√
1 −w2)

λ

√
1 −w2

, (6.8)

F(−k + λ,−k − λ;
1
2
− k;

1 −w
2
) = 2k

i
√

π(λ − k)2k+1
∂k
w

(w + i
√

1 −w2)
λ
− (w − i

√
1 −w2)

λ

√
1 −w2

. (6.9)

B. The 1F1 equation

1F1 operator
F(a; c) ∶= z∂2

z + (c − z)∂z − a. (6.10)

Parameters

σ(z) = z, κ(z) = c − 1 − z, ω = −a + 1
2

.

Weight:

ρ(z) = e−zzc−1.

Theorem 6.2 (about integral representations)

1. Let [0, 1] ∋ τ
γ↦t (τ) satisfy

ta−c+1et(t − z)−a−1 ∣t(1)
t(0)
= 0.

Then
F(a; c) annihilates ∫

γ
ta−cet(t − z)−adt. (6.11)

2. Let [0, 1] ∋ τ
γ↦t(τ) satisfy

e
z
t t−c(1 − t)c−a ∣t(1)

t(0)
= 0.

Then
F(a; c) annihilates ∫

γ
e

z
t t−c(1 − t)c−a−1dt. (6.12)

Proof.
F(a, c) ta−cet(t − z)−a = −a∂tta−c+1et(t − z)−a−1, (6.13)

F(a, c) e
z
t t−c(1 − t)c−a−1 = −∂te

z
t t−c(1 − t)c−a. (6.14)

◻
Basic symmetry:

zc−1e−z F(a; c; z,∂z)z1−cez = F(1 − a; 2 − c;w,∂w), w = −z.

Power symmetry:

zc−1 F(a; c)z1−c = F(1 + a − c; 2 − c).

Inversion symmetry:
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za+1 F(a; c; z,∂z)z−a = F(a, 1 + a − c;−;w,∂w), w = −z−1.

(Thus the 1F1 equation is equivalent to the 2F0 equation.)
1F1 function:

F(a; c; z) ∶=
∞

∑
j=0

(a)j

(c)j

z j

j!
.

Olver normalized 1F1 function

F(a; c; z) ∶= F(a; c; z)
Γ(c) =

∞

∑
j=0

(a)j

Γ(c + j)
z j

j!
.

Basic pair of recurrence relations:

∂zF(a; c; z) = aF(a + 1; c + 1; z), (6.15)

(∂z + c − z))F(a + 1; c + 1; z) = F(a; c; z). (6.16)

Integral representations: for all parameters

1
2πi ∫

]−∞,(0,z)+ ,−∞[

ta−cet(t − z)−adt = F(a; c; z);

for Rea > 0, Re(c − a) > 0

∫
[ 1,+∞[

e
z
t t−c(t − 1)c−a−1dt = Γ(a)Γ(c − a)F(a; c; z).

C. The 2F0 equation
The 2F0 operator:

F(a, b;−) ∶= z2∂2
z + (−1 + (1 + a + b)z)∂z + ab, (6.17)

Parameters:

σ(z) = z2, κ(z) = −1 + (a + b − 1)z, ω = (a − 1
2
)(b − 1

2
) + 1

4
.

Weight:

ρ(z) = z−1+a+be
1
z .

Basic symmetry:

z−1+a+be
1
z F(a, b;−; z,∂z)z1−a−be−

1
z = F(1 − b, 1 − a;−;w,∂w), w = −z.

Inversion symmetry:

za+1 F(a, b;−; z,∂z)z−a = −F(a; 1 + a − b;w,∂w), w = −z−1.

(Thus the 2F0 equation is equivalent to the 1F1 equation.)

Theorem 6.3 (about integral representations). Let [0, 1] ∋ τ
γ↦ t(τ) satisfy

e−
1
t tb−a−1(t − z)−b−1 ∣t(1)

t(0)
= 0.

Then
F(a, b;−) annihilates ∫

γ
e−

1
t tb−a−1(t − z)−bdt. (6.18)

A second integral representation is obtained if we interchange a and b.
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Proof. We check that
F(a, b;−)e−

1
t tb−a−1(t − z)−b = −b∂te−

1
t tb−a−1(t − z)−b−1. (6.19)

◻

2F0 function: It is defined for z ∈ C/[0 ,+∞[ ,

F(a, b;−; z) ∶= lim
c→∞

F(a, b; c; cz),

where ∣arg c∣ > ϵ, ϵ > 0. It extends to an analytic function on the universal cover of C/{0} with a branch point of an infinite order at 0. It is
annihilated by F(a, b;−).

Asymptotic expansion:

F(a, b;−; z) ∼
∞

∑
j=0

(a)j(b)j

j!
z j , ∣ arg z∣ > ϵ.

Basic pair of recurrence relations:
∂zF(a, b;−; z) = abF(a + 1, b + 1;−; z) (6.20)

(z2∂z + (−1 + (1 + a + b)z)))F(a + 1, b + 1;−; z) = F(a, b;−; z). (6.21)

Integral representation for Rea > 0:

∫
∞

0
e−

1
t tb−a−1(t − z)−bdt = Γ(a)F(a, b;−; z), z ∉ [0 ,∞[ .

The function 2F0 is in our opinion insufficiently known. Therefore, we devote Appendix A to a derivation of some of its properties.
Note that the equivalence of 2F0 and 1F1 equations is helpful in deriving properties of Subsection 6.2 from Subsection 6.3. For instance, the

integral representation (6.18) can be deduced from the integral representation (6.12) and the inversion symmetry. However, the relationship
between some of the properties is not so straightforward. For instance, the basic recurrence relations for 2F0 equations do not follow directly
from the basic recurrence relations for the 1F1 equations. Besides 2F0 equation does not possess the power symmetry, even though the 1F1
equation has it. Instead, the 2F0 equation is symmetric with respect to the parameter interchange a↔ b.

D. The 0F1 equation

0F1 operator:

F(c; z,∂z) ∶= z∂2
z + c∂z − 1.

Parameters:

σ(z) = z, κ(z) = c − 1, ω = −1.

Weight:

ρ(z) = zc−1.

Basic symmetry = power symmetry:
zc−1 F(c)z1−c = F(2 − c). (6.22)

Theorem 6.4 (about integral representations). Suppose that [0, 1] ∋ τ
γ↦ t(τ) satisfies

ete
z
t t−c ∣t(1)

t(0)
= 0.

Then
F(c; z,∂z) annihilates ∫

γ
ete

z
t t−cdt. (6.23)

Proof. We check that
F(c) ete

z
t t−c = −∂tete

z
t t−c. (6.24)
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◻
0F1 function

F(c; z) ∶=
∞

∑
j=0

1
(c)j

z j

j!
.

Olver normalized 0F1 function:

F(c; z) ∶= F(c; z)
Γ(c) =

∞

∑
j=0

1
Γ(c + j)

z j

j!
.

Basic pair of recurrence relations:
∂zF(c; z) = F(c + 1; z), (6.25)

(∂z + c)F(c + 1; z) = F(a; c; z). (6.26)

Integral representation for all parameters:

1
2πi ∫

]−∞,0+ ,−∞[

ete
z
t t−cdt = F(c; z), Rez > 0.

Chebyshev solutions for k = 0, 1, 2, . . .:

F(3
2
+ k; z) = 22k

√
π
∂k

z
sinh 2

√
z√

z
, (6.27)

F(1
2
− k; z) = z

1
2+k
√

π
∂k

z
cosh 2

√
z√

z
. (6.28)

E. Hermite equation
Hermite operator:

S(a) ∶= ∂2
z − 2z∂z − 2a. (6.29)

Parameters:
σ(z) = 1, κ(z) = −2z, ω = −2a + 1.

Weight:

ρ(z) = e−z2

.

Basic symmetry:

e−z2

S(a; z,∂z)ez2

= −S(1 − a;w,∂w), w = ±iz.

Theorem 6.5 (about integral representations)

1. Let [0, 1] ∋ τ
γ↦ t(τ) satisfy

et2

(t − z)−a−1 ∣t(0)
t(1)
= 0.

Then
S(a) annihilates ∫

γ
et2

(t − z)−adt. (6.30)

2. Let [0, 1] ∋ t ↦ γ(t) satisfy

e−t2
−2ztta ∣γ(1)

γ(0) = 0.

Then
S(a) annihilates ∫

γ
e−t2

−2ztta−1dt. (6.31)
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Proof. We check that

S(a) et2

(t − z)−a = −a∂tet2

(t − z)−a−1,

S(a) e−t2
−2ztta−1 = −2∂te−t2

−2ztta.

◻
Hermite function:

S(a; z) ∶= z−aF(a
2

,
a + 1

2
;−;−z−2). (6.32)

Basic pair of recurrence relations:
∂zS(a; z) = −aS(a + 1; z), (6.33)

(∂z − 2z)S(a + 1; z) = S(a; z). (6.34)

Integral representation for z ∉] −∞ , 0]. For 0 < Rea:

∞

∫
0

e−t2
−2tzta−1dt = 2−aΓ(a)S(a; z);

and for all parameters:

−i ∫
]−i∞,z− ,i∞[

et2

(z − t)−adt =
√

πS(a; z).

F. Lie algebras of symmetries type by type
Miller’s Lie algebra is responsible only for one pair of recurrence relations of hypergeometric class functions. Some of types from the

hypergeometric class possess larger sets of recurrence relations, which were described e.g., in Refs. 2 and 3. These recurrence relations can be
interpreted in terms of roots of larger Lie algebras of symmetries, described e.g., in Ref. 3.

Miller’s Lie algebra possesses a Weyl group isomorphic to Z2. Some types of hypergeometric class equations possess larger groups of
discrete symmetries.

In the following table we list all nontrivial types of hypergeometric class equations. We include the Gegenbauer equation

((1 −w2)∂2
w − 2(1 + α)w∂w + λ2 − (α + 1

2
)

2
) f (w) = 0, (6.35)

treating it as a separate type. Strictly speaking, the Gegenbauer type is contained in the 2F1 type. In fact, the transformation w ↦ 1−w
2 trans-

forms the Gegenbauer equation into a special case of the 2F1 equation. The Gegenbauer equation has the special property of the mirror
symmetry w ↦ −w. In the remaining part of this paper there is no need to consider it separately, however it has special symmetry properties.

The second and third column are based on Sec. II of this paper. In particular, the second column can be compared with (2.18)–(2.20).
The fourth and fifth column are based on Ref. 3. They describe a more complete Lie algebra of symmetries and the corresponding group

of discrete symmetries.

Equation Miller’s Lie algebra Surface Ω Lie algebra3 Discrete symmetries3

2F1 sl(2,C)⊕C Sphere so(6,C) Symmetries of cube
1F1 osc(C) Paraboloid sch(2,C) Z2 × Z2

2F0 sl(2,C)⊕C Null quadric sch(2,C) Z2 × Z2

0F1 C2 ⋊ so(2,C)⊕C Paraboloid C2 ⋊ so(2,C) Z2
Gegenbauer sl(2,C)⊕C Sphere so(5,C) Symmetries of square
Hermite osc(C) Cylinder sch(1,C) Z4
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Above, sch(n,C) denotes the complex Schrödinger Lie algebra, the Lie algebra of generalized symmetries of the heat equation in
dimension n—see e.g. Ref. 3.

The group from the fifth column always contains various symmetries described in our paper. First of all, all types possess the basic
symmetry, which is the generator of the Weyl group of Miller’s Lie algebra. Some of the types possess additional symmetries.

The power symmetry is a property of the 2F1, 1F1 and F1 equation. For the F1 equation it coincides with the basic symmetry.
The inversion symmetry is a feature of the 2F1 equation, and connects the 1F1 equation with the 2F0 equation.
The 2F1 and 2F0 equations are invariant w.r.t. swapping a and b.
The Gegenbauer and Hermite equation are invariant w.r.t. the symmetry z ↦ −z.
The Lie algebra of the fourth column always contains the corresponding Miller’s Lie algebra (possibly, without the trivial term ⊕C). By

applying discrete symmetries from the fifth column to Miller’s Lie algebra, we can enlarge Miller’s Lie algebra to a subalgebra of the Lie algebra
from the fourth column.

VII. HYPERGEOMETRIC POLYNOMIALS
Polynomial solutions of hypergeometric class equations will be called hypergeometric class polynomials. In this section we describe these

solutions in detail.
We have already mentioned in (3.27) that there exist ladders of solutions of hypergeometric class equations consisting of polynomials.

Note that according to our conventions, these ladders are descending. This is related to the usual convention for parameters of various types
of hypergeometric functions: in order to get a polynomial of degree n ∈ N0, the parameter a takes the value −n.

In Subsections VII A and VII B we describe the algebraic theory of hypergeometric class polynomials. They are centered around the
so-called (generalized) Rodrigues formula.

Under some conditions on σ and κ hypergeometric class polynomials can be viewed as eigenfunctions of a certain self-adjoint Sturm-
Liouville operator acting on an appropriate weighted Hilbert space. Besides, they form an orthogonal basis of this Hilbert space. To explain
this point of view, we devote Subsections VII C–VII E to a few general remarks about orthogonal polynomials and Sturm-Liouville operators.
In particular, we find some useful conditions for the Hermiticity of Sturm-Liouville operators. These conditions yield the weight function ρ,
and also specify possible endpoints of the interval ]a, b[.

In the remaining subsections we return to the theory of hypergeometric class polynomials. We are convinced that the unified approach
to their theory, which we present, based partly on Ref. 1, has a considerable pedagogical value.

A. Second order differential operators with polynomial eigenfunctions
The following well-known and easy proposition shows that hypergeometric class operators have many polynomial eigenfunctions.

Actually, it is the property that characterizes this class among all second order differential operators.

Proposition 7.1. Let σ(z), τ(z), μ(z) be arbitrary functions. Let Pn(z), n = 0, 1, 2, be polynomials such that deg Pn = n and ηn ∈ C. Suppose
that

(σ(z)∂2
z + τ(z)∂z + μ(z) + ηn)Pn(z) = 0, n = 0, 1, 2.

Then σ(z) is a polynomial of degree at most 2, τ(z) is a polynomial of degree at most 1 and μ(z) a polynomial of degree 0 (a complex number).

Note that for differential operators from Proposition 7.1, by replacing μ + ηn with ηn, without limiting the generality we can assume that
μ = 0.

Let us describe some other simple facts about polynomial solutions of hypergeometric class equations:

Proposition 7.2. Let deg σ ≤ 2, deg τ ≤ 1, η ∈ C,

1. Suppose that P is a polynomial of degree n solving

(σ(z)∂2
z + τ(z)∂z + η)P(z) = 0. (7.1)

Then

n(n − 1)σ′′

2
+ nτ′ + η = 0. (7.2)

2. If

k
σ′′

2
+ τ′ ≠ 0, k ∈ N0, (7.3)

then the space of polynomial solutions of (7.1) is at most one-dimensional.

Proof. Differentiating n times (7.1) we obtain (7.2) ×P(n) = 0. This implies 1.
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Suppose the space of polynomial solutions of (7.1) is two-dimensional. We can assume that the degrees of these solutions are 0 ≤ n1 < n2.
By (7.2),

ni(ni − 1)σ′′

2
+ niτ′ + η = 0, i = 1, 2. (7.4)

Subtracting (7.4) for 2 and 1 and dividing by n1 − n2 we obtain

(n1 + n2 − 1)σ′′

2
+ τ′ = 0. (7.5)

Now possible values of k ∶= n1 + n2 − 1 are 0, 1, 2, . . .. This contradicts (7.3). ◻

B. Raising and lowering operators. Rodriguez formula
The following theorem shows how to construct hypergeometric class polynomials and describes some of their properties, which are easy

to describe in a unified fashion. As usual, σ denotes a polynomial of degree ≤2, κ a polynomial of degree ≤1.

Theorem 7.3.

1. Suppose that ω ∈ C and a polynomial of degree n solves

0 = (H(σ, κ) + ω)P(z) (7.6)

= (σ(z)∂2
z + (σ′(z) + κ(z))∂z +

κ′

2
+ ω)P(z). (7.7)

Then

n(n + 1)σ′′

2
+ (n + 1

2
)κ′ + ω = 0. (7.8)

2. Suppose that

k
σ′′

2
+ κ′ ≠ 0, k = 2, 3, . . . . (7.9)

Then for any ω ∈ C the space of polynomial solutions of (7.6) is at most one-dimensional.
3. Define

Pn(σ, κ; z) ∶= 1
n!

ρ−1(z)∂n
z σn(z)ρ(z) (7.10)

= 1
2πi

ρ−1(z)∫
[z+]

σn(z + t)ρ(z + t)t−n−1dt, (7.11)

where [z+] denotes a loop around z in the counterclockwise direction. Then Pn(σ, κ; z) is a polynomial of degree n or less, and we have

0 = (H(σ, κ) − n(n + 1)σ′′

2
− (n + 1

2
)κ′)Pn(σ, κ; z) (7.12)

= (σ(z)∂2
z + (σ′(z) + κ(z))∂z − n(n + 1)σ′′

2
− nκ′)Pn(σ, κ; z).

Proof. 1. and 2. are just a reformulations of Proposition 2, where instead of parameters τ, η we use κ, ω.
To show 3. we note that the integral representation (7.11) satisfies the assumptions of Theorem 5.1 about Euler transforms. This

representation implies both (7.12) and (7.10). ◻

(7.10) is usually called the Rodriguez formula.
Consider the descending ladder starting at κ0(z) ∶= κ(z), ω0 = − κ′

2 , that is,

κ−n(z) ∶= κ(z) − nσ′(z), (7.13)

ω−n ∶= −(n + 1
2
)κ′ + n2 σ′′

2
= −κ′−n(n + 1

2
) − n(n + 1)σ′′

2
. (7.14)
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Proposition 7.4. The polynomials Pn(σ, κ−n; z) satisfy the corresponding hypergeometric class equation

(H(σ, κ−n) + ω−n)Pn(σ, κ−n; z) = 0, (7.15)

the recurrence relations
(σ(z)∂z + κ−n(z))Pn(σ, κ−n; z) = (n + 1)Pn+1(σ, κ−n−1; z), (7.16)

∂zPn+1(σ, κ−n−1; z) = (n
σ′′

2
+ κ′−n)pn(σ, κ−n; z); (7.17)

and have a generating function
ρ(z + tσ(z))

ρ(z) =
∞

∑
n=0

tnPn(σ, κ−n; z). (7.18)

C. Orthogonal polynomials
Consider −∞ ≤ a < b ≤ +∞. Suppose that ]a, b[∋ x ↦ρ(x) is a positive measurable function. Define the Hilbert space

L2(]a, b[, ρ) ∶= { f measurable on ]a, b[ ∣ ∫
b

a
ρ(x)∣ f (x)∣2dx <∞}, (7.19)

with the scalar product

( f ∣g) ∶= ∫
b

a
f (x)g(x)ρ(x)dx. (7.20)

Assume in addition

∫
b

a
ρ(x)∣x∣ndx <∞, n ∈ N. (7.21)

Then the space of polynomials is contained in L2(]a, b[, ρ). Applying the Gram-Schmidt orthogonalization to the sequence 1, x, x2, . . . we can
define an orthogonal family of polynomials p0, p1, p2, . . .. The following simple criterion is proven e.g., in Ref. 23:

Theorem 7.5. Suppose that for some ϵ > 0

∫
b

a
eϵ∣x∣ρ(x)dx <∞. (7.22)

Then polynomials are dense in L2(]a, b[, ρ). Therefore, the family p0, p1, p2, . . . is an orthogonal basis of L2(]a, b[, ρ).

D. Hermiticity of Sturm–Liouville operators
In most of this paper we avoid using functional analysis. However, for hypergeometric class polynomials we will make an exception. In

fact, often it is natural to view them as orthogonal bases consisting of eigenfunctions of certain self-adjoint operators.
Let us briefly recall some elements of the theory of operators on Hilbert spaces. Let H be a Hilbert space with the scalar product (⋅∣⋅). Let

A be an operator on the domain D ⊂ H. We say that A is Hermitian on D in the sense of H if

( f ∣Ag) = (A f ∣g), f , g ∈ D. (7.23)

(Unfortunately, in most of the contemporary mathematics literature, instead of Hermitian the word symmetric is used, which is a confusing
misnomer.) We say that A is self-adjoint if it is Hermitian and its spectrum is real. We say that it is essentially self-adjoint if it has a unique
self-adjoint extension.

Let A be Hermitian. Suppose that fi ∈ D, i = 1, 2, and

A fi = ηi fi, fi ∈ D, i = 1, 2. (7.24)

Then it is easy to see that ηi are real, and if η1 ≠ η2, then ( fi∣ fj) = 0. Therefore, eigenfunctions of Hermitian operators can be arranged into
orthogonal families. If an operator is Hermitian and possesses an orthogonal basis of eigenvectors, then it is essentially self-adjoint on (finite)
linear combinations of its eigenvectors.

Second order differential operators on a segment of the real line are often called Sturm-Liouville operators. Let us make some remarks
about the general theory of such operators, which will be useful in the analysis of orthogonality properties of hypegeometric class polynomials.

Consider −∞ ≤ a < b ≤ +∞. Suppose that σ, ρ are functions on ]a, b[ (not necessarily polynomials). Consider an operator of the form

A ∶= σ(x)∂2
x + τ(x)∂x (7.25)
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(Thus we consider an arbitrary Sturm-Liouville operator without the zeroth order term.)
Let ρ satisfy

σ(x)ρ′(x) = (τ(x) − σ′(x))ρ(x). (7.26)

Often it is convenient to rewrite (7.25) in the form
A = ρ(x)−1∂xρ(x)σ(x)∂x. (7.27)

Suppose that σ, τ are real and ρ is positive. It is useful to interpret A as an (unbounded) operator on the Hilbert space L2(]a, b[, ρ).
Indeed, the following easy theorem shows that A is Hermitian on smooth functions that vanish close to the endpoints of the interval.

Theorem 7.6. Let
D0 = { f ∈ C∞(]a, b[) : f = 0 in a neighborhood of a, b}. (7.28)

Then A is Hermitian on D0 in the sense of the Hilbert space L2(]a, b[, ρ).

E. Selecting endpoints for Sturm–Liouville operators
Unfortunately, the operator A is rarely essentially self-adjoint on (7.28). We will see that A is still Hermitian on functions that do not

vanish near the endpoints, if these endpoints satisfy appropriate conditions:

Theorem 7.7. Let −∞ < a < b < +∞ and
σ(a)ρ(a) = σ(b)ρ(b) = 0.

Then A is Hermitian on the domain C2([a, b]) in the sense of the space L2(]a, b[, ρ).

Proof. Let g, f ∈ C2([a, b]).

(g∣A f ) = ∫
b

a
ρ(x)ḡ(x)ρ(x)−1∂xσ(x)ρ(x)∂x f (x)dx

= ∫
b

a
ḡ(x)∂xσ(x)ρ(x)∂x f (x)dx

= ¯g(x)ρ(x)σ(x) f ′(x) ∣b
a
− ∫

b

a
(∂xḡ(x))σ(x)ρ(x)∂x f (x)dx

= − ¯g′(x)ρ(x)σ(x) f (x) ∣b
a
+ ∫

b

a
(∂xρ(x)σ(x)∂x ¯g(x)) f (x)dx

= ∫
b

a
ρ(x) ¯(ρ(x)−1∂xσ(x)ρ(x)∂xg(x)) f (x)dx = (Ag∣ f ).

◻
Analogously we prove the following fact:

Theorem 7.8. Let

lim
x→−∞

σ(x)ρ(x)∣x∣n = lim
x→+∞

σ(x)ρ(x)∣x∣n = 0, n ∈ N.

Then A is Hermitian on the domain consisting of polynomial functions in the sense of the Hilbert space L2(] −∞,∞[, ρ).

Obviously, statements similar to Theorems 7.7 and 7.8 hold if a = −∞ and b is finite, or a is finite and b =∞.
We will see later that in applications to hypergeometric class equations the conditions of Theorems 7.7 and 7.8 are often sufficient to

guarantee the essential self-adjointness of the operator A on the set of polynomials.

F. Orthogonality of hypergeometric class polynomials
In some cases hypergeometric class polynomials can be interpreted as an orthogonal basis of a certain weighted Hilbert space. They are

then often called (very) classical orthogonal polynomials.
Let us fix σ, κ and ρ satisfying (3.7). Let σ, κ be real and ρ positive. Choose an interval ]a, b[, where−∞ ≤ a < b ≤ +∞ satisfy the conditions

of Theorem 7.7 or 7.8. By these theorems, the operator

H(σ, κ) ∶= σ(x)∂2
x + (κ(x) + σ′(x))∂x +

κ′

2
= ρ(x)−1∂xρ(x)σ(x)∂x +

κ′

2
, (7.29)
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is Hermitian on the space of polynomials in the sense of the Hilbert space L2(]a, b[, ρ). Therefore, polynomial eigenfunctions of H(σ, κ) are
pairwise orthogonal [at least if the corresponding eigenvalues are distinct, which is generically the case, see (7.8)]. The following theorem says
more: we compute the square norm of the polynomials obtained from the Rodriguez formula.

Theorem 7.9.

∫
b

a
Pm(σ, κ; x)Pn(σ, κ; x)ρ(x)dx = δmn

n!

n

∏
j=1
(−κ′ + j

σ′′

2
)∫

b

a
σn(x)ρ(x)dx. (7.30)

Proof. It is enough to assume that m ≤ n. Write Pn(x) for Pn(σ, κ; x).

∫
b

a
Pm(x)Pn(x)ρ(x)dx (7.31)

= 1
n!∫

b

a
Pm(x)∂n

x σn(x)ρ(x)dx (7.32)

= (−1)n

n! ∫
b

a
(∂n

x Pm(x))σn(x)ρ(x)dx. (7.33)

This is zero if m < n and for m = n we use

∂n
x Pn(x) =

n

∏
j=1
(κ′ − j

σ′′

2
). (7.34)

◻

G. Review of types of hypergeometric class polynomials
In the remaining part of the section we review various types of hypergeometric class polynomials. We will discuss only the properties

that follow directly from the general theory described in previous subsections. Here is the list of items that we will cover:

● The choice of σ, κ and the corresponding weight ρ.
● The Rodriguez formula (7.10) defining the polynomial and its expression in terms of hypergeometric class functions.
● The degree of the polynomial, see (7.2).
● The differential equation, see (7.12).
● The pair of recurrence relations that follow from the Rodriguez formula, see (7.16) and (7.17).
● The generating function related to the Rodriguez formula, see (7.18).
● The choice of endpoints for which the corresponding Sturm–Liouville operator is essentially self-adjoint on the space of polynomials

(if applicable), see Theorems 7.7, 7.8 and 7.5.
● The square norm (if applicable), see Theorem 7.9.

Hypergeometric class polynomials possess various useful features that will not be listed in the following subsections. For instance,
they typically have additional recurrence relations and generating functions. We list only those that follow directly from the general theory
described above.

H. Jacobi polynomials
Consider α, β ∈ C and

σ(z) = 1 − z2, κ(z) = α(1 − z) + β(1 + z), ρ(z) = (1 − z)α(1 + z)β. (7.35)

For n ∈ {0, 1, . . .} set

Pα,β
n (x) =

(−1)n

2nn!
(1 − x)−α(1 + x)−β∂n

x (1 − x)α+n(1 + x)β+n (7.36)

= (1 + α)n

n! 2F1(−n, n + α + β + 1; α + 1;
1 − x

2
). (7.37)

Then Pα,β
n is a polynomial of degree at most n. More precisely:

1. If α + β ∉ {−2n, . . . ,−n − 1}, then deg Pα,β
n = n. It is then up to a coefficient the unique eigenfunction of the operator

H(σ, κ) = (1 − x2)∂2
x + (β − α − (α + β + 2)x)∂x +

β − α
2

(7.38)
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which is a polynomial of degree n.
2. If α + β ∈ {−2n, . . . ,−n − 1}, but α ∉ {−n, . . . ,−1} (or, equivalently, β ∉ {−n, . . . ,−1}), then deg Pα,β

n = −α − β − n − 1.
3. If α + β ∈ {−2n, . . . ,−n − 1}, but α ∈ {−n, . . . ,−1} (or, equivalently, β ∈ {−n, . . . ,−1}), then Pα,β

n = 0.
Pα,β

n satisfy the Jacobi equation, which is a slightly modified 2F1 equation

((1 − x2)∂2
x + (β − α − (α + β + 2)x)∂x + n(n + α + β + 1))Pα,β

n (x) = 0.

Recurrence relations:

∂xPα,β
n (x) =

α + β + n + 1
2

Pα+1,β+1
n−1 , (7.39)

−(1 − x2)∂x + β − α − (α + β)x
2

Pα,β
n (x) = (n + 1)Pα−1,β−1

n+1 (x). (7.40)

Generating function:
∞

∑
n=0

Pα−n,β−n
n (x)2ntn = (1 + t(1 + x))α(1 − t(1 − x))β. (7.41)

If α, β > −1, then H(σ, κ) is self-adjoint on the space of polynomials in the sense of

L2(] − 1, 1[, (1 − x)α(1 + x)β).

Jacobi polynomials are its eigenfunctions and form an orthogonal basis with the normalization

∫
1

−1
Pα,β

n (x)2(1 − x)α(1 + x)βdx = Γ(1 + α + n)Γ(1 + β + n)2α+β+1

(1 + 2n + α + β)n!Γ(1 + α + β + n) . (7.42)

I. Laguerre polynomials
Consider α ∈ C and

σ(z) = z, κ(z) = α − z, ρ(z) = e−zzα. (7.43)

For n ∈ N set

Lα
n(x) =

1
n!

exx−α∂n
x e−xxn+α

= (1 + α)n

n! 1F1(−n; 1 + α; x).

Then Lα
n is a polynomial of degree n. It is a unique (up to a coefficient) eigenfunction of the operator

H(σ, κ) = x∂2
x + (α + 1 − x)∂x −

1
2

(7.44)

which is a polynomial of degree n. Lα
n satisfy the Laguerre equation, which is the 1F1 equation with modified parameters:

(x∂2
x + (α + 1 − x)∂x + n)Lα

n(x) = 0.

Recurrence relations:
(x∂x + α − x)Lα

n(x) = (n + 1)Lα−1
n+1(x), (7.45)

∂xLα
n(x) = −Lα+1

n−1(x). (7.46)

Generating function:

e−tz(1 + t)α =
∞

∑
n=0

tnLα−n
n (z). (7.47)

If α > −1, then H(σ, κ) is essentially self-adjoint on the space of polynomials in the sense of L2([0 ,∞[, e−xxα). Laguerre polynomials are its
eigenfunctions and form an orthonormal basis with the normalization

∫
∞

0
Lα

n(x)2xαe−xdx = Γ(1 + α + n)
n!

.
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J. Bessel polynomials
Consider θ ∈ C and

σ(z) = z2, κ(z) = −1 + θz, ρ(z) = e−z−1

zθ. (7.48)

For n = 0, 1, . . . set

Bθ
n(z) : = 1

n!
z−θez−1

∂n
z e−z−1

zθ+2n (7.49)

= 1
n! 2F0(−n, n + θ + 1;−; z) (7.50)

= (−z)nL−θ−2n−1
n (−z−1). (7.51)

Then Bθ
n is a polynomial of degree n. It is a unique (up to a coefficient) eigenfunction of the operator

H(σ, κ) = z2∂2
z + (−1 + (2 + θ)z)∂z +

θ
2

(7.52)

which is a polynomial of degree n. Bθ
n satisfy the 2F0 equation with adjusted parameters:

(z2∂2
z + (−1 + (2 + θ)z)∂z −

1
2

n(1 + θ + n))Bθ
n(z) = 0.

Recurrence relations:

∂zBθ
n(z) = −(n + θ + 1)Bθ+2

n−1(z),
(z2∂z − 1 − θz)Bθ

n(z) = −(n + 1)Bθ−2
n+1(z).

Generating function:

(1 + tz)θ exp( −t
1 + tz

) =
∞

∑
n=0

tnBθ−2n
n (z). (7.53)

Bessel polynomials do not form an orthogonal basis on any interval.

K. Hermite polynomials
Consider

σ(z) = 1, κ(z) = −2z, ρ(z) = e−z2

. (7.54)

For n = 0, 1, . . . set

Hn(x) =
(−1)n

n!
ex2

∂n
x e−x2

(7.55)

= 2n

n!
S(−n; x), (7.56)

where S(a, x) is the Hermite function defined in (6.32). Then Hn is a polynomial of degree n and is (up to a multiplicative constant) the only
eigenfunction of the operator

H(σ, κ) = ∂2
x − 2x∂x − 1 (7.57)

which is a polynomial of degree n. It satisfies the Hermite equation

(∂2
x − 2x∂x + 2n)Hn(x) = 0.

Recurrence relations:

(−∂x + 2x)Hn(x) = (n + 1)Hn+1(x), (7.58)

∂xHn(x) = 2Hn−1(x). (7.59)

Generating function:
∞

∑
n=0

tnHn(x) = e2tx−t2

. (7.60)
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The operator H(σ, κ) is essentially self-adjoint on the space of polynomials in the sense of L2(R, e−x2
). Hermite polynomials are its

eigenfunctions and form an orthogonal basis with the normalization

∫
∞

−∞
Hn(x)2e−x2

dx =
√

π2n

n!
.

Remark 7.10. The definition of Hermite polynomials that we gave is consistent with the generalized Rodrigues formula (7.10). In the
literature one can also find other conventions for Hermite polynomials, e.g., Hn(x) ∶= (−1)nex2

∂n
x e−x2

.

VIII. DEGENERATE CASE
If two indices of a regular-singular (also called Fuchsian) point of a differential equation differ by an integer, then the usual Frobenius

method15 produces in general, up to a coefficient, only one solution. We call this case degenerate. In this section we will be discuss the
degenerate case of hypergeometric class equations. Without limiting the generality, the regular-singular point will be 0.

A. Unified hypergeometric function in the degenerate case
Suppose that we are in the setting of Sec. IV C. That means, σ(0) = 0, σ′(0) = 1, and we set κ(0) = m. Thus,

σ(z) = σ′′

2
z2 + z, κ(z) = m + κ′z, ω (8.1)

are the parameters of the equation we consider, see (4.7). As in (4.11), we also introduce the transformed parameters:

κ○(z) ∶= −m + (κ′ −mσ′′)z, ω○ ∶= ω −mκ′ +m2 σ′′

2
, m○ = −m. (8.2)

We assume in addition that m is an integer. Using

1
Γ(m + 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 m = . . . ,−2,−1;
1

m!
, m = 0, 1, . . . ,

(8.3)

we obtain

F(σ, κ, ω; z) =
∞

∑
n=max{0,−m}

Πn−1
j=0 (ω + ( j + 1

2)κ
′ + j( j+1)

2 σ′′)
(n +m)!n!

(−z)n. (8.4)

This easily implies the identity

F(σ, κ○, ω○; z) =
m−1

∏
j=0
(ω − κ′(j + 1

2
) + σ′′

2
j( j + 1))(−z)mF(σ, κ, ω; z), m ∈ N0. (8.5)

Therefore, for integer m the functions F(σ, κ, ω; z) and z−mF(σ, κ○, ω○; z) are proportional to one another and do not form a basis of solutions.

B. The power-exponential function
In order to describe the theory of the degenerate case in a unified way, it will be convenient first to unify the power and exponential

function in a single function. More precisely, let a, μ ∈ C. Consider the function

f (a, μ; u) ∶=
⎧⎪⎪⎨⎪⎪⎩

(1 + μu)a/μ, μ ≠ 0,

eau, μ = 0.

It is analytic for u ≠ −μ−1. From now on we will write (1 + μu)a/μ instead of f (a, μ; u).
Let us list some properties of this function.

Theorem 8.1.
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(1) (1 + μu)a/μ is the unique solution of
((1 + μu)∂u − a) f (u) = 0, (8.6)

f (0) = 1. (8.7)

(2) For ∣u∣ < ∣μ∣−1 we have

(1 + μu)a/μ =
∞

∑
n=0

a(a − μ) ⋅ ⋅ ⋅ (a − (n − 1)μ)
n!

un,

(3)
(1 + μu)a1/μ(1 + μu)a2/μ = (1 + μu)(a1+a2)/μ.

C. Generating functions

Let us now fix σ(z) = σ′′
2 z2 + z, as in (8.1). Let a, b, μ, ν ∈ C. Consider two families of hypergeometric class operators

(σ′′

2
z2 + z)∂2

z + (m + 1 + (σ′′

2
(1 +m) − μb − νa)z)∂z −mμb − ab, (8.8)

(σ′′

2
z2 + z)∂2

z + (m + 1 + (σ′′

2
(1 +m) − μb − νa)z)∂z −mνa − ab. (8.9)

(Note that the parameters we introduced are redundant—three would suffice instead of four. However they help us to describe the degenerate
case in a symmetric and unified way.)

In terms of our standard parameters, the operators (8.8) and (8.9) can be written as

H(σ, κm) + ωm, (8.10)

H(σ, κm) + ω̃m, (8.11)

where

κm(z) ∶= m + (σ′′

2
(m − 1) − μb − νa)z, (8.12)

ωm ∶=
1
2
(μb + νa) − ab −mμb − σ′′

4
(m − 1), (8.13)

ω̃m ∶=
1
2
(μb + νa) − ab −mνa − σ′′

4
(m − 1). (8.14)

Note that
κm
○ = κ−m, ωm

○ = ω̃−m, ω̃m
○ = ω−m. (8.15)

By [(α, β)+] we will denote a counterclockwise loop around α, β ∈ C. We define

Ψm(z) ∶=
1

2πi∫[ (0,−zν))+]
(1 + μu)−

a
μ (1 + νz

u
)
− b

ν
u−m−1du, (8.16)

Ψ̃m(z) ∶=
1

2πi∫[(0,−zμ)+]
(1 + μz

v
)
− a

μ
(1 + νv)−

b
ν v−m−1dv. (8.17)

Theorem 8.2.

1. For ∣zν∣ < ∣u∣ < ∣μ−1∣ we have

(1 + μu)−
a
μ (1 + νz

u
)
− b

ν
= ∑

m ∈Z
umΨm(z). (8.18)
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and for ∣zμ∣ < ∣u∣ < ∣ν−1∣ we have

(1 + μz
v
)
− a

μ
(1 + νv)−

b
ν = ∑

m ∈Z
vmΨ̃m(z). (8.19)

2. Ψm(z) = z−mΨ̃−m(z).
3. For m ≥ 0,

Ψm(0) = (−1)m a(a + μ) ⋅ ⋅ ⋅ (a + μ(m − 1))
m!

, (8.20)

Ψ̃m(0) = (−1)m b(b + ν) ⋅ ⋅ ⋅ (b + (m − 1)ν)
m!

. (8.21)

4. The functions Ψm(z) and Ψ̃m(z) satisfy the following hypergeometric class differential equations:

(z(1 − μνz)∂2
z + (m + 1 − (μν(1 +m) + aν + bμ)z)∂z − (mμb + ab))Ψm(z) = 0, (8.22)

(z(1 − μνz)∂2
z + (m + 1 − (μν(1 +m) + aν + bμ)z)∂z − (mνa + ab))Ψ̃m(z) = 0. (8.23)

5. The functions Ψm(z) and Ψ̃m(z) are proportional to the Olver normalized unified hypergeometric function:

Ψm(z) = (−1)ma(a + μ) ⋅ ⋅ ⋅ (a + μ(m − 1))F(σ, κm, ωm; z); (8.24)

Ψ̃m(z) = (−1)mb(b + ν) ⋅ ⋅ ⋅ (b + (m − 1)ν)F(σ, κm, ω̃m; z); (8.25)

Proof. 1. follows immediately from the definitions (8.16), (8.17) and the Laurent expansion.
To show 2. we can rewrite (8.18) and (8.19) as

(1 + μu)−
a
μ (1 + νv)−

b
ν = ∑

m ∈Z
umΨm(uv), (8.26)

(1 + μu)−
a
μ (1 + νv)−

b
ν = ∑

m ∈Z
vmΨ̃m(uv) = ∑

m ∈Z
u−m(uv)mΨ̃m(uv). (8.27)

3. follows by setting v = 0 in (8.26) and u = 0 in (8.27).
Let us show 4. We have the identity

0 = (∂u∂v − μνuv∂u∂v − μbu∂u − aνv∂v − ab)(1 + μu)−
a
μ (1 + νv)−

b
ν . (8.28)

Besides,

(∂u∂v − μνuv∂u∂v − μbu∂u − aνv∂v − ab)umΨm(uv)
= um(z(1 − μνz)∂2

z + (m + 1 − (μν + (mμ + a)ν + bμ)z)∂z − (mμ + a)b)Ψm(z).

Thus (8.28) together with (8.26) can be rewritten as

0 = ∑
m ∈Z

um(z(1 − μνz)∂2
z + (m + 1 − (μν + (mμ + a)ν + bμ)z)∂z − (mμ + a)b)Ψm(z), (8.29)

which implies (8.22).
5. follows from 3. and 4. ◻
In the remaining part of the section we describe separately three types of degenerate hypergeometric class functions.

D. The 2F1 function
For m ∈ Z we have

F(a, b; 1 +m; z) = ∑
n=max (0,−m)

(a)n(b)n

n!(m + n)! zn, (8.30)

(a −m)m(b −m)mF(a, b; 1 +m; z) = z−mF(a −m, b −m; 1 −m; z). (8.31)
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We have an integral representation and a generating function:

1
2πi ∫

[(0,z)+]

(1 − t)−a(1 − z
t
)
−b

t−m−1dt = (a)mF(a +m, b; 1 +m; z), (8.32)

(1 − t)−a(1 − z
t
)
−b
= ∑

m ∈Z
tm(a)mF(a +m, b; 1 +m). (8.33)

E. The 1F1 function
If m ∈ Z, we have

F(a; 1 +m; z) = ∑
n=max (0,−m)

(a)n

n!(m + n)! zn, (8.34)

(a −m)mF(a; 1 +m; z) = z−mF(a −m; 1 −m; z). (8.35)

We have two integral representations and the corresponding generating functions:

1
2πi ∫

[(z,0)+]

et(1 − z
t
)
−a

t−m−1dt = F(a, 1 +m; z),

1
2πi ∫

[(0,1)+]

e
z
t (1 − t)−at−m−1dt = z−mF(a, 1 −m; z),

et(1 − z
t
)
−a
= ∑

m ∈Z
tmF(a; m; z)),

e
z
t (1 − t)−a = ∑

m ∈Z
tmz−mF(a; 1 −m; z).

F. The 0F1 function
If m ∈ Z, then

F(1 +m; z) = ∑
n=max (0,−m)

1
n!(m + n)! zn, (8.36)

F(1 +m; z) = z−mF(1 −m; z). (8.37)

We have an integral representation, called the Bessel formula, and a generating function:

1
2πi∫

[0+]

et+ z
t t−m−1dt = F(1 +m; z), (8.38)

ete
z
t = ∑

m ∈Z
tmF(1 +m; z). (8.39)
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APPENDIX A: FUNCTION 2F0

The function 2F0 seems to be rarely discussed in the literature. For convenience of the reader in the following theorem we state and prove
basic facts about this function.

Theorem A.1. For w ∈ C/[0,∞ [, there exists the limit

F(a, b;−;w) ∶= lim
c→+∞

F(a, b; c; cw). (A1)

It defines a function analytically depending on a, b ∈ C and w ∈ C/[0,∞[.
We have the following asymptotic expansion:

F(a, b;−;w) ∼
∞

∑
n=0

(a)n(b)n

n!
wn. (A2)

More precisely, for any ϵ > 0, n, there exists cn such that

RRRRRRRRRRR
F(a, b;−;w) −

n

∑
j=0

(a)j(b)j

j!
w j
RRRRRRRRRRR
≤ cn∣w∣n+1, ∣ argw∣ ≥ ϵ, ∣w∣ < 1. (A3)

Moreover, for Re(a) > 0 we have an integral representation

F(a, b;−;w) = 1
Γ(a)∫

∞

0
e−tta−1(1 −wt)−bdt. (A4)

Proof. Assume first that Re(a) > 0. For Re(c − a) > 0 and w ∈ C/[c−1,+∞[, inserting t = cs−1 and z = cw into (6.5), we obtain

F(a, b; c; cw) = Γ(c)c−a

Γ(a)Γ(c − a)∫
c

0
sa−1(1 − c−1s)c−a−1(1 −ws)−bds. (A5)

Using limc→∞
Γ(c)c−a

Γ(c−a) = 1 and the Lebesgue Dominated Convergence Theorem we see that (A5) converges to the right hand side of (A4). This
proves that F(a, b;−; w) is well defined for Re(a) > 0.

Now let a be arbitrary. We have

∂n
z F(a, b; c; z) = (a)n(b)n

(c)n
F(a + n, b + n; c + n; z). (A6)

Using Taylor’s formula with a remainder

f (z) =
n−1

∑
j=0

f ( j)(0)z j

j!
+ zn∫

1

0

f (n)(sz)n(1 − s)n−1

n!
ds,

we obtain

F(a, b; c; z) =
n−1

∑
j=0

(b)j(a)jw
j

j!
(A7)

+ wn(b)n(a)n

(n − 1)! ∫
1

0
(1 − s)n−1dsF(a + n, b + n; c;ws). (A8)

Now, choose n such that Re(a + n) > 0. Then we can apply what we proved before to show the convergence

lim
c→+∞

F(a, b; c; cz) =
n−1

∑
j=0

(b)j(a)jw
j

j!
(A9)
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+ wn(b)n(a)n

(n − 1)! ∫
1

0
(1 − s)n−1dsF(a + n, b + n;−;ws). (A10)

Clearly, (A10) is O(wn), and n can be made arbitrarily large. ◻

If a or b is a negative integer, then the series (A2) terminates and functions 2F0(a, b;−; ⋅) essentially coincide with Bessel polynomials,
see Subsection VII J. Otherwise, 2F0(a, b;−; ⋅) have a logarithmic branch point at 0.

APPENDIX B: RIEMANN CLASS

We hope that we convinced our reader that the hypergeometric class studied in this paper is a natural family of equations. In this
appendix, following Ref. 5, we will describe a somewhat wider family, which appears in the literature in many sources, e.g., Refs. 4, 5, and 24.
According to the terminology used in Ref. 5, directly inspired by and partly borrowed from the monograph of Slavyanov-Lay,4 this family is
called Riemann class.

Consider an equation given by the operator
∂2

z + b(z)∂z + c(z), (B1)

where p(z), q(z) are rational functions. Let z0 ∈ C ∪ {∞} be a singular point of (B1).
Recall that z0 ∈ C is called regular-singular or Fuchsian if b(z) = p(z)

z−z0
and c(z) = q(z)

(z−z0)
2 with p, q regular at z0. The equation

λ(λ − 1) + p(z0)λ + q(z0) = 0 (B2)

is called the indicial equation of z0 and its roots are called indices of z0.
We say that∞ is regular-singular or Fuchsian if b(z) = p(z)

z and c(z) = q(z)
z2 with p, q regular at∞.

λ(λ + 1) − p(∞)λ + q(∞) = 0 (B3)

is called the indicial equation of ∞ and its roots are called indices of∞.
It is easy to see that every equation having no more than three singular points in C ∪ {∞}, all of them Fuchsian and at most two finite,

is given by an operator of the form

∂2
z + (

a1

z − z1
+ a2

z − z2
)∂z +

b1

z − z1
+ b2

z − z2
+ c1

(z − z1)2 +
c2

(z − z2)2 with b1 + b2 = 0, (B4)

where z1, z2 are distinct points in C. Following Ref. 5, the family of equations (B4) is called the Riemann type. (Another name, introduced in
Ref. 4, is M2-type.)

Each finite singularity has at least one index equal 0 if and only if c1 = c2 = 0. Such equations are given by operators

∂2
z + (

a1

z − z1
+ a2

z − z2
)∂z +

b1

z − z1
+ b2

z − z2
with

n

∑
j=1

bj = 0. (B5)

Following Ref. 5, the family of equations given by (B5) will be called the grounded Riemann type. It is easy to see that by gauging with power
functions we can always transform a Riemann type equation into a grounded Riemann type equation.

We say that a differential equation belongs to the Riemann class (or the M2-class) if it is given by

∂2
z +

τ(z)
σ(z)∂z +

ξ(z)
σ(z)2 , (B6)

where σ, τ, ξ are polynomials satisfying
σ ≠ 0, deg σ ≤ 2, deg τ ≤ 1, deg ξ ≤ 2. (B7)

Thus the Riemann class comprises the Riemann type together with all its confluent cases.
We say that a differential equation belongs to the grounded Riemann class if it is given by

∂2
z +

τ(z)
σ(z)∂z +

η(z)
σ(z) , (B8)

where σ, τ, η are polynomials satisfying
σ ≠ 0, deg σ ≤ 2, deg τ ≤ 1, deg η = 0. (B9)

Thus the grounded Riemann class besides the grounded Riemann includes all its confluent cases.
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The following proposition is proven in Ref. 5:

Proposition B.1.

1. The Riemann type is contained in the Riemann class. An equation of the Riemann class is of the Riemann type iff σ possesses 2 distinct
roots.

2. The grounded Riemann type is the intersection of the grounded Riemann class and Riemann type.

In this paper instead of the grounded Riemann class we use the name hypergeometric class. We use this name mostly for brevity, besides
the word “grounded” may sound bizarre to some readers. Furthermore, we prefer to multiply these equations by σ(z), so that we consider
operators of the form

σ(z)∂2
z + τ(z)∂z + η (B10)

with σ, τ, ν satisfying (B9).
One can ask whether the unified theory presented in this paper can be extended to operators of the form

σ(z)∂2
z + τ(z)∂z +

ξ(z)
σ(z) , (B11)

where σ, τ, ξ satisfy (B7). In other words whether the unified theory presented in this paper can be extended to the full Riemann class. We do
not know an answer to this question. However, let us remark that we do not gain much by considering the full Riemann class instead of the
grounded Riemann class.

By a division by a constant, transformation z ↦ az + b and gauging with a power and exponential all operators from the Riemann type
can be always reduced to an 2F1 operator. More generally, all operators from the Riemann class can be reduced to one of normal forms listed
in Ref. 4 or in Subsection 3.3 of Ref. 5:

The 2F1 operator z(1 − z)∂2
z + (c − (a + b + 1)z)∂z − ab;

The 2F0 operator z2∂2
z + (−1 + (a + b + 1)z)∂z + ab;

The 1F1 operator z∂2
z + (c − z)∂z − a;

The 0F1 operator z∂2
z + c∂z − 1;

The Hermite operator ∂2
z − 2z∂z − 2a;

The Airy operator ∂2
z + z;

The Euler operator I z2∂2
z + cz∂z ;

The Euler operator II z∂2
z + c∂z ;

The 1d Helmholtz operator ∂2
z + 1;

The 1d Laplace operator ∂2
z .

In this list the first five are the normal forms listed in the introduction and described in Sec. VI. The last four are trivial operators that
can be solved in by elementary methods. They are also special cases of the grounded Riemann class.

The Airy equation is the only type within the Riemann class which does not belong to the grounded Riemann class and therefore is left
out from the unified theory presented in this paper.
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in Mathematics, Berlin, 2020).
4S. Y. Slavyanov and W. Lay, Special Functions: A Unified Theory Based on Singularities, Oxford Mathematical Monographs (Oxford University Press, Oxford, 2000).
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