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1 Introduction
The paper is devoted to the properties of the hypergeometric equation

(z(l—z)a§+ (c—(a+b+ 1)2)8z—ab)F(z) =0, (1.1)
the Gegenbauer equation

((1 — 202 — (a+b+1)20, — ab)F(z) —0, (1.2)
the confluent equation

(zaf +(c—2)8, — a> F(z) =0, (1.3)
the Hermite equation

(ag — 220, — 2a)F(z) ~0, (1.4)
and the oF} equation (closely related to the Bessel equation, see eg. [De)

(zag +cd, — 1)F(z) —0. (1.5)

Here, z is a complex variable, 9, is the differentiation with respect to z, and a, b, ¢ are arbitrary
complex parameters.
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Special functions that solve these equations are typical representatives of hypergeometric type
functions [NU]. They often appear in applications MF]. In old times they were considered
one of the central topics of mathematics, see eg. [WW]|. In our opinion, they indeed belong to
the most natural objects in mathematics.

Properties of hypergeometric type functions look quite complicated. According to our obser-
vations, when these properties are discussed, most people react with boredom and/or irritation.
We would like to convince the reader that in reality identities related to hypergeometric type
equations are beautiful and can be derived in an elegant and transparent way.

We will show that in order to understand hypergeometric type equations it is helpful to
start from certain 2nd order PDE’s in several variables with constant coefficients. If we start
from rather obvious properties of these PDE’s, reduce the number of variables and change the
coordinates, we can observe how these properties become more complicated. At the end one
obtains relatively complicated sets of identities for hypergeometric type equations.

1.1 Hypergeometric type operators

Equations (ILI)-(L3) are determined by an operator of the form
C=0C(20.) = 0(2)0% +1(2)0. +n. (1.6)

In our paper we will concentrate on the study of the operator C itself, rather than on individual
solutions F' of the equation

CF =0. (1.7)

Note, however, that properties of F’s can be to a large extent inferred from the properties of C
itself.

According to the terminology used in [NU], and then in [DeWtl De], equations (LI)-(TH)
belong to the class of hypergeometric type equations. This class is defined by demanding that o
is a polynomial of at most 2nd order, 7 is a polynomial of at most 1st order and 7 is a number.
More precisely, (LI)-(L3) constitute standard forms of all nontrivial classes of hypergeometric
type equations, as explained eg. in [De].

Equations (LI)-(LE) depend on a number of (complex) parameters. For instance, in the case
of the hypergeometric equation these parameters are a,b,c. We will prefer to use different sets
of parameters introduced in a systematic way in [De|, which are more convenient to express
the symmetries of these equations. In [De] these new parameters were called the Lie-algebraic
parameters. Indeed, as we will describe, they are eigenvalues of the “Cartan algebra” of appro-
priate Lie algebras. For instance, for the hypergeometric equation the Lie-algebraic parameters,
denoted «, 3, i, are the differences of the indices at the three singular points.

We will prefer not to use the operators C directly. As explained in [De], we can write

C(2,0:) = p~(2)0:p(2)0: + n, (1.8)

which defines (up to a multiplicative factor) a certain function p(z) called the weight. Following
[De], the operator

C*l(2,8,) := p(2)2C(2,0,)p(2) "2, (1.9)

will be called the balanced form of C. The study of the balanced form is obviously equivalent to
that of C, since both are related by a simple similarity transformation. The original operator C
will be sometimes called the standard form of C.

We will consider 3 classes of identities:
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(1) discrete symmetries,
(2) transmutation relations,
(3) factorizations.

Discrete symmetries involve a transformation of the independent variable, together with a change
of the parameters. The family of the discrete symmetries of the hypergeometric equation is
especially famous. In the literature it is sometimes known under the name of the Kummer’s
table [Kul [AAR], [LSV].

The balanced form is especially convenient for a presentation of discrete symmetries, because
some of them simply reduce to the change of sign of parameters.

Transmutation relations say that C multiplied from the right by an appropriate 1st order
operator equals C for shifted parameters multiplied from the left by a similar 1st order operator.
In quantum physics the corresponding 1st order operators are often called creation/annihilation
operators.

Factorizations say that C can be written as a product of two 1st order operators, up to an
additional term that does not contain the independent variable. It is easy to see that factoriza-
tions imply transmutation relations, as described eg. in [De]. Factorizations play an important
role in quantum mechanics. They are often interpreted as the manifestation of supersymmetry
[CKS]. In quantum mechanics discussion of these factorizations has a long history going back at
least to |LH].

Discrete symmetries, transmutation relations and factorizations are far from being trivial.
Nevertheless, in our opinion they belong to the most elementary properties of hypergeometric
type equations and functions. There exist many other properties, notably addition formulas and
integral representations, which we view as more advanced. We do not consider them in our paper.

1.2 Group-theoretical derivation

We will see that all hypergeometric type equations can be obtained by separating the variables
of 2nd order PDE’s with constant coefficients. We will always use the complex variable, to avoid
discussing various signatures of these PDE’s.

Every such a PDE has a Lie algebra and a Lie group of generalized symmetries. In this
Lie algebra we can fix a certain maximal commutative algebra, which we will call the “Cartan
algebra”. Operators whose adjoint action is diagonal in the “Cartan algebra” will be called “root
operators”. In the Lie group of generalized symmetries we will distinguish a discrete group, which
we will call the group of “Weyl symmetries”. This group will implement automorphisms of the
Lie algebra leaving invariant the “Cartan algebra”.

Note that in some cases the Lie algebra of generalized symmetries is semisimple, and then the
names Cartan algebra, root operators and Weyl symmetries correspond to the standard names.
In other cases the Lie algebra is non-semisimple, and then the names are less standard — this is
the reason for the quotation marks that we use.

Parameters of hypergeometric type equation can be interpreted as the eigenvalues of elements
of the “Cartan algebra”. In particular, the number of parameters of a given class of equations
equals the dimension of the corresponding “Cartan algebra”. Each transmutation relation is
related to a “root operator”. Finally, each discrete symmetry of a hypergeometric type operator
corresponds to a “Weyl symmetry” of the Lie algebra.

We can distinguish 3 kinds of PDE’s of the complex variable with constant coefficients:

(1) The Laplace equation on C"
A(C”f - 07

whose Lie algebra of generalized symmetries is so(C"*2).
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(2) The heat equation on C"~2 @ C,
(A(Cn72 + 8t)f — 0,

whose Lie algebra of generalized symmetries is sch(C"~2), the so-called (complex) Schri-
dinger Lie algebra.

(3) The Helmholtz equation on C"~ 1,
(A(Cnfl - 1)f - O,

whose Lie algebra of symmetries is C" ! x so(C*™1).

Separating the variables in these equations usually leads to differential equations with many
variables. Only in a few cases it leads to ordinary differential equations, which turn out to be of
hypergeometric type. All these cases are described in the following table:

Table 1.
Lie dimension of discrete .

PDE algebra Cartan algebra symmetries equation

Aca s0(C9) 3 cube hypergeometric;

Acs so(C?) 2 square Gegenbauer;
Ac2 + O sch(C?) 2 T X T confluent;
Ac + O sch(C!) 1 Zy Hermite;
A(C2 —1 (C2 A SO((Cz) 1 ZQ 0F1.

The Laplace equation on C", the heat equation on C*~2 and the Helmholtz equation on C*~!
together with their generalized symmetries can be elegantly derived by an appropriate reduction
from the Laplace equation in n + 2 dimensions

Agns2 K = 0. (1.10)

Thus, as follows from Table[l to derive symmetries of the hypergeometric and confluent equations
one should start from

A K = 0. (1.11)

To derive the Gegenbauer, Hermite and o F; equation together with all its symmetries it is enough
to start with

AcsK = 0. (1.12)

It is easy to reduce the Laplace equation from 6 to 5 dimensions. Thus the Laplace equation in
6 dimensions is the “mother” of all hypergeometric type equations.
Let us describe these derivations in more detail.

e We start from (LII]), where the symmetries so(C®) are obvious. By what we call the
conformal reduction, we can reduce Acs to Aca, and then further to the hypergeometric
operator. Alternatively, one can reduce Ags to an appropriate Laplace-Beltrami operator,
and then we obtain (LI)) more directly.
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e We can repeat an analogous procedure one dimension lower. We start from (I2)), and at
the end we obtain the Gegenbauer operator.

e One can reduce ([LIT]) to Ace + 9y, the heat operator in 2 dimensions, and then further to
the confluent operator. Note that sch(C?) is contained in so(CP®).

e One can repeat the above steps one dimension lower, reducing (LI2) to Ac + J;, the heat
operator in 1 dimension, and then further to the Hermite operator. Note that sch(C) is
contained in so(C?).

e To obtain the oF} operator one needs to separate variables in in the Helmholtz operator
Ac2—1. Its symmetries C2 xs0(C?) are contained in so(C®) and one can start the derivation

from (LI2)).

One can ask whether the table [[l can be enlarged, eg. by considering Acnf = 0 with its
conformal symmetries so(C"*2) for n > 5. One can argue that the answer is negative and the
table[is complete. Indeed, the Cartan algebra of so(n+2) has dimension [n/2], and n—[n/2] > 1
for n > 5. Therefore, separation of variables in the Laplace equation in dimension n > 5 leads
to a differential equation in more than one variable.

1.3 Organization of the paper

The paper can be considered as a sequel to [De]. Nevertheless, it is to a large degree self-contained
and independent of [De].

In Section 2] we list the identities that we would like to derive/explain in our article. As
described in the introduction, these identities involve 5 classes of differential operators (LIJ)-
(LH). All these operators are first transformed to the balanced form.

The versions of these identities for the standard form of equations (ILI))-(LH]) can be found in
[De]. In order to reduce the length of the paper, in this paper we concentrate on the balanced
form, which is more symmetric.

Sections [B] Ml and [l provide basic definitions and concepts, mostly related to (complex) dif-
ferential geometry, Lie groups and Lie algebras. This material is very well known, especially in
the real context. Unfortunately, the use of complex manifolds, natural in our context, has some
disadvantages due to the rigidity of holomorphic functions and their multivaluedness. This is the
reason for some annoying minor complications in these sections, such as local representations of
groups.

In Sec. [@ we describe the action of the conformal group/Lie algebra in n dimensions. We do
this first for a general n. As a simple, but instructive exercise we consider the cases n = 1, 2.

In Sec. [Mwe consider the case n = 4, which yields the hypergeometric operator. In Sec. B we
consider n = 3, which leads to the Gegenbauer operator. These two sections are very parallel to
one another. Both are direct applications of the formalism of Sec. [l

In Sec. @ we consider the Schrédinger group Sch(C"~2) and its Lie algebra sch(C"~2). They
describe generalized symmetries of the heat equation in n — 2 dimensions. We first do this for a
general dimension.

In Sec. we consider the case n = 4, which yields the confluent operator. In Sec. [Tl we
consider n = 3, which leads to the Hermite operator. Again, these two sections are quite parallel.
They are applications of the formalism of Sec.

In the final Sect. we consider the Helmholtz equation in 2 dimensions together with the
affine Euclidean symmetries C2 x O(C?) and C? x so(C?). This leads to the oF}y equation (or,
equivalently, to the Bessel equation). We included this section for completeness, however its
material is well-known and well documented in the literature.
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Note that Sections Bl El Bl B and @ are quite general and abstract. On the other hand,
Sections [7] B M0, 1] and I2] are more concrete and present applications of the general theory to

the classes of hypergeometric type equations (L1I), (L2), (L3), (L4) and (L), respectively. To
a large extent they can be read independently of the “general” part of the paper.

1.4 Comparison with literature

Properties of functions of hypergeometric type are described in numerous books, such as [AAR]
Hol MOS| INTST, R, WW!| [Kuz]. In particular, the properties presented in Sect. [ (trans-
mutation relations, discrete symmetries and factorizations) are known in one form or another. A
similar presentation can be found in [De]. (Unlike in this paper, the presentation of [De] involves
the standard form of hypergeometric type equations and not their balanced form).

Lie algebras associated with the Bessel and Hermite functions can be found in papers by
Weisner [Well, We2].

The idea of studying hypergeometric type equations with help of Lie algebras was developed
further by Miller. His early book [M1] considers mostly small Lie algebras/Lie groups, typically
sl(2,C)/SL(2,C) and its contractions, and applies them to obtain various identities about hyper-
geometric type functions. These Lie algebras have 1-dimensional “Cartan algebras” and a single
pair of roots. This kind of analysis is able to explain only a single pair of transmutation relations,
whereas to explain bigger families of transmutation relations one needs larger Lie algebras.

A Lie algebra strictly larger than sl(2,C) is so(4,C). There exists a large literature on the
relation of the hypergeometric equation with so(4,C) and its real forms, see eg. [KM]. This Lie
algebra is however still too small to account for all symmetries of the hypergeometric equation—
its Cartan algebra is only 2-dimensional, whereas the equation has three parameters.

An explanation of symmetries of the Gegenbauer equation in terms of so(5) and of the hyper-
geometric equation in terms of so(6) ~ sl(4) was first given by Miller, see [M4], and especially
[M35].

Miller and Kalnins wrote a series of papers where they studied the symmetry approach to
separation of variables for various 2nd order partial differential equations, such as the Laplace
and wave equation, see eg. [KMI]. A large part of this research is summed up in the book by
Miller [M3]. As an important consequence of this study, one obtains detailed information about
symmetries of hypergeometric type equations.

The main tool that we use to describe properties of hypergeometric type functions is the
theory of generalized symmetries of 2nd order linear PDE’s. This theory is described in another
book by Miller [M2], and further developed in [M3].

The fact that conformal transformations of the Euclidean space are generalized symmetries
of the Laplace equation was apparently known already to Kelvin. Its explanation in terms of
the null quadric first appeared in [Boc]. Null quadric as a tool to study conformal symmetries
of the Laplace equation is the basic tool of KMR].

The conformal invariance of the Laplace equation generalizes to arbitrary pseudo-Riemannian
manifolds. In fact, the Laplace-Beltrami operator plus an appropriate multiple of the scalar
curvature, sometimes called the Yamabe Laplacian, is invariant in a generalized sense with respect
to conformal maps. This can be found for instance in [O1].

The group of generalized symmetries of the heat equation was known already to Lie [LJ.
It was rediscovered (in the essentially equivalent context of the free Schrodinger equation) by
Schrodinger [Schl. It was then studied eg. in [Hal [Ni].

Elementary notions from differential geometry used in our paper are well known. One of
standard references in this subject is [KN].

A topic that is extensively treated in the literature on the relation of special functions to group

theory, such as [Vl [Wal M1l VK], is derivation of various addition formulas. Addition formulas
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say that a certain special function can be written as a sum, often infinite, of some related
functions. These identities can be typically interpreted in terms of a certain representation of
an appropriate Lie group. These identities are very interesting, however we do not discuss them.
The only elements of Lie groups that we consider are very special-they are the “Weyl symmetries”.
They yield discrete symmetries of hypergeometric type equations, such as Kummer’s table. We
leave out addition formulas, because their theory is considerably more complicated than what
we consider in our paper.

The relationship of Kummer’s table with the group of symmetries of a cube (which is the Weyl
group of so(C%)) was discussed in [LSV]. A recent paper, where symmetries of the hypergeometric
equation play an important role is [Ko|. (We learned the term “transmutation relations” from
this paper).

The use of transmutation relations as a tool to derive recurrence relations for hypergeometric
type functions is well known and can be found eg. in the book by Nikiforov-Uvarov [NU], in the
books by Miller [M1] or in older works such as [Tt Well [We2].

There exists various generalizations of hypergeometric type functions. Let us mention the
class of A-hypergeometric functions, which provides a natural generalization of the usual hy-
pergeometric function to many-variable situations Bod|. Saito [Sa] considers generalized
symmetries in the framework of A-hypergeometric functions. Note, however, that the results of
Saito are incomplete in the case of the classic hypergeometric equation. He admits this: “When
p=2, the symmetry Lie algebra is much larger than go”, and he quotes the paper by Miller [M5].
Similarly, the (surprisingly large) Lie algebras of symmetries of the Gegenbauer and Hermite
equations cannot be easily seen from a (seemingly very general) analysis of Saito.

There are a number of topics related to the hypergeometric type equation that we do not
touch. Let us mention the question whether hypergeometric functions can be expressed in terms
of algebraic functions. This topic, in the context of A-hypergeometric functions was considered
eg. in the interesting papers

In our paper we stick to a rather limited class of equations. We do not have the ambition
to go for generalizations. This limited class has a surprisingly rich structure, which seems to be
lost when we consider their generalizations.

Many, perhaps most identities and ideas described in our paper can be found in one form or
another in the literature, especially in the works by Miller, also by Miller and Kalnins, as we
discussed above. Nevertheless, we believe that our work raises important points that are not
explicitly described in the literature. We argue that symmetry properties of all hypergeometric
type equations become almost obvious if we add a certain number of variables obtaining the
Laplace equation. We describe this idea in a unified framework, identifying the relationship of
theory of hypergeometric type equations with such elements of group theory as roots, Cartan
algebras and Weyl groups. These ideas are summed in Table 1, which to our knowledge has not
appeared in the literature, except for the paper [De] written by one of us.

We use various (minor but helpful) ideas to make our presentation as short and transparent
as possible: eg. the balanced form of hypergeometric type equations, Lie algebraic parameters
and split coordinates in C™. In our derivations the symmetries are completely obvious at the
starting point, then at each step they become more and more complicated.

The derivation of generalized symmetries of the Laplacian, given after Theorem [, is probably
partly original. It leads to an interesting geometric object, which we call A°. It satisfies identities
625) and ([626), which seem quite important in the context of conformal invariance of the
Laplace equation. These identities are elementary and quite simple, however we have never
seen them in the literature. They can be used to derive factorizations of hypergeometric type
equations, relating them to Casimir operators of certain distinguished subalgebras, another point
that is probably original.
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2 Hypergeometric type operators and their symmetries

In this section we describe the families of identities that we would like to interpret in a group-
theoretical fashion in this article. As mentioned above, all of them involve the balanced form of

the operators (II)—(T5).

2.1 Hypergeometric operator

In the hypergeometric equation (L) we prefer to replace the parameters a, b, ¢ with
a=c—1, B:=a+b—c, p:=>b—a. (2.1)

We obtain the (standard) hypergeometric operator

]:Oc,ﬁ,u(wy 8w)

=w(l —w)ds + (1 +a)(1 —w) — (1 + B)w)dy + %/f — i(a +B+1)% (2.2)

Instead of ([2.:2)) we prefer to consider the balanced hypergeometric operator

[Ny

o
2

Fhl (w,0y) = w3 (1 — )2 Fo g u(w, 0) (1 — w)~

a, B,
a2 32 qu 1
8ww(1—w)8w—@—4(1_w) + T (2.3)

wo

Discrete symmetries.
F baﬁl u(w, Oy) does not change if we flip the signs of «, 3, 1. Besides, the following operators

coincide with FP3  (w, 0,,):

a, B, p
w= oz Fob,u(z 02), (2.4a)
w=1-z: Fgiaulz: 02), (2.4b)
w= % : 2% (=2) Fih oz, 8:) 27, (2.4¢)
w=1- % : 22 (—2) f;ﬂﬂ(z, 0:) z_%, (2.4d)
v 1iz (1-2): (Z_l)fﬁb,aﬁ,a(zv 9.) (1-2)72, (2.4e)
W=7 - 1 (1—2)2 (2= 1) F22 5(2, 0:) (1 —2) 7 (2.4f)
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Transmutation relations.

w(l —w) <8w — % + 2(1€w)> fo'fag (W, O)

= F2 g u(w, 0u) Va1 — w) <8w—%+2<15—w>>’ -
=T g p(w, Ow) w(l—w)<3w+%_2(16—w)>’ .
w0 (00— = s ) Foh s 20 .
= Fai, gt u(w, 9w) V(1 — w) <8w_%_ 2(1€w)>’ -
w(l—w)<3w+%+ﬁ> Falpuw: Ou) 2.5d
=T g1, p(w, Ou) w(l—w)<aw+%+2(1€w)>’ o
3o 5) it
_E 8w)\/5<2(1_w)aw———u—1>, 5e)
\/E<2<1—w>6w+%+“‘3> Falhult O0) (2.50)
= F2 5w aw>ﬁ<2<1—w>aw+—+”‘l>’ |
\/E<2<1—w>6w—@+“‘3> Falhult B0) (2.58)
@<2<1—w>0w+%‘“‘3> ol ) (2.5h)
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vi-w (—2w e 3> Fi p(w, )

1—w

§ g
= Fot, p (W, 80) VI —w <—2w8w -,

VI9I—w (—Qw Ow + b + - 3) folzaﬁl7u(w, Ow)

1—w

= ‘F(E%—l,u—l(w7 8111) v1—w <_2waw + L +u— 1> ,

1—w

V1—w <—2w O — B + - 3> Fo (w, Oy)

1—w

=

= f;aﬁl+1,u—1(w7 Ow) V1 —w <—2waw 1—w + = 1) )

V1w (—2w8w + 1 fw — - 3) Fi u(w, )

@

- folzaﬁl—l,/.t-l-l(w7 811}) m <—2w aw + m — U — > .

Factorizations.
f£%7u(w,8w)
a—1 5—1 « /8
Vol =] (00~ 5t + gy ) VAU =0 (8= g+ 5 )+
—i((5+a)(5+a—2)+u2—1)
a+1 5—1 o /8
:\/'(U(l—w)<8w+ " +2(1—w)> w(l—w)(@w 2w_2(1—w)>+
(B (B a2 1)
a—1 B+1 o B
- w(l_w)<aw 2 _2(1—w)> w(l_w)<aw_%_2(1—w)>+
L B-wB-ar -y
a+1 B+1 o B
= (1—W)<8w 5 _2(1—w)> w(l—w)(@w—@+2(1_w)>+

—i((5+0¢)(5+a+2)+,u2—1),

(2.51)

(2.5))

(2.5k)

(2.51)

(2.6b)

(2.6¢)

(2.6d)
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By
=—¢@Qé+ufwﬂm—iﬁl—i;gvﬁ<—é+u—m&f@%+g>+
sy pra-2 452 -1) (2.6¢)
=—\/@<—%+(1—w)aw 0‘2“—“T_l>\/a<—3+(1—w)aw—%+g>+
(e (a2 + 5 1) (2.66)
:—Jwﬁé+uewﬂm—iﬁl+i§gV%<—3+u—wﬂm+51—g>+
—i«u—aﬂu—a+%+ﬁ”—ﬂ (2.6g)
=—ﬁ<—%+(1—w)aw+a2;1+’“‘T+1>\/E<—%+(1—w) w-%-%)
—i((u—l—a)(u—l—a—l—%—l—ﬁz—l), (2.6h)

- w]:i%l,u(w, Ow)

:_m<_l_waw_ f-1 —M_1>m<—%—w&u+ b +ﬁ>+

2 21— w) 2 2(1 —w) = 2
_i((u+5)(u+5—2)+a2—1) (261

1 f+1  p—1\ —— (1 B p
::”Ejaﬁi_w%+2u—w_'2?)1_w<3_w&“da—m+§>+
—i«u—ﬂﬂu—ﬂ—m+a”—ﬂ (2:6)

1 B—1 p+1 1 B ©
:‘m<‘§‘waw‘z<1_w>+ ; >V1‘“’<‘§‘waw+m‘§>+
—i«u—ﬂﬂu—5+%+a”—ﬂ (2.6k)

1 B+1 p+1 1 p Iz
:_m<_§_wa“’+2(1—w)+ ; >V1—w<‘§‘waw—m‘§>+
‘i(<u+5><u+6+2>+a2—1)- (2,61

It is striking how symmetric the above formulas look like. The main goal of our paper is to
explain why this is so.
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2.2 Gegenbauer operator

In the hypergeometric equation (LI let us move the singular points to —1,1 and demand that
it is reflection invariant. Then we can eliminate one of the parameters, say ¢. We obtain the
Gegenbauer equation (L2]). We introduce new parameters

a+b—1 _b-a

= A:
@ 2 2

We obtain the (standard) Gegenbauer operator

2
Sar(w,0h) = (1~ 0?2, —2(1 + ayuwdyy + X~ (a + %) . (2.7)

The balanced Gegenbauer operator is

Nl

S (w, 8y) = (w? — 1)28, 5 (w, By) (w? — 1)~
1

2
R

_ — a2 -
= Op(1 — w*)0y T2 R

(2.8)

Discrete symmetries.

S;)a)l\(w, Ow) does not change if we flip the signs of a, A\. Besides, the following operators

coincide with SP (w, 9,,):

w = z S(iai(z, 0z), 2.9a)
w= - (22— 1)5 (22 = 1)8P%(z, 0.) (2> — 1) 73 (2.9b)
z

Transmutation relations.

iz (<D waa - 0 ) s o)

2 1 —w?

2.10a
= S 00 V=0 (g —wos - - )) o
VI a2 (-% — w0y + +>\> 52 (w, D)
2.10b
=8P\ (w, 8,) V1~ w? <—— —wdy+ 1 +>\> , e
VI w? (—g I +>\> 524 (w, D)
2.10
=811 (w, Op) V1 — w? <—__waw 1_aw2+/\>’ o
Ji—w? (-% w0y A) Sh (1, D)
(2.10d)



Symmetries of hypergeometric equation 15
5 1 —w2 bal
wl—=+ Ow — A ) S5 (w, Oy)
2 w ’
5 (2.10e)
bal 1 1—w
= a,)\-l-l(w’ Ow) W <—§—|— " Ow —)\> ,
5 1—w?
w <—— 2 O+ A) Shaw, 8,)
2 w ’
L 1 (2.10f)
= O]ia;\—l(w7 aw)w <_§ + — v 8111 +)‘> )
V1= w? (aw + ﬁ a> S (w, d)
(2.10g)
= o?—?—ll,A(wa Ow) V1 —w? <8w + 1_7ww204> .
V 1— w2 <(9w - 1—Lu}2 Oé> S()]Za)l\(w, 8w)
(2.10h)
— w
- olz)-?-ll,A(wv aw) 1 —w? <8w_ 1 — w? a) :
Factorizations.
— (1 —w?) S (w, du)
1 1—w? 1 1—w? 1
=—w <—+ v aw—A>w<——+ v 8w—|—)\>—/\2—|—)\—|—a2—— (2.11a)
2 w 2 w
11— w? 1 1—w?
= w (ot —L 0 A w (ot 0 —A) — A=At a? - (2.11b)
2 w 2 w
S (w, )
1
=V1-w?( 9y + —2 (a=1) ) V1I—w?| Oy — Y o) —a?ta+ A=
1— w? 1—w? 4
(2.11¢)
_ 2 o w 2 w a2 21
=v1—w (aw T2 (a+1)> V1i—w <8w+ T 2a> o —a+ A T
(2.11d)
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a2
2 1— w? > 1— w?
(o) (Ara—2)—3 (2.110)
1 1
=—V1—-w?|=—wd, ot VI—w? (-2 —wdy— —2 42+
2 1—w? 1—w?
—()\—oz)(/\—oz—Q)—Z (2.116)
1 a+1 o
=—V1—-w? (= —wdy+ + A V1I-—w? | —=—wdy, — -+
2 1—w? 1 —w?
3
—()\+a)()\+a+2)—z (2.11g)
1 a—1 !
=-—V1I-w? {5 —wdy L—w? | —5 —wdy -
w<2 w O, T 2+/\>\/ w< 5 w0, +1—w2 /\>+
—()\—oz)(/\—oz+2)—z (2.11h)
2.3 Confluent operator
In the confluent equation (I3)) we introduce new parameters
a:=c—1, 0:=2a—c
The (standard) confluent operator is
1
Fo.a(w,0p) = wd2 + (1 4+ a —w)dy — 5(1—1—9—1—@). (2.12)
The balanced confluent operator is
f;ﬂ(w, Ow) = w%e_%fg,a(w, aw)e%w_%
w0 a?

Discrete symmetries.
fgﬁ(w, Ow) does not change if we flip the sign of a. Besides, the following operators coincide

with f;ﬁ(w, Ow):

w= z: f;ﬂ(z,az), (2.14a)
w=—z1: F% (2,0.). (2.14D)
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Transmutation relations.

T(wa + —+ )]:bal(w 6)
1 a w (2.15a)
Qlfia—l(wa Ow) ﬁ <w Ow + 3 + 5) ,
1
I waw—— )]:bal(w 8)
x/ﬁ( 2
bal 1 a  w (2.15b)
G—i-l,oe-‘rl(wa aw) ﬁ <w 8111 — E + 5) ,
1 ( bal
—= (w0 + 5 = 5 ) Fnw, 0)
Gb—ai,a—l(wa aw) ﬁ (w 811; + E — 5) ,
L _g_ﬂ bal
\/E(waw 3~ 5 ) Fhaw, ) .
bal 1 o w ( )
= ‘F9—17a+1(w7 Ow) ﬁ (w Ow — 5~ 5) ,
0 w3\ pa
<_w8w 2 2 5)‘7:9 a(w, 8w) (2 . )
bal 0 w 1 . e
9+2a(w 8111) —w@w—§—5_§ ,
<w8w g_'l;) 3>]_—bal(w aw)
2.15f
bal 6 w 1 (2.15f)
- 92a(wa) w0 —5—5 5
Factorizations
_wf_’bal(w a)
- ey 11w\ 1 1,
—(-wo, - =L -v A1 w) L 1
_< W Oy 2 2) <w3w 5 2) 4(9 1) —|—4a, (2.16Db)
Foa(w, d)
_ﬁ<w8“’_ 2 _§>ﬁ(waw+§+§)—§<9—a+l) (2.16¢)
1 a+1l w 1 o w 1
1 a+1 w 1 o w 1
_—M<w8w 5 —5>—w(w8w—§+§) 5(94—&4—1) (2.166)
1 a—1 w 1 a  w 1
:—w<w8w_ 2 §>W(waw+§_§) 5 (@+a-1). (2.16¢f)
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2.4 Hermite operator

In the Hermite equation (I.4]) we prefer to use the parameter

A=a—

D=

The (standard) Hermite operator is
Sx(w, By 1= 02 — 2wy, — 2\ — 1.

The balanced Hermite operator is
S¥l(w,0,) == e” T Sx(w, Dy )e T
=02 —w? 2.

Discrete symmetries. The following operators coincide with S)'\’al(w, Ow):

w = Sbal( ,82),
w= iz: —S8"(z,0.),
w= —z: S (2,0,),
w=—iz : — SEE}\I(Z,(?Z).

Transmutation relations.

(0w +w) Sy (w, D) = S (w, D) (Do +w)
(0w — w) SY¥(w, 9y) =S¥ (w, 0y) (0w — W),

(—w 8y — A —w? = 2) S{(w, 0y) = SP(w, Oy) (—wIw — A —w? — 1),
(W8 — A —w? + 5) SP (w, Oy) = Sy (w, 0y) (wdy — A —w? + 1)

Factorizations

—w?SP(w, 9,) = (W8 — A —3 —w?) (—wdy —A—3 —wz) —(A+1)?
= (~w8y — A+ 3 —w?) (W — A+ 1 —w?) — (A= 1)°

+ +
NN

SYl(w, Oy) = (0 — w) (B +w) — 22 — 1
= (0w +w) (O —w) —2A + 1.

2.5 F) operator

In the ¢F) equation (LI) we prefer to use the parameter
a:=c—1.

The (standard) oFy operator is

Fo(w,0y) = w02 + (o + 1)y, — 1.

(2.17)

(2.20¢)
(2.20d)

(2.21a)
(2.21b)

(2.21c)
(2.21d)

(2.22)

(2.23)
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The balanced oF operator is

]_—gal(w’aw) = w%]:a(waaw)w_%

a2
= wdy =1 = 7. (2.24)

Discrete symmetries. F,(w, dy,) does not change if we flip the sign of a.
Transmutation relations.
1 Q@ 1 Q@
NG (w00 = 5) Famlw, 9u) = F3 (w, 00) == (w 00— 5 ). (2.25a)

ﬁ (w8 + 5) F2w, 0u) = FE% (w, 00) < (w B+

Factorizations.

(2.25b)

fabal(wv aw) =

(waw—o‘;)iw(wawr%)—l (2.26a)
(

waw+a+1>i(waw—9)—1. (2.26b)

o= 5-

3 Basic complex geometry

In this section we describe basic notation for complex geometry.

Throughout the section, £2,€2, Qs are open subsets of C™ or, more generally, complex mani-
folds. We will write C* for the multiplicative group C\{0}.

We will write A(€2) for the set of holomorphic functions on Q. y = (y',...,4") will denote
generic coordinates on . We will write A*(Q2) for the set of nowhere vanishing holomorphic
functions on 2.

3.1 Vector fields

Let hol(€2) denote the Lie algebra of holomorphic vector fields on 2. Every A € hol(Q2) can be
identified with the differential operator

Af(y) = ZA%y)ayif(y), fe A9,

where A' € A(Q),i=1,...,n.
We will denote by A x hol(£2) the Lie algebra of 1st order differential operators on € with
holomorphic coefficents. Such operators can be written as

(A+M)f(y) = Z A'(y)dyi f(y) + M(y)f (y),

where A € hol(Q) and M € A(Q).
Let g be a Lie subalgebra of hol(€2). A linear function g 3 A — M4 € A(Q) satisfying

AIMAQ - AQMAl — M[Al,AQ}
will be called a cocycle for g. Every cocycle together with n € C determines a homomorphism

g2 A— A+nMy € Axhol(Q).
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3.2 Point transformations

The set of biholomorphic maps Q7 — Qo will be denoted Hol(£21,85). We set Hol(Q2) :=
Hol(£2, ).

Let a € Hol(21,2). The transport of functions, vector fields, etc. by the map « will be also
denoted by a. More precisely, for f € A(2) we define af € A(Q2) by

(@f)(y) = fla (y).
For A € hol(Q), a(A) € hol(Qy) is defined as
a(A) == adat.
If m € A*(2), then we have a map ma : A(£21) — A(€Q2) given by
(maf)(y) = m(y)fla~" (y)-
A% % Hol(21, Q) will denote the set of transformations A(;) — A(£2) of this form. Clearly,
A* x Hol(Q) is a group.
Suppose that G is a subgroup of Hol(Q2). A family G 3 a — m, € A*(Q) satistying
May (y)mal (042_1(3/)) = Masay (y)7 Q1,0 € G7 (TS Q7

will be called a cocycle for G. Every cocycle together with 1 € Z determines a homomorphism

G 3 a— mlae A* x Hol(Q). (3.1)

3.3 Local cocycles

Unfortunately, the above definition of a cocycle on a group is too rigid for our purposes. Below
we introduce a weaker version of this concept, which we will be better adapted to our goals.

As before, we assume that G is a subgroup of Hol(2). Besides, we fix Qy open in Q. For
a € G we will write

8 =QpN Oé(Q(]). (32)
Furthermore, we suppose that to every a € G we associate m, € A* (QS‘) satisfying
My (Y) My (a;l(y)) = Moy, (Y), 1,00 € G, y € Qo Naz(Qo) Nazoar (o). (3.3)

Then G — mg will be called a local cocycle for G based on €.
Let p € A*(Q). Then

p(y)
p(e=(y))
is a (trivial) example of a local cocycle based on €2y. Note that if p cannot be extended to a

holomorphic function on the whole €2, then (B.4]) cannot be extended to a true cocycle.
Let n € Z. For any a € G we can define the map

mla e A% x Hol(Q§ ', 08). (3.5)

ma(y) = , yegy (3.4)

For aq, s € G and 1 € Z we have the following weak form of the chain rule:
(m2, 00 0oml a1)(y) = ml,ea, 2001 (y), y € Qo N az(Qo) Nagoay (). (3.6)

It will be convenient have a special notation for such a collection of maps ([B.3): We will write
that

G>a—mlae A" x Hol(Q) (3.7)

loc

is a local representation of G.
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3.4 Half-integer powers of a cocycle

For non-integer exponents the power function is unfortunately multivalued. Because of that,
strictly speaking, n ¢ Z should not be allowed in ([B.I]). However, we will be forced to consider
situations when 7 is a half integer. This can be handled by the following formalism.

The non-identity element of the group Zs acts on C* by C* 3 a +— —a € C*. This defines
C* /Z4, which is the space of pairs of non-zero complex numbers differing by a sign.

Let n € %—i—Z. Then for any a € C*, the power a” can be interpreted as an element in C* /Zs.

Let us restrict our attention to €2 that are simply connected. We then define

AX(Q)/Zy = {(f,—f) + fe A ()}, (3.8)
If fe AX(Q), then f7is well defined as an element of A*(£2)/Zs.

Remark 1. If Q is not simply connected, then on the left hand side of (B8] instead of Q we
need to put the double cover of . Then f7 is still well defined. However we will not use this
construction.

Let us go back to the setup of Subsect. We can then define mg € A*(Q)/Zy. Therefore,
(BI) can be interpreted as a group of transformations of A*(Q)/Zs.
A similar remark applies to Subsect.

3.5 Generalized symmetries

Let C be a linear differential operator on a complex manifold Q. Let o € Hol(£2). We say that
it is a symmetry of C iff

aC = Ca.
Let m#, m” € A*(Q). Define a pair of transformations in A* x Hol(£2):
of :=mfa; o i=ma
We say that a pair (af, ab) is a generalized symmetry of C if
o’C = Cal.
Clearly, the kernel of C is invariant wrt the action of af:

Cf=0 implies Caff=0.

Generalized symmetries of C form a group.
Let A € hol(€2). We say that it is an infinitesimal symmetry of C iff

AC = CA.
Let M¥ M’ € A(). One can also consider a pair of operators in A x hol(Q)
A=A+ MP, A=A+ M.
We say that a pair (A¥, Ab) is a generalized infinitesimal symmetry of C if
AC = CA".
Clearly, the kernel of C is invariant wrt the action of A%:
Cf =0 implies CA*f =0.

Infinitesimal generalized symmetries of C form a Lie algebra.
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4 Line bundles

4.1 Scaling

A holomorphic bundle 7 : V — ) is called a line bundle if its fibers are modelled on C*. V is
equipped with scaling, a homomorphism C* 3 s +— Ay € Hol(V) preserving the fibers, that is,
satisfying wA; = . The vector field obtained by differentiating A is called the wvertical vector
field and denoted V:

ds s=1 N

For v € V, we will often simply write sv instead of Agv. We will also write s = Asév).

Let Yy C YV be open. A section based on )y is a holomorphic map v : Vy — V such that
7oy =id. Every section based on )y determines a trivialization of 7=1()))

Vo x C* 3 (y,8) — sv(y) € 7 (D).

4.2 Vector fields on a line bundle

Let hol®” (V) denote the Lie algebra of scaling invariant vector fields, that is,
hol® (V) := {B € hol(V) : A\;B = BX,, s € C*}.

Let B € hol™” (V). Then B determines a unique element of hol()), which will be denoted B°.
Let v be a section based on ). B® can be transported by v onto v(}p). Thus we obtain two

vector fields on vy())p): B‘ and v(B°).
(Vo)

Proposition 1. For any v € v(Qb), B(v) —v(B®)(v) is parallel to V(v). Therefore, there exists
M}, € A(Yo) such that

B(v(y)) = MWV (1(y) +7(B°) (), vy € No. (4.1)
Moreover,

hol® (V) = B+ M},
is a cocycle. Hence, for any n € C,

hol® (V) 3 B+ B := B® +nM}, € A x hol(Vp) (4.2)
18 a representation of the Lie algebra of scaling invariant vector fields.
Proof. Every B € hol(V)) can be written uniquely as

B =M}V + B, (4.3)

where M}, € A(Vo) and for any s € C* the vector field Yy > y — BY(sy(y)) is tangent to the
section 5v())). Assume now that B € hol®" (V). This means [V, B] = 0, which is equivalent to

(VM})V +[V,B7] =0. (4.4)
We also have

Y(B°)(y) = B (v(y)), (4.5)



Symmetries of hypergeometric equation 23

and we set
M (y) == M}(v(y)), y € Do (4.6)

Restricting (£3) to v(J), using (@A) and setting (L4), we obtain (ZI).
Now let By, By € hol(Vy). Replacing B in ([@3) with [Bi, Bs], we can write

By, By] = M[‘JQLBQ V + By, Bo]". (4.7)

]
If in addition By, By € hol®" (1), then using (@) with B replaced with By and Bs, we obtain
(B B = (BT}, — BN, )V -+ (B, B]). (45)
Comparing ([A8) with (L7]), we obtain
BIM}, — ByM} =M o (4.9)
Restricting (49)) to the section v())), using (L5)) and setting (4.0]), we obtain the cocycle relation

B{Mj, — BSM}, = M,

(B1,Ba]" (4.10)

4.3 Point transformations of a line bundle

Let Hol®" (V) denote the group of scaling invariant biholomorphic maps of V, that is
Hol®" (V) := {a € Hol(V) : a); = A\sa, s € C*}.

Let a € Hol® (V). Then « determines a unique element of Hol()), which will be denoted by
a’.

Let v be a section over ). As in ([B.2), we set yg° = a®(Qo) N Yo. We define mg, € A(yg°)
by

L ’Y(y) a®
O T ORI

Proposition 2.
Hol® (V) 3 ar+» m]),
s a cocycle. Hence for any n € Z

Hol® (V) 3 a s o := (m))"a® € A% Hol () (4.11)

ocC

1s a local representation.

4.4 Homogeneous functions of integer degree

As before, Yy C Y is open. We set Vg := 7~ +())). For n € Z, let A" (VO) denote the space of
holomorphic functions on Vy homogeneous of degree n, that is, functions k € A(Vo) satisfying

k(sv) = s"k(v), v € Vy, seC*. (4.12)
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Clearly, (AI2]) implies
Vk =nk. (4.13)

Let v be a section based on ). We then have an obvious map ¥ : A7(Vy) — A(Dp): for
ke A"(Vy) we set

(Vk) () = k(v(v)), v € . (4.14)

17" is bijective and we can introduce its inverse, denoted ¢7", defined for any f € A())y) by

(6""f)(s7(y)) = s"f(y), s€C*, yeh. (4.15)
Proposition 3. With the notation of {{.2) and ({.11)),

B7":=y7"Bp”" € A x hol()), (4.16)

=PI Mag?m € A x Hol (Y1, Va). (4.17)

4.5 Homogeneous functions of non-integer degree

One can try to generalize the above construction to nn € C\Z. In this case, there is a problem with
the definition of functions homogeneous of degree 7, because the power function is multivalued
on C*. Therefore, we cannot use Vg := 7 (D)). Instead, let us we assume that Vo C V is
open, connected, 7(Vy) = Yy and 71 (y) NV, is simply connected for any y € V. We say that
ke A"(Vy) if k € A(Vp) and

k(sv) = s"k(v), v,sv € Vy, s€ C*. (4.18)

Note that ([ZIS)) is unambiguous, because, for any y € Yy, on 7 1(y) NVy we have a unique
continuation of holomorphic functions. (£I3]) still holds.

Let v be a section based on ) whose image is contained in Vy. ¥7" is still bijective and we
can introduce its inverse, denoted ¢, defined for any f € A(Y) by

(@7"f) (sv(y)) = s"f(y), s€C*, yeo, sv(y) €. (4.19)

With this defnition, (£I7) is still true.

5 Complex Euclidean spaces

5.1 Linear transformations

Let us first consider the vector space C™ without the Euclidean structure.
The affine general linear Lie algebra C™ x gl(C™) can be identified with the subalgebra of
hol(C™) spanned by
0

iy J=1,...,m; y'0

i, 1] =1,...,n.

Similarly, the affine general linear group C" x GL(C"™) is a subgroup of Hol(C").
We will have a special notation for the generator of dilations

n
D(Cn = Z y’((?yz .
i=1
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Obviously,
D(CnB = BD(Cn, B e gl((cn),
Dcna = aDen, « € GL(C™).

Let 0 = (01,...,0,) be a permutation of {1,...,n}. Then

—1 —1
O_(yl’”"yn) = (yol oy )

defines an element of GL(C™). On the level of point transformations it acts as
(cf)W ™) = f™, ).

5.2 Bilinear scalar product

Suppose that

C" sy, (ylr) =Y gijy'a’
'7j

is a nondegenerate symmetric bilinear form on C" called the scalar product. Clearly, if we know
the square of each vector

(yly) = Zgi,jyiyj7
ihj

we have the complete information about the scalar product.
[¢”7] will denote the inverse of [g;;].
The orthogonal Lie algebra of C™, understood as a Lie subalgebra of hol(C™), is defined as

so(C") i= {B € gl(C") : Blyly) = 0}.
For i,j =1,...,n, define
B; ;= Z(gj,kyiayk — 9i kYkOy; )-
k
{B;; : i<j}is a basis of so(C"). Clearly, B; ; = —Bj;, in particular B;; = 0.
Likewise, recall that the orthogonal and the special orthogonal group of C™ is defined as
O(C") = {a € GL(C™) : (aylaz) = (yl2), y,z € C"},
SO(C") :={a € O(C") : detar =1}.
We define

Yyl

n
the Laplacian Agcn := Z g Oy

i,j=1
1 &N .
and the Casimir operator Ccn := 3 Z gl’kgj’lBi,jBkJ.
i,j=1
Clearly,
A(CnB = BA(Cn, BeC"x SO(C”);
A(CnOé = CYA(Cn, aeC"x O(Cn),

CcnB = BCcn, B € so(C");
C(cnOé = aC(C"7 [ RS O((cn)
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Note the identity

1
Acn =i (D?cn +(n—2)Den + Ccn). (5.1)

We will denote by S""(R) the (complex) sphere in C* of squared radius R, that is
S"HR)={yeC" : (yly) = R}.
We also introduce the null quadric

yn—1._ S"_l(O)\{O}. (5.2)

5.3 Split coordinates

The coordinates that we describe in this subsection are particularly convenient for the analysis
of so(C™) and O(C™). Let n =2m if n is even and n = 2m + 1 if n is odd. Set

I {-1,1,...,—m,m}, for even n,
e {0,-1,1,...,—m,m}, for odd n.

The coordinates in C" will be labelled by I, so that the square of y = [y];c;, is given by

m
> 2y, for even n,
(yly) = Z Yiy—i ="' m
icln ye+ Y 2y_y;  for odd n.
i=1

Clearly, g;j = g% = &; ;.
For n = 2m, so(C") has a basis consisting of

Ni = Bi—i = y_l-@yﬂ. - yiﬁyi, j = 1, e,y (53)
Bij = y-i0y; —y—jOy, 1 <|i| <|j| <m.

For n = 2m + 1 we have to add

Boj = y0dy; — Y—jOyes il =1,...,m. (5.5)

The subalgebra of so(C"™) spanned by ([B.3]) is its Cartan algebra. (B4]), and in the odd case
also (B.0), are its root operators:
[Nk, Bij] = (sgn(i)dy, i + sgn(4)dx, 1) Bijs
[Nk, Bo,j] = sgn(j)ox,; Bij-

We have
Acn = Z 0y, Oy_;,
i€ln

Con = % > Bi;B_i_;.

1,5€1n
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5.4 Weyl symmetries

In our applications of the group invariance we will restrict ourselves only to the so-called “Weyl
symmetries”. It will be convenient to consider “Weyl symmetries” contained not only in SO(C"),
but in the whole O(C").

Permutations of Iy, that preserve its decomposition into pairs {—1,1},...,{—m,m} corre-
spond to a subgroup of O(2m) that will be denoted W(C?™). It is isomorphic to ZJ* x S,,. It is
generated by two kinds of transformations: 7;, j = 1,...,m, which swap the elements of the jth
pair, and permutations from .S,,, which permute the pairs. If 0 = (01,...,0.,) € Sy, then

Uf(y—la Yi,-- -5 Y—m, ym) = f(y—017y017 oo 7y_0'7n7y0'7n)’

For j =1,...,n,

ij(y—17y17"'7y—j7yj7"') = f(y—lvylv"'7yj7y—j7"')‘

We have
-1 _ . -1 _ O1i), k9|5 .
JBi,jU = BUi,O'ja TkBi,ka = (—1) 3],k \J\kai’j’
-1 . -1 _ 05
oNjo™" = Ny N7, - = (=1)%*Nj.

Using C?"*+! = CpC?™, we embed W(C?™) in O(C?™+1). We also introduce a transformation
70 € O(C?™ 1) given by

TOf(y07 Y—1,Y1s- -5 Y—m, ym) = f(_y07 Y—1,Y15-- - Y—m, ym) (56)
Clearly, 7o commutes with W(C?™). The group W(C?™*1) is defined as the group generated by
W(C?™) and 79, and is isomorphic to Zg x Z5* x Sp,. We have for i,j = 1,...,m

10807 =—Boj, TBijr ' =Bij, TNy = Nj.

In both even and odd cases W(C") acts as a group of automorphisms of so(C") leaving
invariant the Cartan algebra. To compute the determinant of elements of W(C") it suffices to
remember that deto =1 for o € 5, and det 7; = —1.

6 Conformal invariance

The main subject of this section is the description of generalized (infinitesimal) symmetries of
the Laplace equation

Acnf = 0. (6.1)

We will see in particular that the Lie algebra of generalized symmetries is so(C"*2). We will see
that it is convenient to start the description of these symmetries from the space C"*2, which we
will call the extended space. The space C™ will be embedded inside C"*? as a section of the null
quadric. We will see how the Laplacian Acn+2 reduces to the Laplacian Acn.

6.1 Conformal invariance of Riemannian manifolds

Suppose that a (complex) manifold € is equipped with a nondegenerate holomorphic covariant
2-tensor field g, called the (complex) metric tensor. We will say that (,g) is a (complex)
Riemannian space.
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Thus if A, B € hol(Q2), then we have a holomorphic function

Q3 y— g(A B)(y) = g:,;()A (1) B (y)

called the scalar product.
Let o € Hol(€2). We can transport g by a:

a(9)(4, B) == g(a”'(4),a”(B)).

We say that « is conformal if there exists m, € A*(£2) such that
a(g) = mag.

Let Cf(€2) denote the group of conformal maps on (€2, ¢g). One can check that
Cf(Q) x 22 (a,y) = ma(y) € AX(Q)

is a cocycle.
Let C € hol(Q2). The Lie derivative of g in the direction of C' is denoted C'g and defined by

(C9)(A, B) := C(9(A, B)) — g([C, A], B) — g(A, [C, B]).

We say that C is infinitesimally conformal if there exists M¢o € A(€2) such that
Cg= Mcyg.

Let cf(Q2) denote the Lie algebra of infinitesimally conformal fields. One can check that
cf(Q) x Q> (C,y) — Mc(y) € A(Q)

is a cocycle.
We say that a manifold €2 has a conformal structure, if it is covered by a family of open sets
€2; equipped with bilinear scalar products g; such that on £2; N Q; we have

9i = Pi,j9;5

for some p; ; € A*(Q; N §2;). Clearly, a Riemannian structure on € is not necessary to define
Cf(€2) and cf(2)—we need only a conformal structure on €.

6.2 Null quadric

Consider the extended space, that is, the complex Euclidean space C"*2. The central role will
be played by the representations

so(C""%) 5 B +— B € hol(C""?), (6.2)
O(C™?) 5 a v a € Hol(C™*?);

and the symmetry

BAcni2 = Acni2B, B € so(C"?), (6.4)
aAgniz = Agniza,  « € O(C™2).

As in (52), we introduce

Vi={zcC"™ : 240, (2|z) =0}
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called the null quadric.
Multiplication by s € C* preserves V. Therefore, we can define the projective quadric

Y :=V/C*={C*z : zeV}.

It is an n-dimensional complex manifold. Let 7 : )V — ) denote the natural projection. Clearly,
V is a complex line bundle over ). As in Subsect. [T], the multiplication by s will be often
denoted by C* 3 s +— A; € Hol(V) and the corresponding vertical vector field by V' € hol(V).

We can restrict (6.2) and (6.3]) to V and note that they are scaling invariant. Thus, we have
natural embeddings

s0(C"2) 5 B+ B € hol®" (V), (6.6)

O(C"?) 3 a — a € Hol® (V). (6.7)
(Recall that hol©” (V), resp. Hol®" (V) denote the scaling invariant holomorphic vector fields,
resp. bijections). Therefore, (6.6 and (€.7) induce their actions on Y:

so(C"?) 5 B+ B® € hol(Y), (6.8)

O(C"?) 5 a — a® € Hol(Y).

6.3 Conformal invariance of projective quadric

Let g denote the restriction of the metric tensor on C"*2 to V. Note that the null space of g is
1-dimensional and is spanned by the vertical field V. In particular,

g(V,;A) =0, A € hol(V). (6.10)
Moreover, the scaling scales the metric tensor:

As(g) = s%g, s€CX, (6.11)

Vg =2g. (6.12)

Using (EI0)), we can extend (GIT]) to multiplication by nonconstant functions:
Proposition 4. Let U be open in Y, m € A*(U). Define Ap, € Hol(x=H(U)) by
An(2) i=m(7(2)z, ze€n Y U).
Then Amg = mZ2g. In particular, for any section 7y, the restriction Ay, : y(U) — m o wy(U) is
conformal.

Let U be open in ). Let v be a section over U. The tensor g restricted to v(U) is nondegen-
erate. We can transport it by 4! onto ¢. This way we endow U with a metric tensor.

For ¢ = 1,2, let U; be two open subsets of ) equipped with sections ;. Let g; be the
corresponding complex Riemannian tensors. Obviously, there exists pa; € A* (U NUz) such
that

72(y) = p2aW)n(y), y el Nty

Therefore, by Prop. @],

g2 = (% '")g1 = p3a01.

Cover Y with open subsets U;, i = 1,..., N, equipped with sections ;. Let g; be the corre-
sponding Riemannian tensors on ¢;. Then on U; NU; we have

g; = Piigi, pji € A (U; NU;).

This way we endow ) with a conformal structure. It is easy to see that it does not depend on
the choice of the covering and sections.
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Proposition 5. (6.8) is infinitesimally conformal and [€23) is conformal.

Proof. Let v be a section over U C ).
Let B € so(C™2). By Prop. [Il there exists M}, € A(U) such that

)= (530,

Now Bg =0 and Vg = 2g. Hence
V(B®%)g = —2Mpg.

Therefore, «(B?) is infinitesimally conformal on v(U/). Hence B is infinitesimally conformal on
Uu.

Let a € O(C™2). Clearly, 7, := aoyo (a®)~! is a section based on a®(U). Therefore, there
exists m € A* (a®(U) NU) such that

(W) =my)aly), vyea"U)NU. (6.13)
Define now 8 : 71 (U N (a®) 1 (U)) — 7~ (a®(U) NU)

B(z) := m(ﬂ(z))a(z).
Substituting z = v(y) and using (6.13) we obtain

B(y(y) = my)a(v(y)) =v(a®(y)).

Thus 8 maps v(UN(a®) " (U)) onto v(a®(U)NU). Let 37 denote this restriction of 3. By Prop.
M, 57 is conformal. Clearly, it satisfies the identity
B =~ay 7t

Hence a° is conformal. [ |

6.4 Conformal invariance of complex Euclidean space
Fix a vector e € V, and set
Ve:={z€V : (zle) #0}. (6.14)

Clearly, V, is invariant with respect to the action of C* and ), := V,/C* is an open dense subset
of . We have a natural section of the line bundle V — ) based on ),:

o z
e e- .1
YeoC zr—><z|e>€V (6.15)

Next choose a vector d € V such that (e|d) = 1. Clearly, {e,d}"* is n-dimensional. It will be
convenient further on to choose coordinates (z;)iez, in {e,d}*. Each z € C"*2 can be written as

(2i)ier,
z = Z—m—1 = (Zi)ieln + zom—1€ + Zm41d,
Zm+1

where (2;)ier, € {e,d}t ~C", (z_m_1, Zms1) € C2.
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Using y = (y;)ic1, as generic variables in C", and noting that z,,11 = (z|e), we see that ),
can be identified with C” through the map

y
C'oymC| —Wu | ey, (6.16)
1

With this identification, the section (GI5]) can be written as

y
C'oym | U | ey, (6.17)

1

[~

Remark 2. The above discussion shows that ), has a natural structure of the affine n-dimen-
sional Buclidean space. The choice of d € V, (which does not influence the definition of V)
determines the origin of coordinates in ).

0
The stabilizer of | 1 | = e € V inside O(C"*?) is isomorphic to C" x O(C"), and is given by
0
1 0 w g 0 0
—w? 1 —L(ww) 01 0}, peOC"), weC™
0 0 1 0 0 1
The stabilizer of C*e € Y inside O(C™*?) is isomorphic to C" x (O(C™) x O(C?)) and is given
by
1 0 w g 0 0
—w? 1 —L(ww) 0 s 0 |, BeOC"), weC" seC”.
0 0 1 00 s°!

6.5 Laplacian on bundle of homogeneous functions

Let Vo be an open subset of V and n € C. We define A”(V) to be the set of holomorphic
functions on Vy homogeneous of degree 1. (See Subsecs 4] and for a discussion).

Clearly, B € so(C"*2) preserves A(Vy). We will denote by B*" the restriction of B € hol())
to An(V())

Clearly, € O(C™*?) maps A"(Vy) onto A7(a(Vy)). We will denote by a®" the restriction of
a to A"(Vy). Thus we have representations

so(C"?) > B+ B, (6.18)
O(C™?) 3 a = a®". (6.19)

We find the following theorem curious because it allows in some situations to restrict a second
order differential operator to a submanifold.

Theorem 1. Let Q C C™"*2 be open. Let K € A(Q) be homogeneous of degree 2_7" such that

K‘ —0
YN

Then
Cots ynQ
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Proof. We will give two proofs. Each of the proofs will provide us with a formula, which will
be useful later on.

Method I. We use the decomposition C"*2 = C" @ C2. As usual, we will denote by (z|z) the
square of z € C""2, by Dgni2 the generator of dilations, by Cente the Casimir operator and by
Agcnt2 the Laplacian on C"*2. We will also need the corresponding objects on C™: (z|2)cn, Den,
Cen, and Acn. We will write

(z|2)m+1 = 22-m-12ma1,
Am—l—l =20, azm+1a
Dm+1 = Z—m—laz,m,1 + zm+18zm+1a

—m—1

Nm+1 = Z—m—laz,m,1 - Zm+1azm+1-
Thus we have
(z|z) = (z]2)cn + (2]2)m+1,

Acntz = Acn + A,
D(Cn+2 = Dcn + Dm+1.

The following identity is a consequence of (5.1)):

(z]2)cn Agntz = (z]2)en Acn + ((2]2) — (2|2)mt1) Amta
2—n\2 2—n\2
:CC"+<DC”_ 2 ) _< 2 )
+ (z|2) Amy1 — Drzn-l-l + Ng@ﬂ

= (2]2) Apg1 + (D(Cn 2 ; no_ Dm+1) (D(Cn+2 2 ; n)

2—n\2
—(757) +Cen + N2 (6.20)

(2_7")2 is a scalar. Ccn and N%_H are polynomials in elements of so(C"*2). V is tangent to

so(C"*2). Therefore, all operators in the last line of (G20) can be restricted to V. The operator

2—n
Dgn+2 — 25 vanishes on functions in A2 (). The operator (z|z)Ap,41 is zero when restricted
to V.

Method II. We write C"*? = C"*! @ C with the distinguished variable denoted by t. We
assume that the square of z € C"*? is given by

(z|2) = (2|2)cnr1 + 12
We will use various operators on C"*': Dgnt1, Cons1, and Agnt1. We have

D(Cn+2 == D(CnJrl + tat,
A(Cn+2 = A(cn+1 + 8152
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We have the following identity

<Z|Z>(cn+1 A(cn+2 = <Z|Z>(Cn+1A(cn+1 + <Z|Z>at2 — t28t2

n—1\2 n—1\2
:C(Cn+1 + (D(Cn+1 + > —< >

2 2
1\2 1\2
%= (10-5) + (3)
)0 - (10— 3) + (5
n 2—n
= (2]2)02 + (DW +5- t@t) (DCW -5 )
n—2\n
— — ntl. 21
< 2 ) p + e (6.21)
Then we argue similarly as in Method 1. |
Using Theorem [ we can restrict the Laplacian to functions in A7(Vy) for n = Q_T" More

precisely, we introduce the following definition.
Let k € A2 (Vo). Let © be any open subset of C"*2 such that Vo = QN V, let K € A() be

homogeneous of degree 2_7" and

k=K

We can always find such Q and K). Note that Agni2 K is homogeneous of degree =22, We set
( y C g g >

A%n+2]€ = A(Cn+2K .
Vo

By Theorem [l the above definition does not depend on the choice of 2 and K and defines a
map

Coia t AT (V) = AT (V). (6.22)

Remark 3. Let us explain the notation Ag., ., for the reduced Laplacian. We do not put the
degree of homogeneity n = 2_7" as a superscript, because it is fixed by Thm [ unlike in the
case of the representations of so(C"*2) and O(C"*2). The subscript C"*2 is a little confusing,
because Ag,, ., acts on functions of only n+ 1 variables, and after fixing a section on functions of
n variables. However, the intitial operator is clearly Agn+2. Finally, the diamond ¢ is a symbol

that we have already used in the context of line bundles.

Restricting (6.4]) and (G.5) to A%(VO) we obtain

n

B 2" Aluys = A% B 2", B € so(C"2), (6.23)
T Al = Alna® T, a € O(CMH), (6.24)

a®

The following proposition is the consequence of the proof of Thm [
Proposition 6. (1) In the notation of Method I of the proof of Thm [, we have
n—2

2
(2]2) cn A% = ( ) +Cen + N2, (6.25)

(2) In the notation of Method II of the proof of Thm[l, we have

-2
<Z‘Z>Cn+1 A%n+2 = — (n 5 >g + C(cn+1. (6.26)

Proof. (629 follows from ([620). ([€26]) follows from (G21]). [ |
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6.6 Conformal invariance of Laplacian for a general section

The operator A%n 4o IS quite abstract. In this subsection we describe how to make it more
explicit.
Consider an open set My in V. Let Vo := 7 1())) and n € %Z. Choose a section v of the line

bundle V — Y based on ). As in ([EI5) and ([{I4]), we can introduce 77 : A7(Vy) — A()
and its left inverse ¢7". We set

B = I BONGTN = MBI B € so(CM2), (6.27)
QM = IO NGV = T’ € O(CH2). (6.28)

As explained in Props [l 2 and Bl we obtain a representation and a local representation

so(C™""%) 5 B +— B €A x hol(Vy), (6.29)
O(C"™) 5 a s o™ € A* % Hol(Vp). (6.30)

We also define

—2—n 2—n 2—n 2—n
Ay =0 7 Alpia? 2 =177 Agnizg) 7. (6.31)

We have the identities

37’722771 A(?:n+2 = A(’(y:n+2B%2an7 B e SO(C”+2), (6-32)
04%7227n A%n+2 — A%rwﬂam%Tn) o€ O(Cn+2) (633)

Thus we have shown that (infinitesimal) conformal transformations of the n-dimensional man-
ifold )y lead to generalized (infinitesimal) symmetries of A/, ,. Even if (in a somewhat different
form) this is a known fact, it seems that our derivation is new and of interest. In particular, it
shows that a large class of second order n-dimensional operators together with their generalized
symmetries directly come from the (n + 2)-dimensional Laplacian with its true symmetries.

6.7 Conformal invariance of Laplacian on C"

Let us describe more closely the above construction in the case of the section ([G.I5]). In this case,
instead of v we will write “fl”, for flat. We identify of ), with C". We can restrict (6.8) to an
action of so(C"*2) on Y., and (63) to a local action of O(C"*2) on V.. Using (E2) and (@I,
we obtain

so(C"*?) 5 B — B € hol(C"), (6.34)
O(C"2) 53 o = aft € Hol(C"). (6.35)

We introduce ¢ : A7(V,) — A(C") and its left inverse ¢1". ([E29) and ([G30) can be

rewritten as

so(C"*2) 3 B+ B € A x hol(C™), (6.36)
O(C"2) 3 a — ol € AX % Hol(C™). (6.37)

The (n + 2)-dimensional Laplacian reduced to the flat section is just the usual n-dimensional
Laplacian:

A(ﬂ:n+2 - A(Cn.
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The symmetries (6.32) and ([G33]) become the generalized symmetries of the usual Laplacian:

—2-n 2—n

BY =2 Acn = Acn B2, B € 50(C™H2),
—2—n 2—n

aﬂ’ 2 Acn = A(cnaﬂ’ 2, o € O(Cn+2)

Thus C™*? serves to describe in a simple way conformal symmetries of C”. When used in this
fashion, the space C"*2 will be sometimes called the extended space.

Below we sum up information about conformal symmetries on the level of the extended space
C"*2 and the space C". We will use the split coordinates, that is, z € C"*2 and y € C" have
the square

(z]z) = Z Z_j%j,

,YEI7L+2

Wly) = v-ju;-

J€In

As a rule, if a given operator does not depend on 7, we will omit 7.
Cartan algebra of so(C""2)

Cartan operators of so(C"), i =1,...,m

N; = 20, — 20,
N =y-i0y_, — yidy,.

Generator of dilations:

Nm+1 - 2—m—1az7m71 - Zm+1azm+1a

ﬂ7
Nm—?—l = E yiayl. -—n = D(cn —n
Zeln

Root operators
Roots of so(C"), |i| < |j],i,] € In:

B,’J’ = z_i(‘)zj — z_jﬁzi,
Bif}j = Y—iOy; — YOy,

Generators of translations, j € I,,:

B—m—l,j = Zm-i—lazj- - Z—jaz,m,u

fi _
B—m—l,j — 8yj’
Generators of special conformal transformations, j € I,,:
Bpi1j = 2-m-10z; — 20,1,

fl 1
BmZ—l g §<y’y>3yj Y- Z YiOy, — ny—;-
i€l

Weyl symmetries.

We will write K for a function on C"*2 and f for a function on C™.
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Reflection:
TOI((ZOy---) = }((—-Zo,...),
T(?f(yOw--) = f(—vo,...)-

Flips, j=1,...,m:

TR (205,25, 21, Zm) = K (o 25,25, o 21, Zmt 1),

Tff()@/—ﬁym):f(yj)y—]))

Inversion:

T 1K (o 2ome1, Zm1) = K (oo Zmg 1, 2-m1),

) = (-4 (- 2.

Permutations, o € S,,:

OK (.o 224,25y 2ome1,2m1) = K (oo 20,5 205 s Zome1, Zmat 1),

Uﬂf("'7y—j7yj7"') :f("'y—ajvyojv"')‘

Special conformal transformations, j =1,...,m:
J(j,m+1)K(Z—17 Rly«veyBejy Zgs e sZ—m—1, zm—l—l) =
K(Z—la Zlye s Zem—152m+1y- - - ,Z_j,Zj),
fl,g one(Y-1 U (yly) 1
O-(j’m_i_l)f(y—l)yl)"' 7y—j7yj7"') - yjf<zv y_j’”.’_ 22/) ’y_jj“‘ .
Laplacian
A((:n+2 = Z azla i
1€l 42
A((ﬁ:”+2 = Z 891'8971' = Acn.
i€l
Computations

Let us describe how to derive these formulas in an easy way.

Consider C"™! x C* (defined by 2,11 # 0), which is an open dense subset of C"*2. Clearly,
YV, is contained in C"*1 x C* .

We will write A7(C"*1 x C*) for the space of functions homogeneous of degree  on C**1 x C*.

Instead of using the maps ¢ and 7, as in (@IH) and @I4), we will prefer 17 : A(C") —
AT(C™HL % CX) and U7 0 AT(CPH x CX) — A(C™) defined below.

For K € A7(C"! x C*), we define UK € A(C") by

(T (y) = K<y —@, 1), y € C™.

Let f € A(C™). Then there exists a unique function in A" ((C"‘|r1 X (CX) that extends f and
does not depend on z_,,_1. It is given by

z
(q)ﬁ’"f)(...,zm,z_m_l,zm+1) = zfnﬂf(..., Ul >
Zm41
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U7 g a left inverse of &7

glngplhn = iq.
Clearly,
ofng| =gy,
Ve

TN = <K

W)

Moreover, functions in A7(C"*1 x C*) restricted to V. are in A”(V,). Therefore,

B — winpein B e so(C"?),
ot = wlnaeln o e O(C™H2).
Note also that

AL = UMACL 2@ = Aca.

In practice, the above idea can be implemented by the following change of coordinates on

(Cn-i-2.
Zi .
Yi = , 1 E In7
Zm+1
R := E ZiZ_g,
’ieln+2
D= Zm+1-

The inverse transformation is

Zi = PYi, (S [nu
1/R
Z—m—1 = §<— -p Z yiy—i>a
p i€ly,
Zm4+1 =P

The derivatives are equal to

0., = z;;layi +22_;0R, i € I,
8Z7m71 = 2zm+18R7

0

i€ln

_ —2
Zm41 ap ~ Zmtl E : Ziayi + 22_m-10R.

Note that these coordinates are defined on C"*! x C*. V), is given by the condition R = 0.

The section ([GI5) (see also (6.I7) is given by p = 1.

For a function y — f(y) we have

(@ £)(y, R.p) = p" f(y).

For a function (y, R, p) — K(y, R,p) we have

(K (y) = K (y,0,1).

Note also that on A7(C"*! x C*) we have

POy = 1.
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6.8 Dimension n =1

Let us illustrate the constructions of this section by describing the projective quadric in the
lowest dimensions, where everything is very explicit. We start with dimension n = 1.

The 1-dimensional projective quadric is isomorphic to the Riemann sphere or, what is the
same, the 1-dimensional projective complex space:

V!~ Cu{x} = PC.
Indeed, consider C? with the scalar product
(z|2) = 22 +22_1241.

We can cover Y! with two maps:
Casn—>¢+(s):<sl )(CXEJ}1
_ 1 X 1
Cosm—o_(s)= <S,—§S ,1>(C ey.

The transition map is

6710 (s) = —=.

S

The Lie algebra so(C?) is spanned by
Bo,1, Bo,—1, N1,
with the commutation relations

[Bo.1,Bo,—1] = N,
[N1, Bo1] = Bo.1,
[N1,Bo,—1] = —Bo,—1.

The Casimir operator is
C=2By1Bo—1— Nf — Ny
= 2BO,—1BO,1 — N12 + Nj.

6.9 Dimension n =2

The 2-dimensional projective quadric is isomorphic to the product of two Riemann spheres:
Y? ~ plC x P'C.

Indeed, consider C* with the scalar product
(z|z) = 221241 + 22_9249.

We can cover V? with four maps:

(Cx(CB(t,s)l—)(bH(t,s):( ts,1,t,5)C* € V2,
CxC>3(ts)— d_1(t,s) = (1,—ts,s,t)C* € Y?,
CxC>3(ts) l—>¢+2(t,8) = (—s,—t,1,ts)C* € V2,
Cx C 3 (t,s) = d_o(t,s) = (—t,—s,—ts,1)C* € V2.
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Here are the transition maps:
¢:%¢+1(t7 3) = ¢:%¢+2(t7 S) = (_t_la _3_1)7
6730-1(t5) = S1304(t ) = (=17 s),
$Z3011(t,8) = la0-1(t,s) = (t,—s7").
The Lie algebra so(C?) is spanned by

N1, Na, Bia, B1—2, B_12, B_1,-2.
Its Casimir operator is
C=2B19B_1_2+2B1_2B_15— N — N3 +2N;.

As is well known, so(C*) decomposes into the direct sum so, (C?)@so_ (C?) of two commuting
Lie algebras isomorphic to so(C?) spanned by:

Bia, B.1 2, Ny + Ny and By _2, B_12, N1 — Na.

with the commutation relations

[Bi2,B_1,—2] = N1 + Na, [Bi,—2,B_12] = N1 — Na,
[N1 4+ Na, Bi o] = 2B 2, [N1 — Na, By 9] = 2By _», (6.39)
[N1 + No, By o] = —2B_1 >, [N1 — N2, B_15] = —2B_15.
The corresponding Casimir operators are
1
Cy = 231723_17_2 — §(N1 + N2)2 — N1 — Ny (6.40)
1
=2B_1,_9B12— §(N1 + N2)2 + Ny + No, (6.41)
1
C_ = 2B17_QB_172 — §(N1 — N2)2 — N1+ Ny (642)
1
= 2B_1’QBL_2 — §(N1 — N2)2 + N1 — No. (643)
Thus
C=Cy+C_.

In the enveloping algebra of so(C?%) the operators C; and C_ are distinct. They satisfy
a(C_) = Cy for a € O(CH\SO(CH), for istance for 7, i = 1,2.

However, inside the associative algebra of differential operators on C* we have the identity
Bi1oB_1,_9— B1,—2B_12= N1 Ny + Na,

which implies

Ci=C_
inside this algebra. Therefore, represented in the algebra of differential operators we have
C=4B12B_1 5 — (Ny + Na)? — 2Ny — 2N, (6.44a)
=4B_1 _9B1o — (N7 + No)* + 2Ny + 2N, (6.44b)
= 4By 9B 19— (N — N2)? — 2Ny + 2N, (6.44c)
= 4B _19By,_9 — (N1 — No)? + 2Ny — 2Ns. (6.44d)
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7 s0(C% and the hypergeometric equation

In this section we derive the hypergeometric operator and its so(C%) symmetries. We will consider
the following levels:

(1) Extended space C% and the Laplacian Ags.

(2) Reduction to the so-called spherical section and the corresponding Laplace-Beltrami oper-
ator.

(3) Depending on the choice of coordinates, separation of variables leads to the balanced or
standard hypergeometric operator.

Alternatively, one can use a different derivation:

(2)” Reduction to C* and Ags with help of the flat section.

(3)” With appropriate coordinates, separation of variables leads to the balanced or standard
hypergeometric operator.

A separate subsection is devoted to factorizations of the hypergeometric operator. We will
see that they are closely related to so(C*) subalgebras of so(C°) and their Casimir operators.

7.1 Extended space C°

We consider C% with the coordinates

21,21,%-2,22,2-3, 73 (7.1)
and the scalar product given by

(z]z) = 2z_121 + 22_929 + 22_323. (7.2)
Lie algebra so(C%). Cartan algebra:

N =2_,0, , — 20, 1=123.
Root operators:

B;j=2_,0; —2_j0;, 1<]i| <|j| <3.
Weyl symmetries. Transpositions:

o2 K(2-1,21,2-2,20,2-3,23) = K(2-2, 22,21, 21,23, 23),

o3y K(2-1,21,2-2, 20,23, 23) = K(2-3,23,2-2, 22,21, 21),

=

023K (2-1,21,2-2, 20, 2-3,23) = K(2-1,21, 23, 23, 22, 22)-
Cycles:

o) K (221,21, 2-2,22,2-3,23) = K(2-3, 23,21, 21, 22, 22),

oz K (221,21, 2-2,22,2-3,23) = K(2_2, 20,23, 23,21, 21)-
Flips:

(zla Z—1y2-2,%2,%-3, Z3)7
(z—la Z1,722,2-2,2-3, Z3)7

(2—1, Z1,%-2,%2,%3, 2—3).

1K (2-1,21,2-2,22,2-3,23) =

ToK (2-1,21,2-2,22,2-3,23) =

=R R

3K (2-1,21,2-2, 22, 2-3, 23) =
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Laplacian.
Ace =20, 05 +20; ,0;, +20, ,0.,. (7.3)
Symmetries
NiAcs = AcsN;, 1< <3; (7.4a)
B; jAcs = AceB;j, 1< i < |j] < 3; (7.4b)
0Acs = Aceo, o € Ss; (7.4c)
TiAce = Acetj, 1<7<3. (7.4d)

7.2 Spherical section
In this subsection we consider the section of the quadric
Vo= {z ¢ CO : 22 121 4+ 22929 + 22 323 = 0}
given by equations
4=2(z_121 + z_929) = —2232_3.

We will call it the spherical section, because it coincides with S3(4) x S*(—4). The superscript
used for this section will be “sph” for spherical.

We will see that this section is well suited to obtain the hypergeometric equation, both in the
balanced and standard form, because its conformal factor is trivially equal to 1.

As a preparation for a discussion of this section, let us choose the coordinates

Z_1%
r= \/2 (2_121 + z—2z2) ’ pP=v 2z32_3, , w = — > (75&)

Z_121 t+ 2222

21 Z_9 Z_3
Uy = _—, Ug = _—, us = —_— . (7.5b)
21 V 22 z3

The null quadric in these coordinates is given by 72 + p? = 0. The generator of dilations is

Dce =10, +p0,.

The spherical section is given by the condition % = 4.
Let us now describe in detail various objects in the spherical section.
Lie algebra so(C%). Cartan operators:

NP — 0, (7.6)
NP = 0y 8, (7.7)
NP — 438, . (7.8)
Roots:
Nsph Nsph
Bsph _ 1— ! 2 .
2,1 Uiu2 'LU( 'LU) <aw 2w + 2(1 _ 'UJ) ) (7 9&)
1 Nsph Nsph
B = —/w(l - 0 L 2 7.9b
271 g v w) < w 2w 2(1—w) )’ (7.9)
Nsph Nsph
B = 22 w1 —w) | 0y + L 2 7.9
2,—1 uy w( w) w + 2w 2(1 . ’UJ) ) ( C)
Nsph Nsph
Bsph _ uy 1_ _ -1 2 .9d
—2.1 U9 ?,U( ?,U) aw 2w 2(1 _ 'UJ) ) (7 9 )



J. Derezinski and P. Majewski
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sph
nglh = —U1U3\/E (T] + 2( w) 8w — ngh>
sph,p i 1 2 sph
—-3,—1 9 uLus w <T] + ( ) )
h 1 u3 Sph h
sph, S
iu
S_p?fjvln - 5—1 w (77 +2(1 —w) Oy Sph)
u3

sphyp _ 1 stph sph
33’2 = —UQU,g\/l — 1 — 2w Oy — N3

b i1 NP b
Bip37f2—2uu T—w{n=2wdy+ +NSp
2U3

sph
N2

sp 1 U,3 Nsph NS h
By = \/1 - = 2w+ 7 2_ — N3P
+ Nsph)

Bs_pgjé"_ l@\ﬂ— ( 2w Dy —

Weyl symmetries. Transpositions:
012 777f(,u) u17u27u3) f(l_w7u27u17u3)7

. 1
013 777f(w u17u27u3) (lﬁ)nf <E,u3,U2,U1> )
. w
O’é@hﬁf(u),ul,ug,ug) :(1\/ 1-— w)nf <w —

1
Cycles:

1

o f (w,un, up, ug) =(iVI—w)"f (1 =

h . 1
oony f(w,ur, ug, ug) = (1\/6)77]" (1 — E,U2,U3,U1> .

Flips:

h
Tlsp ’nf(w7U17UQ7U3) -

1
f <w7 _7u27u3> )
Uy

1

Tsph’nf(w7u17u27u3) - f <w7u17 u_27u3> )
sph,7 1
T3 f(w7u17u27u3) = f w7u17u27u_3 .
The Laplacian in coordinates ((Z.9) is
4 /1

Acs= — (Z ((r )2 +2(r o) )?

u1 au1) (u1 uy)?

7u17u37u2> .

,U3,U1,U2> )
w

r? (us Ous)

+8ww(1—w)8w—( —

w41 —w)

4

)

(7.9¢)

(7.9£)

(7.10a)

(7.10D)

(7.10¢)

(7.10d)

(7.10e)

(7.10f)

(7.10g)

(7.10h)

(7.11)
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Using
(r9,)% 4+ 2r 0, + ;—i(papﬁ — (r(‘),, + ;—z(p(‘)p) + 1> (r@r +p0p, + 1> -1 712)
(5% +1) (8 (ror +1),
r2+p?>=0and r0, +pd, = —1, we obtain
o i _ - (Ul au1)2 o (’LL2 8“2)2 (’LL3 8“3)2 _1
= 3 O w(1 —w) Oy " 00— w) + 1 1) (7.13)

To convert AZq into the reduced Laplacian Azf%h, we simply remove the prefactor %,

obtaining the Laplace-Beltrami operator on 83(4) x S'(—4):

NSph)2 (NSPh)2 (NSph)2 1
AR = 9y w(l — w)d, — 1) S 7.14
co = Qwwll—w)do == =gy T 4 (7.14)
Generalized symmetries:
NPRASRE = AR NPPR, 1<i<3; (7.15)
h,—3 A sph h ppsph,—1 , . .
B A = A BT, il <il <3 (7.16)
O_sph,—3AZ:%h _ ATC%hJSph’_l, o € Ss; (7.17)
h h h h .
T;p AT = AT T;p , 1<j<3. (7.18)
7.3 Balanced hypergeometric operator
Using the spherical section we make an ansatz
Flw, u, ug, uz) = u§ubul Fw). (7.19)
Clearly,
NP = af,
N3P f = B,
N5Pf = it
Therefore, on functions of the form ([719]), Afc%h, that is (C.I4]), coincides with the balanced hyper-

geometric operator (23). The generalized symmetries for the roots (ZI6), for the permutations
([TI7) and for the flips (TI8) coincide with the transmutation relations, with the discrete symme-

tries, and with the sign changes of «, 3, i of the balanced hypergeometric equation, respectively;
see Subsec. 211

7.4 Standard hypergeometric operator

Alternatively, we can slightly change the coordinates (.9)), replacing uq, ug with

Uy = Al = u1\/w, Uy = £ =usVv1 — w. (7.20)
\Z-121 + 2_2%9 VZ—121 + Z—92%9

As compared with the previous coordinates, we need to replace 0, with

1
2w

sph 1

1, + NSPB i 21
O+ N o TN S (7.21)
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Let us only quote the results for the Cartan operators

NPR = 185, (7.22)
NP = G305, (7.23)
NP — w30, (7.24)

and the reduced Laplacian;

AR = w(1 —w)d2 + (1 + NP1 —w) — (1 + N3"")w)

1 1
+ g (VEP)? = (VP NP 1), (7.25)

If we now make the ansatz
fw, i, g, ug) = a5 ul F(w), (7.26)

then clearly,

NP f = af,
NP f = B,
NP f = pf.

It is easy to see that on functions of the form (Z.28]), Afc%h coincides with the standard hyperge-
ometric operator (2.2)). When (Z.2I)) is applied to root operators and Weyl symmetries, we also
obtain the symmetries of the standard hypergeometric operator described in [De].

7.5 Factorizations

In the Lie algebra so(C®) represented in (1)) we have 3 distinguished Lie subalgebras isomorphic
to so(C*): in an obvious notation,

8012((:4), 8013((@4), 8023((:4)-

By (6:44]), the corresponding Casimir operators are

Ci2 =4B12B_1 9 — (N1 + N3)? — 2Ny — 2N, (7.27a)
=4B_1 _3B12 — (N1 + Na)*> + 2Ny + 2N, (7.27b)
=4B) _9B_15 — (N — No)* — 2Ny + 2N, (7.27¢)
=4B_19B1_9 — (N1 — No)? + 2Ny — 2No; (7.27d)

Ci3 =4B13B_1 _3— (N1 + N3)? — 2N; — 23 (7.27¢)
=4B_; _3B13— (Ny + N3)* 4+ 2N; +2N; (7.27f)
=4By _3B_13— (N1 — N2)® — 2Ny +2N3 (7.27g)
= 4B _13B1_3— (N1 — N3)* + 2Ny — 2N3; (7.27h)

Co3 =4Bg3B_5 3 — (Ny+ N3)? — 2Ny — 2Ny (7.271)
=4B_5_3By3 — (No + N3)* 4+ 2Ny + 2N3 (7.27j)
= 4By 3B 93 — (No — No)*> — 2N, 4 2N (7.27Kk)
=4B_53Bs 3 — (No — N3)? + 2Ny — 2N3. (7.271)
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After the reduction described in (6.20]), we obtain the identities

22 121 + 22 929) A% = —1 4+ Cy ' 4 (Ng™H)2, 7.28a

3
22121 + 22 323) A% = —1 4+ C35 ' 4+ (Ng™H)2, 7.28b

2
(22_922 + 22_323)A% = —1 4+ Cg3 " + (N H2. (7.28¢)

If we use the spherical section, (Z.28al), (Z.28D), (Z.28d) become

AARN = —1 4+ (NP2, (7.29a)
—4(1 - )Afcl;h — 14T (NP2 (7.29b)
—AwAR = 1+ T (NPT, (7.29¢)

They yield the factorizations of the balanced hypergeometric operator described in Subsec. 211
Applying [Z.21], we also obtain the factorizations of the standard hypergeometric operator de-
scribed in [De].

7.6 Conformal symmetries of Acs

In this subsection we describe the reduction of the Laplacian on C% to C*, which is accomplished
by aplying the flat section. This will lead us to an alternative derivation of the hypergeometric
equation. Besides, the material of this subsection will be needed when we will discuss the
confluent equation.

To a large extent, this subsection is a specification of Subsec. to n = 4. Recall that the
flat section is given by

Z_3=—2z_121 — 2_9%2, 23 = 1.
It is parametrized with y € C*. More precisely, we introduce the coordinates
Y-1=2-1, Y1 =2, Y-2=2-2, Y2=2z22 (7.30)
Thus this section can be identified with C* with the scalar product given by the square
(yly) = 2y-1y1 + 2y—2y0. (7.31)
Lie algebra so(CY).
Cartan algebra:
Nt =y 0, , —vi0,, i=1,2;
NG =y 10y, + 119y, +y-20y 5 + 420y, — 1
Root operators:
By =y 10y, — y-20y,,
BEL—2 =10y 5 — Y20y,

Bﬂ,—2 = y—layfz - y2ay17
fl
B—1,2 = ylayz - y—2ay71'
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B;’f =y-1(0y_y — M) — y—2y20y, +Y-1Y—20y_, + Y1920y,
BE3,—1 =0y,
B§™ ) = y1(0y, — 1) — y-2y20y_, + y1y-20y_, + Y1920,
B, =0,.

B§;§ =y-2(0y_y = 1) — Y-1Y10y, +Y—2y-10y_, +y_2Y10y,,
BE3,—2 = ayfm
By = y2(0y, — 1) — Y1510y, + y2y10y_, + 12110y,
By, =0,
Weyl symmetries.

Transpositions:

0?12)f(y—17y17y—27y2) = f(y—27y27y—17y1)7
—Y-1y1 —y-oy2 1 yo @)

oS Y191, Y2, 2) = y?f(

Y1 ’yl’ U1 ’yl

fl, Y-1 Y1 —Y-1y1 —Yy-2y2 1
U(zg)f(y—l7yl7y—27y2) :ygf< y 7_)'

Y2 Y2 Y2 Y2

Cycles:

F( Y1y Y2y 1y n

ﬂ7
0(17273)f(l/—1, Y1,Y—2,Y2) = yg

Y2 “ya" ye Ty’
fl,n one(Y-2 Y2 —Y-1y1 —Y-2y2 1
g f Y-1,Y1,Y-2,Y2) =Y f( y T sy T -
(132) ( ) ! Y1 1 1

Flips

T{lf(y—l7yl7y—27y2) - f(y17y—17y—27y2)7
Tgf(y—hyl)y—%y?) = f(y—17y17y27y—2)7

Y-1,Y1,Y-2,Y2 )

ﬁ7
73 (Y191, Y-2,y2) = (—2y—1y1 — 2y—2y2)"f<
—Y-1Y1 — Y292

Reduced Laplacian coincides with the 4-dimensional Laplacian:
Al = Aca =20, ,0,, +20, ,0,,.
Generalized symmetries:
NP 3Ac = AN 1<i<s;
Bl Ace = A BT, 1< ] < ] < 35
oV BAc = Acao™ T, o e Ss;

A = AT 1< <3,

7.32
7.33
7.34
7.35

A/_\AA
— ~— ~— ~—
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7.7 Deriving balanced hypergeometric operator from Acs

Introduce the following coordinates in C*:

Y-191 [Y-1 [Y=2
W= —"""—"— r=2(y-1y1 + y—2y2), Uy =4/ —, Uy = 4 | —. 7.36
Y—1Y1 + y—2y2 \/ ( ) Y1 Y2 ( )

We check that

fl
Nl - ulaul,
fl
N2 = U28u2,
iy _
N3 =710, —n,

_ i 2 _ _ (ul 8U1)2 B (u2 aU2)2
Ac4_r2 ((Tar—kl) 1440, w(l —w)dy " A—w) )

Thus the ansatz
flw,uy,ug,r) = u‘fugr”_lF(u})

leads to the balanced hypergeometric operator.

7.8 Deriving standard hypergeometric operator from Acs

Alternatively, we can slightly change the coordinates (Z.30]), replacing g, us with

Uy = Y1 = ul\/ﬁ, Uy 1= y—2 =usv1—w.
VY-1Y1 + Y—2y2 VY-1Y1 + Y—292

We check that

fl ~
N1 = ula{“,
f ~
N2 = ’ngagm
ﬂ7
Ny =710, —n,

Act = T—12((r O +1)? — 1+ 4w(l — w)d?,
+4((1 4 wu)) (1= w) — (1 + By )W) Dhy — (11 + 1Dy + 1)2). (7.37)
Thus the ansatz
flw, @y, g, 1) = @S a5 F(w)

leads to the standard hypergeometric equation.

8 50(C®) and the Gegenbauer equation

In this section we derive the Gegenbauer operator and its so(C®) symmetries. The whole section is
very similar to Sect. [l where we derived the hypergeometric operator with its so(C%) symmetries.
The main difference is lower dimension.

We will consider the following levels:

(1) Extended space C® and the Laplacian Ags.

(2) Reduction to the so-called spherical section and the corresponding Laplace-Beltrami oper-
ator.
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(3) Depending on the choice of coordinates, separation of variables leads to the balanced or
standard Gegenbauer operator.

There exists an alternative derivation:

(2)’ Reduction to C3 and Ags with help of the flat section.

(3)" With appropriate coordinates, separation of variables leads to the balanced or standard
Gegenbauer operator.

Some of the aspects of the Gegenbauer equation are actually more complicated than the
corresponding aspects of the hypergeometric equation. This is seen, in particular, when we
consider factorizations of the Gegenbauer operator, which come in two separate varieties, unlike
for the hypergeometric operator, which has a single variety of factorizations. This corresponds
to the fact that so(6) is simply-laced, whereas so(5) is not, ie. its root operators are not of equal
length.

8.1 Extended space C°
We consider C® with the coordinates

20y 2—2,%2,%-3,%3 (81)
and the scalar product given by

(2|2) = 22 + 22 929 + 22_323. (8.2)

Note that we omit the indices —1, 1; this makes it easier to compare C® with CS.
Lie algebra so(C%). Cartan algebra:

NZ’ = z_ié)zfi — z,-c?zi, 1= 2, 3.
Root operators:

Bij=2_0; —2_;0;, li| =2, |j|=3;
Bo,j = Zoaj - Z_ja(), |j| = 2,3.

Weyl symmetries. Transposition:
0'(23)K(Z0, 292,295,223, Zg) = K(Z(), Z_34R3,2—-2, 22).
Reflection and flips:
T()K(Z(), Z_92,29,2-3, Zg) = K(—Zo, 22,2-952-3, Zg),

ToK (20, 2-2, 22,23, 23) = K(20, 22, 2—2, 23, 23),

T3K(207 Z—2,%2,2-3, 23) = K(207 Z_2,%2,23, 2—3)’
Laplacian:
Ags = 02 +20,_,05, + 20._,0.,.

Generalized symmetries:

NZ’A(CE) = A(CE)NZ', 1= 2, 3;
B jAcs = AcsBij, il =2, [j]| =3;
By,jAcs = Acs Bo,j, jl =2, 3;

0(23)Acs = Ags0(23);
TjA(Cs = A(CsTj, j = 0, 2, 3.
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8.2 Spherical section
We consider the section of the quadric
Vi={2eC® : 22422 920 + 22 323 = 0}
given by equations
1= zg 4+ 2z 929 = —2232_3.

We will call it the spherical section, because it is S?(1) x S'(—1). The superscript used for this
section will be “sph” for spherical.
Introduce the following coordinates in C5:

r=4/28 + 2z 929, p=+/22372_3, (8.3a)

2
Z, Z_9 Z_3
w = 702, Uy = 4| —, U3 = 4/ — . (8.3b)
22_929 + 2§ 29 23

Similarly as in the previous section, the null quadric in these coordinates is given by 72+p? = 0.
The generator of dilations is

Des =10, +p0,.

The spherical section is given by the condition 7% = 1.
Below we describe various objects in the spherical section.
Lie algebra so(C%). Cartan operators:

NSPM = 0y 0, (8.4)
NPE = 438, . (8.5)
Root operators:
D) sph
sph,p _ l—w Ny sph
B3y = iugus 5 (n W Oy — T 3 > , (8.6a)
1 V1 w? NGP®
BN, — - 2 NZPR 8.6b
=3 1u2u3 2 (77 w0 + 1 — w? A (8.6b)
V1 — w2 sph
By = Z—z 5 - (77 —wdy + 7 = N§ph> : (8.6¢)
h
sph,n uz v1— w? stp sph
BsPha _ w 1—w? 9 SPh
s0° = s (Nt Ow = N (8.6e)
pwhan ;L W Lo N 8.6f
_3’0_1u_3ﬁ 77+T w + N3 ) (8.6f)
1— w? w sph
Bap = ua 5 Owt+ —5Na |, (8.6g)
1 /1—w? w
B_s0= u_2 5 <8w B N;ph> (8.6h)
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Weyl symmetries. Transpositions:

oS (w, uy, ug) = (i\/l - wz)” f <ﬁ7u3,u2> . (8.7a)

2

Reflection and flips:

7o f(w,ug, ug) =f (—w, uz, u) , (8.7b)

5P f(w, ug, ug) =f <w7 u%;%) ) (8.7¢)

5P f(w, ug, ug) =f (w,uz, u%) : (8.7d)
The Laplacian in coordinates is

Ags = 712 ((7’ 0)* + (ro,) + ;—z(papﬁ + 0w (1 — w?) 0y — 7(?2_8232 — ;—z(u?, au3)2> . (88)

Using 72 + p? = 1 and

r2

(rd,)* +ro, o

2
) r 1 1N\ 1
(p8,)? = <r8r+1§(p8p) +§> <7’3r+p3p+ 5) -7t

+ (;;—z + 1> (r@r + %) (pp).

1 (u2 au )2
I CURGLE =

we obtain

+ (u3 Oyy)? — i) . (8.9)

To convert AZ; into the reduced Laplacian Afépsh we simply remove %2, obtaining the
Laplace-Beltrami operator on S%(1) x S(1):

sph 2 (N2Sph)2 sphy2 1
A(Cg, =0y (1—w )8w—72 + (N3 — —. (8.10)
1—w 4
We have
NP Acs = Ags N;™, i=2,3; (8.11)
_5 _1
B;l;h, 2Aps = A(caBiSEh7 2 il =2, |j] = 3; (8.12)
_5 _1
By *Acs = AsBy) 2, il =2, 3; (8.13)
sph,—§ sph,—l
T (93) 2 Acs =A<c30(23) %, (8.14)
T;phACS = AcsT;Ph, ] E 07 2’ 3. (815)

8.3 Balanced Gegenbauer operator

Using the spherical section we make an ansatz

f(w,ug, uz) = uSul F(w). (8.16)
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Clearly,
NP =af,
NP F = A

Therefore, on functions of the form (8If]), Afcl)sh (BI0) coincides with the balanced Gegenbauer
operator (2.8)). The generalized symmetries for the roots (8I12) and (8I3), for the permutation
(BI4), and for the flips (BIH) coincide with the transmutation relations, the discrete symmetries,
and the sign changes of «a, A of the balanced Gegenbauer operator, respectively; see Subsec.

8.4 Standard Gegenbauer operator

Alternatively, we can replace the coordinate us with

. Z_9 1 — w?

Ug := m = Uy 5 (8.17)
As compared with the previous coordinates, we need to replace 0, with

B — ﬁNSph. (8.18)
In these coordinates

NP = G190, (8.19)

NP — w30, (8.20)

AP = (1 w?)af, — 21+ Ny, + (N - (N 2) (8.21)

We make the ansatz

f(w,ug, u3) = aSul F(w). (8.22)
Clearly,

Ny f = af,

NP F = Af.

Therefore, on functions of the form (822]), A?C%h coincides with the standard Gegenbauer operator.

8.5 Factorizations

In the Lie algebra so(C®) with the coordinates zg,z_2, 22, 2_3, 23 we have 3 distinguished Lie
subalgebras: one isomorphic to so(C*) and two isomorphic to so(C?). In an obvious notation,

8023(C4), S002 ((C3), SOQg(Cg).
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By (644) and (6.38)), the corresponding Casimir operators are

Co3 =4By3B_o 3 — (No + N3)? — 2N,y — 2NNy (8.23a)
=4B 5 3Bz — (No + N3)* + 2N, 4 2N3 (8.23b)
= 4By 3B 53— (Na — Na)*> — 2N, + 2N (8.23c)
=4B_93By 3 — (Ny — N3)* + 2N, — 2N3; (8.23d)

Co2 = 2By2Bo._2 — N3 — N (8.23¢)
= 2By 2By, 2 — N3 + No; (8.23f)

Cos = 2By 3Bo,_3 — N3 — N3 (8.23g)
=2By3By,_3 — N3 + Ns. (8.23h)

After the reduction described in (6.25) and (6.26]), we obtain the identities

3
(22920 + 22_323)A%s = ~2 + C2 2 (8.24a)
2 o _ 1 =342
2 o 1 =342
(25 +22-323)A%s = ~2 + C (N, 2)“. (8.24c)
If we use the spherical section, (824a)), (8.24D), (B.24d) become
3
WAL =+ e, (8.252)
1
AR = T (N, (8.25b)
1
(w? — DAL =~ + CMTE (NP2, (8.25¢)

They yield the factorizations of the balanced Gegenbauer operator described in Subsec. and
of the standard Gegenbauer operator described in [De].

8.6 Conformal symmetries of Acs

In this subsection we describe the reduction of the Laplacian on C® to C3. To this end we
apply the flat section. This will lead us to an alternative derivation of the Gegenbauer equation.
Besides, the material of this subsection will be needed when we will discuss the Hermite equation.

To a large extent, this subsection is a specification of Subsec. to n = 3. Recall that the
flat section is given by

2
Z_3 = —§z0 — 2_92z9, 2z3=1.

We introduce the coordinates
Yo = 20, Y-2=2-2, Y2=22. (8.26)
Thus we obtain C? with the scalar product given by

(yly) = v5 + 2y-2y2. (8.27)
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o3

Lie algebra so(C?).
Cartan operators:
N; = y—28y72 - y2ay2’
ﬂ7
N3 K = yoayo + y—26y,2 + y28y2 - 77

Root operators:

By = Y00y, — y—20y,,
Bf 3 = Y00y 5 — Y20y,
Bg,?, = Y00y; — Y—30y,,
Bg,—?; = Y00y _5 — Y30y,

fl,
B3y =y-2(0y_, = 1) — y—2y20y, +y-2y-20, , + y_2y20y,,

fl
B—S,—2 = Oy_,,
ﬂ?
By = y2(Dy, — 1) — Y—2y20y_, + y2y—20y_, + Y2120y,
fl
B—3,2 = ay2'

Weyl symmetries.
Transpositions:

— Y8 —y—oys 1 )

fl,n 0
J(Qg)f(y07y—27y2) = y2f<Ta g .

Flips:

Tgf(y07y—27y2) — f(y07y27y—2)7
8 (0, y—2,v2) = f (Y0, Y2, y—2),

1, Yo, Y—-2,Y2
73 F (0, y-2,42) = (—98 — 2y-212)" ( ).

—1y2 —y_oys

Reduced Laplacian coincides with the 3-dimensional Laplacian:

Alls = Acs = 02 +20,_,0,,.

Generalized symmetries:

fl,—2 fl,—3 ,
Ni 2A(C3:A(C3Ni 2, 222, 3,
-3 -1
T2 — T2 | — S| — Q.
Bi7j Acs = ACSBL' ) il =2, |j] = 3;
fl,—32 fl,—3 ,
BO,j Ac?) = ACSBO,]' s |j| = 2, 3,
-3 fa-1
T2 — R
0'(23) A((:S = A(cSO'( 3)
5 1
1,—3 fl,—3
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8.7 Deriving balanced Gegenbauer operator from Acs

Introduce the following coordinates in C3:

Y-2 Yo
wi= ==, =Yg + 2y_oys, W= ——— (8.33)
Y2 VYt 2y—2y2

Clearly,

NI = wo,,
Ng{i7nzrar_777
1 5 (ud,)? 1.2 1
A@_ﬁ(awu—w)aw—l_ 5+ (ror+3) —1). (8.34)

Thus the ansatz
flw,u,r) = uar)‘_%F(w)

leads to the balanced Gegenbauer operator (2.8]).

8.8 Deriving standard Gegenbauer operator from Acs

Instead of the coordinate u choose

ﬂ::—y_2 =u 1—w2‘
VI +2y—2y2 2
Clearly,
NI = 40y,
N =rd, —n,
Ags = 712 ((1 —w?)92 - 2(1 + NHwd,, — (405 + %)2 + (rd, + %)2> : (8.35)

Thus the ansatz
flw,ii,r) = @2 F(w)

leads to the standard Gegenbauer operator (2.7]).

9 Symmetries of the heat equation — the Schrodinger algebra

The main subject of this section are generalized (infinitesimal) symmetries of the heat equation
(Agn-—2+8) f =0. (9.1)

We will see in particular that the Lie group of generalized symmetries of (1)) is sch(C"~2), the
so-called Schrédinger Lie algebra.

We will reduce the heat equation ([@.]) to the Laplace equation on C™ (6.1]), whose Lie algebra
of generalized infinitesimal symmetries is, as we saw, so(C"*2). sch(C"~2) can be viewed as a
subalgebra of so(C"*2).

Note that the choice of the dimension n—2 in (@] makes our presentation of the heat equation
consistent with that of the Laplace equation of Sect. [6l It will be convenient to start again from
the extended space C"*2, where all symmetries greatly simplify.
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9.1 The Schrédinger Lie algebra and group on C"*2

We consider again the space C"*? with the scalar product given by

(zlz) = ) zim, ze€C*?

iEInJrZ

and the Laplacian

Agniz =Y 0.0,

1€l 42

Recall that the Lie algebra so(C™"*2) and the group O(C"*2) have natural representations on
C"*? ([62) and (E3) commuting with Acnys, see ([64), GH). A special role will be played by

the operator
B_pm—1m = 2m+10z, —2-m0;_,, | € so((C"+2).
We define the Schridinger Lie algebra
sch(C"™?) := {B € 50(C""?) : [B,B_n_1.m] = 0}.
We also have the full and special Schrodinger group

Sch(C"?) :={a € O(C™?) : aB_;_1.m = B_m_1.m},
SSch(C™2) := Sch(C"2) N SO(C™™?).

9.2 Structure of sch(C"?)

Let us describe the structure of sch(C"~?).
We will use our usual notation for elements of so(C"*2) and O(C"*2). In particular,

Nm = Z—mazfm - Zmazma Nm+1 = Z—m—laz,m,1 - Zm+1azm+1-

Define
Nm,m—l—l = Npy + Ny 1.

Note that Ny, m+1 belongs to sch(C"?) and commutes with so(C"~?), which is naturally em-
bedded in sch(C"~2).
sch(C"~?) is spanned by the following operators:

(1) B—sn—1.m, which spans the center of sch(C"2).

(2) Bm.,j, Bom—-1;,7 =1,...,m — 1, which have the following nonzero commutator:

[Bm,ij—m—L—j] = B—m—l,m- (9.2)

(3) B_m—1,-ms Bm+1,m, Nmm+1, which have the usual commutation relations of sl(C?) ~
so(C3):

[Bm-‘,-l,ma B—m—l,—m] = Nim.m+1, [B:I:(m—l—l),:l:my Nm,m—i—l] = j:B:I:(m—l-l),:l:m'

(4) Bij, i <[] £ m—=1, N;, i = 1,...,m — 1, with the usual commutation relations of
so(C"2),
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The span of (2) can be identified with C"~2 @ C"2? ~ C? ® C" 2, which has a natural
structure of a symplectic space. The span of (1) and (2) is the central extension of the abelian
algebra C? ® C"~2 by ([@2). Such a Lie algebra is usually called the Heisenberg Lie algebra over
C? ® C"2 and can be denoted by

heis(C2 ® C"2) = C x (C2@ C"?).

s1(C?) acts in the obvious way on C? and so(C"2) acts on C"~2. Thus s1(C?) @ so(C"~2)
acts on C? ® C"~2. Thus

sch(C"™?) ~ Cx(C? ® C"?) x (s1(C?) @ s0(C"?)).

Note, in particular, that neither sch(C"~2) nor SSch(C"~2) are semisimple.

The subalgebra spanned by the usual Cartan algebra of so(C"~?), Npm+1 and B_y_1m
is a maximal commutative subalgebra of sch(C"~2). It will be called the “Cartan algebra” of
sch(C"—2).

Let us introduce k € SO(C"2 @ C? @ C?):

K;(' sy B—my Amy F—m—1, Zm—l—l) = ( sy BmAly F—m—1s —2Em, —Z_m).

Note that x* = id and & € SSch(C"~2). On the level of functions

K:K( <oy Z—my Zmy Z—m—1, Zm—i—l) = K( <oy T2mAly —2—m—1%m, 2—771,)’
The subgroup of Sch(C"~2) generated by W (C"~2) ¢ O(C"2) and & will be called the group
of Weyl symmetries of sch(C"~2).

9.3 The Schrédinger Lie algebra and group on C"

Recall that in Sect. we used the decomposition C"*2? = C" @ C?. Elements of C" were
generically denoted by y. The space C" will be also useful in this section. Further on, it will be
decomposed as C* = C"~2 @ C2. Thus the square of an element of C" is equal to

(Wly)en = Wly)en—2 + 2y-mym, y € C,
and the Laplacian

A(Cn = A(Cn72 + 26 a

—-m - Ym*

Recall that we have the representations
s0(C"*?) 5 B+ B" ¢ A x hol(C"),
O(C"™2) 3 a = ol £ A* x Hol(C™),

ocC
and the generalized symmetry

B Acn = Acn BY2" | B € 50(C"12), (9.3)
aﬂ’7227n Acn = A(cnaﬂ’%Tn, o € O(Cn+2) (9.4)
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9.4 The Schrédinger Lie algebra and group on C* 2@ C

We consider now the space C"~2 @ C with the generic variables (y,t) = (..., ym_1,t). Note that
t should be understood as a new name for y_,,, and we keep the old names for the first n — 2

coordinates.
We define the map 6 : A(C"2 @ C) — A(C") by setting for h

(Hh)( - Ym—1,Y-m, ym) = h( < Ym—1, y—m)eym' (95)
We also define ¢ : A(C") — A(C"2 @ C), which to f associates
CHC ym=1,t) == f(.. ., Ym—1,1,0). (9.6)

Clearly, ( is a left inverse of 6:
(ol =id.

Therefore, # o ( = id is true on the range of 6.
The heat operator in n — 2 spatial dimensions can be obtained from the Laplacian in n
dimension:

Len—2 := Agn—2 + 20, = (Acn0. (9.7)
For B € sch(C"2) C so(C"*?) we define
Bt .= (B,
and for a € Sch(C"~2) C O(C"*2),
s .= caflmg,
Lemma 1. sch(C"~2), Sch(C"~2) and Acn preserve the range of 0.
Proof. Note that
BY =0y,
Let B € sch(C"2). Then [B%", 9, ] = 0. Therefore,
BY = C + Do,,,

where C' € hol(C" 2@ C) and D € A(C" 2@ C) (they do not involve the variable y,,,). Therefore,
B preserves the range of 6.
Likewise, if o € Sch(C"~2), then we have

aﬁ’nf(--wy—maym) :/Bf(---7y—m7ym+d(~'ay—m))7

where 8 € AX x Hol(C" @ C), d € A(C" 2@ C) (they do not involve the variable y,,,). Therefore,
o preserves the range of 6.
For Acn the statement is contained in the formula ([Q.7)). [

Theorem 2. (1) For any n,

sch(C""2) 3 B — BN ¢ Axhol(C" 2 @ C),
Sch(C" %) 5 a — o*™" e A*xHol(C" 2 & C)

loc

is a representation/local representation.
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(2) We have a generalized symmetry

—2—n 2—n
BN Lo = Len2 B3| B e sch(C2),

—2-n 2—n
aSCh’Tﬁcnfz = E(cnfzaSCh’T, o€ Sch((C”_2).

Proof. Let us first prove (1). Obviously, for By, By € so(C"*2)
¢[BY"BY™MO = ([By, B0,
If By, By € sch(C"2), we can insert o ¢ in the middle of the commutator. Hence
(B, By = [By, BoJ*™.
Now, for any ag,as € O(C"*?)
(a?’"ozg’"ﬁ = C(aron)b70.
For o, s € Sch(C"~2) we can insert § o ¢ in the middle of the composition, obtaining

sch,n schyp sch,n
ay Mg T = ( .

a1az)

To prove (2) we multiply ([@.3]) and (@4) by ¢ from the left and 6 from the right:

¢BY 5" Acnf = (Acn B30, B € so(C™2); (9.8)
Ca T Acnf = (Acna® 29, o € O(C™T2). (9.9)
For B € sch(C" %) and a € Sch(C"~2) we can insert 6 o ¢, which yields (2). [

9.5 Hermite operator

Consider again the space C"~2 @ C. This time its generic coordinates will be denoted (w, s). We
assume that the space C"~2 is equipped with a scalar product. The following operator can be
called the (n — 2)-dimensional Hermite operator:

Hen-2 = Acn—2 — Den—2 + 50s.

The heat operator is closely related to the Hermite operator. Indeed, let us change the
coordinates from (y,t) € C" 2@ C* to (w,s) € C"2 @ C* by

1 1
w:t_§y7 3:t§7

with the inverse transformation

Under this transformation the heat operator L¢n-2 becomes S%ch72.

In Sec. [ we will use this change of coordinates to obtain the (1-dimensional) Hermite
operator. The construction is, however, interesting in higher dimensions as well, therefore we
mention it here.

Strictly speaking, the above coordinate change does not work globally: in particular, we need
to assume s #£ 0, t # 0, besides s doubly covers t. We usually are not absolutely precise about
specifying the domains of coordinate changes—if needed, the reader can easily fill in such details.
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9.6 Schrodinger symmetries in coordinates

In this subsection we sum up information about Schréodinger symmetries on 4 levels described
in the previous subsections. Note that the last two levels differ only by a change of coordinates.

Therefore, the operators on these two levels are denoted by the same symbols, with the same

superscript 5P,

We start with generic names of the variables and the corresponding squares:

2€C™ (e = Y 2z,

j61n+2

yeC"  (lyer = Dy iy
jeln

() €C"?OC,  (Yycrz = Y y-¥;
j61n72

(w,s) € C" 2@ C, (ww)gn—2 = Z w_jw;.
j61n72

Cartan algebra of sch(C"~2).
Central element:

B—m—l,m = Zm—l—lazm - Z—maz,m,p

fi _
B—m—l,m - 8ym7

sch _
B—m—l,m - 17

sch o
B _im =1

Cartan algebra of so(C"2), j =1,...,m — 1:
Nj = Z_jazfj — Zjazj,
fl
Nj = y_jayfj - yjaij
h
N;C = y_jayfj - yjaij
N;Ch = w_jﬁwfj — ZUjawj.
Generator of scaling:
Nm,m—l—l = Z—maz,m - Zmazm + Z—m—laz,m,1 - zm+lazm+1a

ﬂ7
Nm,?n—i—l = Z Y;0y; + 2y-m0y_,, — 1,

jEIn72
schyp
Ny = g0y, + 2t0; —
jEIan
sch,p
Nypmr1 = 805 — 1.

Root operators of sch(C"~?).

Roots of so(C"~2), |i| < |j], 4,7 € Ih_2:
Bij =210y — 20,
Bl =y_i0y, — y—;0y,,
B;S = y-i0y; — y— Oy,

sch __ ) )
Bi,j == w_lawj — w_‘yawi.
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Space translations, j € I,,_s:

B—m—l,j = Zm-i—lazj- - Z—jaz,m,u

fl —
B_m_lyj - 8yj’

sch o
B—m—l,j - 8yj7
1
sch o
B, 15 = 0u,.

B op1-m= zm—l—laz,m - zmaz,m,p

Bgm—l,—m = ayf'mJ
Bs—cr};,—l,—m = 0,
1
BS_CBI_L_m = @( - Z wjﬁwj + 885).

jeln72
Additional roots, j € I,,_o:
Bmvj - Z_mazj - Z_jaz'm?
fl
Bm,j = y—mayj = Y—jOyns
B;i],ﬂg =10y, —y-j,

h
By = 8(0w; — w—j).

Bm—i—l,m = Z—m—lazm - Z—mazm+17
1
ﬂ7 —
B = v-m( D 030+ v-mOy = 1) =5 D Y80
J€ln—2 J€ln—2
h, 1
Byt =t( 2 w0y +y-mOy 1) =5 D s
J€Ih_2 J€ln—2
2
h, S
Bt =5 (50 =2t D0 wion, — 37 wjuy).
J€ln—2 J€ln—2

Weyl symmetries. We will write K for a function on C**2, f for a function on C", h for a
function on C*~2 @ C in both coordinates ( ey Y1, t) and (..., wp—1,S).
Reflection:

TOE (205« vy e vy Zemy Zms Z—m—1s Zm+1) = K (=20« s Z—m), Zms Z—m—1, Zm+1)s
70 (Y05 - s Ymms Ym) = (=405 -+ Yms Ym)s
5Ph(yo, ..., t) = h(—yo, ..., 1),
TSChh(wo, .oy 8) = h(—wo,...,s).

Flips, 7=1,...,m —1:

T]K( PR Py PR 7Z—m72m72—m—172m+1) = K( RN ER 2 PR 72—m72m72—m—172m+1)7
Tjﬂf(,y_],y], 7y—m7ym) = f(?y]7y—]7 7y—m7ym)7
T;Chh("'7y—j7yj7"'7t) ("'7yj7y—j7"'7t)7
) =h(

sch
Th( L woj Wy, s
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Permutations, o € S;,,_1:

OK (.. Zomt1s Zme—1s Z—m, ZmsZ—m—1s Zm+1)
= K( c ey R—O—19 ROm—11 F—ms #m s F—m—1, Zm-i—l)y
Jﬂf(' s Y—m+1 Ym—1Y—m; ym) = f( Yo 13 Yom_15Y—m> ym)y
USChh(' B 7y—m+laym—lat) h . 7y_0'm717y0'm717t)7

sch
A Ph(e W1, W1, 8) = A W We (S

= h(..
= h(..
Special transformation x:

HK( <y Bm—152—m> Zms F—m—1, Zm—l—l) = K( -y Bm—1, " 2m+1, "Z—m—1,2m,; Z—m)a

Ym—1 1 1
K‘ﬁwf("')ym—lyy—m)ym) :yimf<7 ym 7_y ) 2y Zy—jyj)7
-m —-m -m

Jjely
1 Ym—1 1
R oo t) = esp (g 30w h B )
J€In—2
1 . i
KSR wmo1,8) = 82T exp (5 g: w—jwj)h(- coy T1Wm—1, g)
JEein—2

Square of x:

K(. . Zm—1,—2—ms —Zms —Z—m—1, —Zm+1),
o = Ym=1,Y=m, Ym),
(=D)"h(..., —Ym-1,t),

—1)"h

(=D)7h(..., —wm—1,S).

’%2K(' <y Zm—1yR—m>y fms Z—m—1, Zm—l—l)
(K’ﬂ’n)zf(' s Ym—1Y—m; ym)
(K5PN2R( .y, t)

)

(K5BMN2R( w1, s

Laplacian/Laplacian / Heat operator / Hermite operator

Agvz = Y 0, ,0,,

J€In+2
Acn = Z Oy_; 0y,
JE€In
Lona= > 0y 0y + 20,

jEIn72

1 1

ez = (X Ou0u = D wide, +50,):

jEIan jEIan

Computations. Let us sketch how we computed the Schrodinger Lie algebra and group in
coordinates. We set

dshon .— pfln o 0, pschin Co gl
Then @™ maps h € A(C"2 @ C) onto

(q)SCh’nh) ( -3 Z—m+1s Zm—1,2—m, Fmy F—m—1, zm—l—l)

zZ_ 1 Zm—1 R~R— Z
:ZZIHh(--' mtl Zmol m)exp( mn >
Zm+1  Zm+1 Fm4+1

For K € A(C" 2@ C?2 @ C?)

(\IISCth)(' < Y—m+1, Ym—1, t) = K( s Yemt1, Ym—1,1, 0, _%<y‘y>7 1)
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Note that

\I/SChW(I)SChﬂ? — ld,
\I’SCh’nA q)sch,n -
(Cn+2 = (Cn72,
\I,sch,an>sch,n — Bsch,n’ Be SCh((Cn_2),

Pschon g pshon — aSCh’", o € Sch((C"_Q).

10 sch(C?) and the confluent equation

In this section we derive the confluent operator and its sch(C?) symmetries. We will consider
the following levels:
(1) Extended space C% and the Laplacian.
(2) Reduction to C* and the Laplacian.
(3) Reduction to C? @ C and the heat operator.
(4) Special coordinates.
()
(6)

5
6

Sandwiching with a weight.

Depending on the choice of coordinates, separation of variables leads to the balanced or
standard confluent operator.

A separate subsection will be devoted to factorizations of the confluent operator.

10.1 C¢

We again consider C% with the coordinates (7)) and the product given by (72). We describe
various object related to the Lie algebra sch(C?). Remember that sch(C?) is a subalgebra of
s0(C%) and we keep the notation from so(C9).

Lie algebra sch(C?).
Cartan algebra is spanned by

Ny =2.10._, — 210,
Noz =290, , — 220, +2-30,_, — 230,
B_372 = 23822 - 2_28273.

Root operators:

By 1 =290, | — 210s,,
Boy = 220, — 2.10.,,
B_3_1 =230, , —210._,,
B_31 = 230; — 2-10;_,,
B_3 9 =230, , — 220._,,
3372 = 2_38Z2 — Z_Qazg.

Weyl symmetries.
Special symmetry of order 4:

KK (2-1,21,2-9,22,2-3,23) = K(2-1, 21, =23, —2_3, 22, 2_2).
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Flip:
TIK(Z—17 21y R2—2,22,2-3; Z3) = K(Z17 Z—1,%—2,%2,2-3, 23)'

We also have the Laplacian (T.3)) satisfying (Z.Zal)-(Z.4d).

10.2 C*
We descend on the level of C*, with the coordinates (Z30) and the scalar product given by (Z31).

Lie algebra sch(C?).

Cartan algebra:

ﬂ7
N2,Z;7 = y_18y,1 + yla@n + 2y—2ay72 -
NF = y—lay,l - ylayu
fl
B_3’2 - ayQ.

Root operators:

B2ﬂ7_1 = Y20y 1 — y10y,,
Bg,l = y—28y1 - ylaym

fi _
B—3,—1 - ay—lv
fl _
B—3,1 - ay17
fl _
B—S,—2 - ay—m

ﬂ7
B3y = —y-1910y, +y—2(y-10y , +y10y, +y-20, , —n).

Weyl symmetries.

Special symmetry of order 4:

yi o y—1 1 2y_1y1 + 2y—2y2
Rﬁ’ﬁf(y—l7yl7y—27y2) :yz2f<ﬁuﬁ7_ﬁ7 2y ) )

Flip:
T (y_1,91,Y-2,92) = F(Y1,9-1,Y—2,Y2)-

10.3 C?’¢C

We apply the ansatz involving the exponential e¥2. We rename y_o to t. The operator BS_C?]?Q
becomes equal to 1, therefore it can be ignored further on.

Lie algebra sch(C?).

Cartan algebra:

h
N2S,C3 = y—18y71 + ylay1 + 2t8t -,
Ny =y 10, , — 110y,
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Root operators:

B;,Ckl = tay—l - Y1,
BS?{l = tayl —Y-1,
BS—C?}:,—l - ay—u
BS—C}‘;I,I - ayla

sch
B—3,—2 = atv

By = —y_1y1 + t(y-19y_, + 110y, + 3 — n).

Weyl symmetries.

Special symmetry of order 4:

KM (y_1,y1,t) = t" exp (y_;yl > h<
Flip:

Nh(y_1,y1,t) = h(y1,y_1,1).
Heat operator:

ﬁ(cz = 28y718y1 + 28t

Generalized symmetries:

N3P Lo = L2 NFR, (10.1)
N3 Lo = LoaNp5 Y, (10.2)
h,—3 h,—1 o .
B e = L BTN (6, 5) = (2, £1), (=3, £1), £(3, 2); (10.3)
K3 L0 = Loar®DTT (10.4)
VL = Lo, (10.5)
10.4 Coordinates u,w, s
Let us define new complex variables as
w:y_lyl, uzME, s=1/t. (10.6a)
t Y1
Here are the reverse transformations:
1
y_1 =usvw, y=-syw, t=s>. (10.6b)
U
Lie algebra sch(C?). Cartan algebra:
N3G =505 — (10.7a)
N3t =40, (10.7b)
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Root operators:

1 1 Nsch
B = —— <w8w + ;> :

us J/w 2
uw 1 Nsch
Bsch _ 7 - a - 1
3T Vw <w v 2 ’
s 1 Nsch
Bsch _ 2 - 8 1 .
2,—1 o Jw <'UJ hw + B w ),
1 Nsch
BSC{I = su—= (w Ow — ; - w) ,

Weyl symmetries. Special symmetry of order 4:
sch 2n w 1
KM h(w, u, s) = e h( —w,u, —).
s
Flip:

TfChh<w,u, s) = h(w, %,s).

Heat operator:

(udy,)* 1
4w —1—5883

2
Loz =— <8ww8w—w8w—
s

10.5 Sandwiching with an exponential

For any operator C we define

A _w o w
C:=e 2(Ce2.

The “hat” isomorphism will not change the Cartan operators:

rschy,n
N2’3 =S ag - 777

N5 = 4,.0,.

Root operators:

N 1 1 Nsch
e (e )

R 1 Nsch
BS—C}‘;I,I = E— (waw - L + E) ;

) |

(10.8a)

(10.8b)

(10.8¢)

(10.8d)

(10.8e)

(10.8f)

(10.9)

(10.10a)
(10.10D)

(10.10¢)

(10.10d)



66 J. Derezinski and P. Majewski

Hsch _fi NlSCh _E

By =1L <w 9.+ M50 (10.10¢)

Bt gt (e NI w (10.10f)

2,1 — W w 2 2 ) .

Nsch,n

Hsch,n 1 2,3 n w

BT, = <—w Owt+ —5—+ 5 - 5) : (10.10g)
sch,n

B;C];" — g2 <w B + 2; _ g _ %) ) (10.10h)

Weyl symmetries. Special symmetry of order 4:
~.sch 2 1
R*MMh(w,u, s) = s "h( —w,u, —>.

S

Flip:

?fChh<w,u, s) = h(w, %,s).

Heat operator.

< 2
s _w w2 wo (V)71
ﬁ(cz =c 2£(c262 28—2 <8ww8w—z— 1w +§N25703’ (1011)

10.6 Balanced confluent operator
We make an ansatz

h(w,u,s) = u®s " F(w). (10.12)
Clearly,

NUh = ah,

N3G h = —0h.
Therefore, on functions of this form, %ﬁcz coincides with the balanced confluent operator (2.13)).
The generalized symmetries for the roots (I0.3]), for the special Weyl symmetry (I0.4) and for

the flip (I03]) coincide with the transmutation relations, the discrete symmetry and the sign
changes of «a, @ of the balanced confluent operator, respectively; see Subsec.

10.7 Standard confluent operator

Let us change slightly coordinates by replacing u with

~ Y-
U= I —= = u/w.
Vit

The derivative 0,, is then replaced by

1
Ow + —N7.
2w
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Let us make an ansatz
h(w,@,s) = u%s ' F(w). (10.13)
Clearly,
N;h = ah,
N3G h = —0h.

Then, on functions of the form (IO0.I3)), %ﬁcz coincides with the standard confluent operator

@.12).
10.8 Factorizations
Let us note the commutation relation
[B_g,Q,Bg’Q] = Ny + N3 = N273. (1014)

It shows that the triple B_39, B3 2 and N33 defines a subalgebra isomorphic to so(C?), which
we will denote sog3(C3). The Casimir operator for sogz(C?) is

Cy3 =4B3yB_3_5— Njs+2No3 (10.15a)
=4B_3_3B3y— Nj3—2Ny3. (10.15b)

By the same arguments as for (7.29al) we obtain
~2y ayiLee = =1+ C3" 7+ (N2, (10.16)
Morever, we have
[Ba,—1,B_31] = [B21,B-3_1] = B_32. (10.17)
The commutation relations (I0.I7) define two Heisenberg subalgebras

heis (C?) spanned by By _1, B_31, B_32;
heis_(C?) spanned by By, B_3_1, B_32.

Let us remark that heisy (C?) is the 7i-image of heis_ (C?).
Let us define

Cy =2DB91B_3_1+ Ny3+ N —B_39 (10.18a)
= 23_37_132,1 + N273 + Ny + B_g’g, (10.18b)
C_ = 232,_13_3,1 + N273 — Ny — B_g’g (1018C)
= 2B_371327_1 + N273 — N1+ B_g’g. (1018d)

C. and C_ can be viewed as the Casimir operators for heis, (C?) and heis_(C?) respectively.
Indeed, Cy, resp. C_ commute with all operators in heisy (C?), resp. heis_(C?).
Let us now consider the operators on the level of C? @ C. Direct calculation yields

M = 24(0y, Dy, + ) —n— 1, (10.19)
CM = 24(8, 0y, +0,) —n — 1. (10.20)
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Therefore,
I G G (10.21)

In the variables w, u, s and after sandwiching with the exponential weight, (I0.16]) and (I0.21))
become

—2ws? Loz = —1 4+ Gy 4 (NF 12, (10.22a)
§2Lee =T = ¢ (10.22b)

We apply the ansatz ([I0.I2]) and obtain all the factorizations of the balanced confluent operator
of Subsec.

11 sch(C') and the Hermite equation

In this section we derive the Hermite operator and its sch(C') symmetries. We will consider the
following levels:

(1) Extended space C® and the Laplacian.
Reduction to C? and the Laplacian.
Reduction to C & C and the heat operator.

Special coordinates.

)
)
)
5) Sandwiching with a weight.
) Separation of variables in (5) leads to the balanced Hermite operator.
)

Separation of variables in (4) leads to the standard Hermite operator.

11.1 C°

We again consider C® with the coordinates (BI]) and the product given by the square (8.2).
Remember that sch(C!) is a subalgebra of so(C%) and we keep the notation from so(C?).

Lie algebra sch(C!).
The Cartan algebra is spanned by

Noz =290, , — 200, +2.30,_, — 230,
B_372 = 23822 — 2_28273.

Root operators:

Bop = 2_20;, — 200.,,
B_30 = 230, — 200_5,
B_3_o =230, , — 220._,,
33,2 = Z_3822 - Z2az,3-
Weyl symmetry:
kK (20,22, 22,2-3,23) = K(20, —23, —2_3, 22, 2_2).

It generates a group isomorphic to Zy.
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11.2 C3

We descend on the level of C3, as described in Subsect. In particular, we use the coordinates
([B26]) with the scalar product given by (827]).

Lie algebra sch(C!).

Cartan algebra:
Ng,’?:] = Y00y, + 2y—20y_, — 1,
By, =0,
Root operators:
BY o =y—20y, — Y00y,
B{i?),o - (9y0,

fl _
B—S,—2 - ay—2 )

f, 1
B3,§ = y-2100y, + yzgay,Q - 5@/(2)5312 — Y.
Weyl symmetry:

Yo Yo +2y-2yn _i)

fl,n _ .0
&1 f (Yo, Y—2, Y2 —yf<
(o, y-2,92) 27 \ys 2y2 Yo

11.3 CeaC

We descend onto the level of C & C, as described in Subsec. B_39 becomes equal to 1,
therefore it will be ignored further on. We rename y_s to t and g to y.

Lie algebra sch(C!).

Cartan algebra:
h
N5 = 4, + 2t0, — 7.
Root operators:
BS,%] = tdy — v,
BS_C;O - ay,
h
BS—C3,—2 = atv
h7
B3y = t(ydy + 10 — 1) — y.
Weyl symmetry:
h 2
Wy, 1) = 17 exp(§)h(%, )
Heat operator:
Le = 0+ 20;.

Generalized symmetries:

sch,—% sch,—%
sch,—3 sch,—1 L.
B Le=LeBlT, (i) = (2,0), (=3, 0), £(3, 2), (11.2)

HSCh’_gﬁ(c — ﬁcﬁSCh’_%. (11.3)
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11.4 Coordinates w, s

Let us define new complex variables as

Reverse transformations are
Yy = V2 sw , t=s>.

Lie algebra sch(C!).

Cartan operators:
sch,n
Ny 3l =505 —m,

Root operators:

1
B = O
3,0 \/58 v
Bsh — (9, — 2w ,
2,0 \/5( w )
1
h h,
By = o (—wdu + NF 4 0),

33’2 = 5 <w Ow + ngh’n —n— 2w2) .

(11.4a)

(11.4b)

(11.5a)

(11.5b)

(11.5¢)
(11.5d)

(11.5¢)

Above Bs_cg_z does not depend on n even if at first glance it might seem so.

Weyl symmetry:

KSR (), §) = szneU’Qh(iw, —5y.
Heat operator:
1 2
£(C == @ (811] —2w8w +2885) .

11.5 Sandwiching with a Gaussian.

For any operator C' we will write

~ w? w?

C:=e 2(Ce?2.
Lie algebra sch(C!).
Cartan algebra:

sch,n
Ny 3 =s0s —m,

(11.6)

(11.7)

(11.8a)
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Root operators:

B, = \/153 (D + ), (11.8b)
Byh = % (8 — w), (11.8¢)
B, = % (—w B + NEB 4y — w2) , (11.84)
B;?g’" = 82—2 <w Ow + ngh’" —n— w2) . (11.8e)

Weyl symmetry:
KSR (w, ) = s2Th(iw, —4y.

Heat operator:

o 1 _1
o= (ai—w2—2N§f§’ 2). (11.9)

11.6 Balanced Hermite operator

We make an ansatz

h(w,s) = s* 2 F(w). (11.10)
Clearly,

sch—1

Ny T2h = Ah.

Therefore, on functions of this form, 232ﬁc1 coincides with the balanced Hermite operator (2ZI8]).
The generalized symmetries for the roots (IT.2]) and for the Weyl symmetry (II.3]) coincide
with the transmutation relations and the discrete symmetry of the balanced Hermite operator,
respectively; see Subsec. 241

11.7 Standard Hermite operator

Alternatively, we can use the ansatz
h(w,s) = s 2 F(w). (11.11)
without the sandwiching (IT.7)), Clearly,

sch,—1

Ny ?h = Ah.

Then, on functions of the form ([TII), 2s*>L¢2 coincides with the standard Hermite operator

&1D).

11.8 Factorizations

In sch(C') we have a distinguished subalgebra isomorphic to so(C?)

SOQg(Cs) spanned by B_37_2, 3372, N273,
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and a distinguished Heisenberg algebra

heis(C?)  spanned by By, B_39, B_32.

We set
C3 =4B32B_3_5— Nj3+2Ny3 (11.12a)
=4B_3_9B3s— N33 —2Na3, (11.12b)
Co=2 32,03_370 + 2N2,3 — B_g,g (11.12C)
=2B_30B820+2N23+ B_39. (11.12d)

Ca3 is the Casimir operator of so93(C?). Cy can be treated as the Casimir operator of heisq(C?).
We have the identities

2 sch,—% 3
1
oLe =02, (11.13b)

In the coordinates w, s we can rewrite this as

20 24 Asch,—l 3
—w2s° Lo =Coy 2 — T (11.14a)
24 Asch,—%
252Lc =Cy 2. (11.14b)

We apply the ansatz (IT.I0) and obtain all the factorizations of the balanced Hermite operator
of Subsec. 2.41

12 C? xs0(C?) and the (F; equation

In this section we derive the oFy operator and its C? x so(C?) symmetries from the symmetries
of the Helmholtz equation in 2 dimensions. One can argue that this is the simplest case among
the five cases considered in this paper, because only true (that is, not generalized) symmetries
are used here. This derivation is also extensively discussed in the literature. (Strictly speaking,
in the literature usually the Bessel and modified Bessel equations are considered. They are,
however, equivalent to the oF} equation, as described eg. in [De].) We included this section for
the sake of completeness.

Perhaps, it would be sufficient to discuss only two levels of derivation—the 2-dimensional
Helmholtz equation and the ¢ F; equation. However, to make this section easier to compare with
the previous ones, we will start from a higher level.

Thus, we will consider the following levels:

1) Space C® and the Laplacian Ags.

2) Space C3 and the Laplacian Ags.

(
(
(
(4

)
3) Space C? and the Helmholtz operator Ac2 — 1.
)

Choosing appropriate coordinates we obtain the gF; operator.
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12.1 Space C®

As in Subsect. Bl we consider C° with the coordinates
20, 2-2, 22, 2—3, 73 (12.1)
and the product given by

(2)2) = 22 + 22 929 + 22_323. (12.2)

Lie algebra C? x so(C?) on CP.
Cartan operator:

Ny =290, , — 220.,.
Root operators:

B_3 9= 230_9 — 2203,
B_372 = 2382 — 2_28_3.

Weyl symmetry. Flip:

oK (20, 29, 22, 2—3, 23) = K (20, 22, 2-2, 2—3, 23).
Laplacian:

Aps = 02 4 20,_,0z, + 20,_,0s,.

12.2 Space C?

As in Subsect. B8, we consider C? with coordinates (yo,y_2,%2) and the scalar product given by

(yly) = v5 + 2y-2y2. (12.3)

Lie algebra C? x so(C?).
Cartan operator:

Ny = y_20y_, — 120y,
Root operators:

fl _
B—S,—Z - ay—2 )

BE&Q - (9y2.
Weyl symmetry. Flip:
Tgf(y07 Yy—-2, ?JZ) = f(y07 Y2, y—2)'
Reduced Laplacian.

Als = Acs = 02 +20,_,0,,.
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12.3 Space C? and the Helmholtz equation
We make an asatz
FWo,y—y+) = e P h(y—, y+).

In particular, the coordinates y_o, y2 are renamed to y_, y4. We also simplify the names of
various operators in an obvious way.

Lie algebra C? x so(C?).
Cartan operator:
N =y 0y, —yi0,,.
Root operators:
B_=0,_,
By =0y, .
Weyl symmetry. Flip
(Y- y+) = (Y u-)-

Helmholtz operator:

Kez = =1+ 20, 0,

Symmetries:
NIC([:Z = IC([:ZN; (124&)
BiKc2 = K2 By (12.4b)
T’Ccz == K:(CzT. (124C)

12.4 Balanced (F; operator

We introduce the coordinates

Y=Y+ Y-
w = , u=,/—. (12.5)
2 V v+

Lie algebra C? x so(C?). Cartan operator:

N = uo,.

Root operators:

oyt M
B+—um<w Ow 2), (12.6)
11 Ny

Weyl symmetry. Flip:

Th(w,u) = h(w, %)



Symmetries of hypergeometric equation 75

Helmholtz operator:

N2
’CCZZ awwaw—m—l

Making an ansatz
h(w,u) = u*F(w),

we obtain the balanced ¢F} operator. Symmetries for the root operators and the flip coincide
with the transmutation relation and the change of the sign of « in the balanced ¢F} operator,
respectively; see Subsect.

12.5 Standard ([} operator
Modify the coordinates (IZ3]) by replacing u with

U= y_ = uv2uw.
We then have

N = 10y,

Koz = wd2 + (14 N)dy, — 1.
Making an ansatz

h(w,u) = 1*F(w),
we obtain the standard ¢F; operator.
12.6 Factorizations
The factorizations

’C(cz — 2B_B+ - 1
- 2B+B_ - 1,

are completely obvious. They yield the factorizations of the o F; operator.
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