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Various approaches to quantization of vector fields, both massive (Proca) and massless

(Maxwell), are described. The massless limit of the Proca fields is discussed.

1. Introduction

In these notes I would like to discuss quantization of free vector fields on a flat

Minkowski space – both massless Maxwell fields and massive Proca fields. This sub-

ject, especially in the massless case, is covered in many standard textbooks.2,8–11,13

Therefore the reader may wonder why I consider such a topic.

In my opinion, this subject has several interesting and confusing aspects, which

are not sufficiently discussed in the literature. Therefore, I would like to discuss it

in this short note, based on my more comprehensive manuscript.4

First, there is more than one way to formulate its classical theory. One option is

to initially reduce the constraints and then formulate the theory. Or one can start

with the unreduced theory and then reduce.

Second, there are several ways to formulate the quantized theory of vector fields.

If one starts from the unreduced classical formalism, one can use either the formal-

ism with a (positive definite) Hilbert space or with an indefinite scalar product.

One could argue that the former formalism is more physical. Nowadays it is rarely

presented in the literature, however it is implicit in older works such as,9 and in a

more mathematical form in.12 The latter approach, known under the name of the

Gupta-Bleuler formalism, dates back only to the early 50’s.6,7 It is nowadays much

more popular in the literature. However, it is based on an obviously nonphysical

trick. At the end the physical theory does not depend on the approach that we

chose. However the route to the physical theory is quite different depending on the

approach.

Third, the limit m ↘ 0 is for vector fields rather subtle. Indeed, for m > 0 the

fields have 3 spin degrees of freedom, whereas for m = 0 only 2. In practice, physical

quantities are continuous wrt m, including the continuity at zero even though the

number of spin degree of freedom is discontinuous.

Note that both the massive and massless theories are Poincaré covariant. I will
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argue, however, that to describe the limit m2 ↘ 0 one has to choose a frame of

reference. Then the longitudinal spin decouples from the theory and the transversal

degrees of freedom converge to the potential in the Coulomb gauge, which is not

manifestly covariant. Thus the Poincaré covariance is broken twice, and the resulting

massless theory is covariant!

My note will start with a discussion of scalar quantum fields. Of course, this

subject is quite straightforward and covered in all textbooks on quantum field the-

ory. I do this in order to fix the notation and describe the general philosophy of

quantizing free fields.1,5 According to this philosophy one starts with a classical

Hamiltonian systems, and then describes its quantization. Classical Hamiltonians

for free fields are always quadratic – therefore quantization is rather straightforward

and the main problem is the infinite number of degrees of freedom.

One can sometimes hear the statement that the topic of free quantum fields is

very simple, because it is just the 2nd quantization of a unitary representation of

the Poincaré group – the spin 0 representation in the case of scalar fields. This view

does not capture the most important feature of the fields – their locality. Actually,

even the simple topic of scalar quantum fields can be formulated in a few equivalent

but seemingly different ways. Some of them we describe, because we need them in

the slightly more complicated case of vector fields.

Acknowledgments. The research of the author was supported in part by the

National Science Center (NCN) grant No. 2011/01/B/ST1/04929.

2. Scalar fields

2.1. Notation

We equip the Minkowski space R1,3 with the pseudo-Euclidean form of signature

(−+ ++)

xµx
µ = gµνx

µxν = −(x0)2 +

3∑
i=1

(xi)2.

R3 we will typically denote the spatial part of the Minkowski space obtained by

setting x0 = 0. If x ∈ R1,3, then ~x will denote the projection of x onto its spatial

R3.

A function on R1,3 is called space-compact iff there exists a compact K ⊂ R1,3

such that suppf is contined in the causal shadow of K.

2.2. Classical theory

Let YKG denote the space of real smooth space-compact solutions of the Klein-

Gordon equation

(−2 +m2)ζ = 0.

Let ζ̇ denote the time derivative of ζ.
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The space YKG has a natural symplectic form

ζ1ωζ2 =

∫ (
−ζ̇1(t, ~x)ζ2(t, ~x) + ζ1(t, ~x)ζ̇2(t, ~x)

)
d~x.

The Poincaré group R1,3 oO(1, 3) acts on YKG and CYKG by

r(a,Λ)ζ(x) := ζ
(
(a,Λ)−1x

)
.

For x ∈ R1,3, the classical fields φ(x), π(x) are defined as the functionals on

YKG given by

〈φ(x)|ζ〉 := ζ(x), 〈π(x)|ζ〉 := ζ̇(x).

Clearly,

(−2 +m2)φ(x) = 0, φ̇(x) = π(x).

The symplectic structure on the space YKG leads to a Poisson bracket on func-

tions on YKG:

{φ(t, ~x), φ(t, ~y)} = {π(t, ~x), π(t, ~y)} = 0,

{φ(t, ~x), π(t, ~y)} = δ(~x− ~y).

We can smear the fields with help of the pairing given by the symplectic form.

φ((ζ)) =

∫ (
−ζ̇(t, ~x)φ(t, ~x) + ζ(t, ~x)π(t, ~x)

)
d~x,

where ζ ∈ CYKG. Note that

{φ((ζ1)), φ((ζ2))} = ζ1ωζ2.

We introduce the (total) Hamiltonian, which is a quadratic function on YKG:

H :=

∫
1

2

(
π(t, ~x)2 +

(
~∂φ(t, ~x)

)2
+m2φ(t, ~x)2

)
d~x.

H generates the dynamics:

φ̇(x) = {H,φ(x)}, π̇(x) = {H,π(x)}.

Set ε(~k) :=
√
~k2 +m2. For

(
± ε(~k),~k

)
, the plane wave |k) is defined as

(x|k) =
1

(2π)3/2

√
2ε(~k)

eikx. (1)

The plane wave functionals act on YKG and are defined by

a(k) = iφ((|k))),

a∗(k) = −iφ((| − k))).

The fields can be written in terms of a∗(k), a(k):

φ(x) = (2π)−
3
2

∫
d~k√
2ε(~k)

(
eikxa(k) + e−ikxa∗(k)

)
.
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a(k), a∗(k) diagonalize simultaneously the Hamiltonian and symplectic form:

H =

∫
d~kε(~k)a∗(k)a(k),

iω =

∫
d~ka∗(k) ∧ a(k).

W(+)
KG will denote the subspace of CYKG consisting of positive frequency solutions,

that is,

W(+)
KG := {g ∈ CYKG : 〈a∗(k)|g〉 = 0}.

For g1, g2 ∈ W(+)
KG we define the scalar product

(g1|g2) := ig1ωg2 =

∫
〈a(k)|g1〉〈a(k)|g2〉d~k

The Hilbert space of positive energy solutions is denoted ZKG, and is the completion

of W(+)
KG in this scalar product.

We have a natural identification YKG 3 ζ 7→ ζ(+) ∈ W(+)
KG given by

ζ = ζ(+) + ζ(+).

This identification allows us to define a real scalar product on YKG:

〈ζ1|ζ2〉Y := Re(ζ
(+)
1 |ζ(+)

2 )

=

∫ ∫
ζ̇1(0, ~x)(−i)D(+)(0, ~x− ~y)ζ̇2(0, ~y)d~xd~y

+

∫ ∫
ζ1(0, ~x)(−∆~x +m2)(−i)D(+)(0, ~x− ~y)ζ2(0, ~y)d~xd~y,

where D(+) is the standard positive frequency solution of the Klein-Gordon equa-

tion, sometimes called the Wightman function.

2.3. Quantization

Let us describe the quantization of the Klein-Gordon equation. We will use the

“hat” to denote the quantized objects. It can be formulated in an axiomatized way.

There are several equivalent formulations – we will present three of them.

We start with an axiomatization which is the closest to the presentation given

in most standard textbooks on QFT. We want to construct a Hilbert space, a self-

adjoint operator and normalized vector (H, Ĥ,Ω) such that Ω is the unique ground

state of Ĥ. We will assume that HΩ = 0. We also want to have a self-adjoint

operator valued distribution

R1,3 3 x 7→ φ̂(x), (2)

such that, with π̂(x) :=
˙̂
φ(x),

(1) (−2 +m2)φ̂(x) = 0,
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(2) [φ̂(0, ~x), φ̂(0, ~y)] = [π̂(0, ~x), π̂(0, ~y)] = 0,

[φ̂(0, ~x), π̂(0, ~y)] = iδ(~x− ~y).

(3) eitĤ φ̂(x0, ~x)e−itĤ = φ̂(x0 + t, ~x).

(4) Ω is cyclic for φ̂(x).

The above problem has a solution, which is unique up to a unitary equivalence.

Let us describe this solution.

For the Hilbert space we choose the bosonic Fock space H = Γs(ZKG) and for

Ω the Fock vacuum. Suppose the annihilation operator is denoted by â(k). Then

φ̂(x) := (2π)−
3
2

∫
d~k√
2ε(~k)

(
eikxâ(k) + e−ikxâ∗(k)

)
and

Ĥ :=

∫
â∗(k)â(k)ε(~k)d~k

satisfy our requirements.

The orthochronous Poincaré group R1,3 o O↑(1, 3) is automatically unitarily

implemented on H, even though we did not demand it beforehand.

There exists an alternative equivalent formulation of the quantization program,

which uses smeared fields instead of point fields. It avoids the use of distributions

on the Minkowski space and uses more directly the natural degrees of freedom of

the fields.

Again, we want to construct (H, Ĥ,Ω) as above and a linear function

YKG 3 ζ 7→ φ̂((ζ))

with values in self-adjoint operators such that

(1) [φ̂((ζ1)), φ̂((ζ2))] = iζ1ωζ2.

(2) φ̂((r(t,~0)ζ)) = eitĤ φ̂((ζ))e−itĤ .

(3) Ω is cyclic for the algebra generated by φ̂((ζ)).

One can pass between these two versions of the quantization by

φ̂((ζ)) =

∫ (
−ζ̇(t, ~x)φ̂(t, ~x) + ζ(t, ~x)π̂(t, ~x)

)
d~x. (3)

Let us mention yet another equivalent approach to quantization, using the lan-

guage of C∗-algebras. This approach has its own conceptual advantages and is pop-

ular in a part of the mathematical physics community.

Let CCR(YKG) denote the (Weyl) C∗-algebra of the CCR over YKG. By defini-

tion, it is generated by W (ζ), ζ ∈ YKG, such that

W (ζ1)W (ζ2) = e−i
ζ1ωζ2

2 W (ζ1 + ζ2), W (ζ)∗ = W (−ζ).

R1,3 oO↑(1, 3) acts on CCR(YKG) by ∗-automorphisms defined by

r̂(a,Λ) (W (ζ)) := W
(
r(a,Λ)(ζ)

)
.
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We are looking for a cyclic representation of this algebra with the time evolution

generated by a positive Hamiltonian.

The solution is provided by the state on on CCR(YKG) defined by

ψ
(
W (ζ)

)
= exp

(
− 1

2
〈y|y〉Y

)
.

Let (Hψ, πψ,Ωψ) be the GNS representation generated by the state ψ. Then this

representation has the required properties. Hψ can be identified with Γs(ZKG) and

the fields are related to the Weyl operators by

πψ(W (ζ)) = eiφ̂((ζ)).

Note that there are other formulations of quantization of free fields. In partic-

ular, instead of starting with the Hamiltonian formalism with fields satisfying the

equations of motion (the on shell approach) one can start with the Lagrangian for-

malism where at the beginning fields are not subject to the equations of motion

(the off-shell approach) see eg.3 In our notes, however, we restrict ourselves to the

on-shell approach.

3. Massive photons

3.1. Classical theory based on the Proca equation

Let YPr denote the set of real smooth space-compact solutions of the Proca equation

−∂µ(∂µζν − ∂νζµ) +m2ζν(x) = 0. (1)

Note that (1) is equivalent to the Klein-Gordon equation together with the Lorentz

condition

(−2 +m2)ζν = 0,

∂νζν = 0.

YPr is a symplectic space with the symplectic form

ζ1ωPrζ2

=

∫ (
−
(
~̇ζ1(t, ~x)− ~∂ζ10(t, ~x)

)
~ζ2(t, ~x) + ~ζ1(t, ~x)

(
~̇ζ2(t, ~x)− ~∂ζ10(t, ~x)

))
d~x.

The Poincaré group R1,3 oO(1, 3) acts on YPr by

r(a,Λ)ζµ(x) := Λνµζν
(
(a,Λ)−1x

)
.

Introduce the functionals Aµ(x), called potentials, acting on ζ ∈ YPr as

〈Aµ(x)|ζ〉 := ζµ(x).

We also introduce the field tensor and the electric field vector:

Fµν(x) := ∂µAν(x)− ∂νAµ(x),

Ei(x) := F0i(x) = Ȧi − ∂iA0.
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The symplectic form leads to a Poisson bracket on functions on YPr:

{Ai(t, ~x), Aj(t, ~y)} = {Ei(t, ~x), Ej(t, ~y)} = 0,

{Ai(t, ~x), Ej(t, ~y)} = δijδ(~x− ~y). (2)

For ζ ∈ YPr, the corresonding spatially smeared potential is the functional on

YPr given by

A((ζ)) =

∫ (
−(~̇ζ(t, ~x)− ∂ζ0(t, ~x)) ~A(t, ~x) + ~ζ(t, ~x) ~E(t, ~x)

)
d~x. (3)

Note that

{A((ζ1)), A((ζ2))} = ζ1ωPrζ2.

The Hamiltonian generates the equations of motion:

H :=

∫ (1

2
~E2(t, ~x) +

1

2m2
(div ~E)2(t, ~x) + ( ~rot ~A)2(t, ~x)

+
m2

2
~A2(t, ~x)

)
d~x. (4)

For ~k ∈ R3, ~k 6= ~0 fix two spatial vectors ~e1(~k), ~e2(~k) that form an oriented

orthonormal basis of the plane orthogonal to ~k. Define

~e(~k,±1) :=
1√
2

(
~e1(~k)± i~e2(~k)

)
.

Introduce

u(k, 0) :=
( |~k|
m
,
ε(~k)~k

m|~k|

)
, (5)

u(k,±1) :=
(

0, ~e(~k,±1)
)
. (6)

A plane wave |k, σ) is defined as

(x|k, σ) =
1

(2π)3/2

√
2ε(~k)

uµ(k, σ)eikx, (7)

We also introduce the plane wave functionals

a(k, σ) = −iA((|k, σ)))

a∗(k, σ) = iA((| − k, σ))).

The potentials can be written in terms of a∗(k, σ), a(k, σ) as

Aµ(x) = (2π)−
3
2

∑
σ=0,±1

∫
d~k√
2ε(~k)

(
uµ(k, σ)eikxa(k, σ) + uµ(k, σ)e−ikxa∗(k, σ)

)
.
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We have accomplished the diagonalization of the Hamiltonian:

H =
∑

σ=0,±1

∫
d~kε(~k)a∗(k, σ)a(k, σ),

iωPr =
∑

σ=0,±1

∫
a∗(k, σ) ∧ a(k, σ)d~k.

W(+)
Pr will denote the subspace of CYPr consisting of positive frequency solutions:

W(+)
Pr := {g ∈ CYPr : 〈a∗(k, σ)|g〉 = 0, σ = ±, 0}.

For g1, g2 ∈ W(+)
Pr we define the scalar product

(g1|g2) := −ig1ωPrg2 =
∑

σ=0,±1

∫
〈a(k, σ)|g1〉〈a(k, σ)|g2〉d~k

We set ZPr to be the completion of W(+)
Pr in this scalar product.

3.2. Quantization of the Proca equation

We want to construct a Hilbert space H, a self-adjoint operator Ĥ having a ground

state Ω with HΩ = 0 and a self-adjoint operator-valued distribution R1,3 3 x 7→

Âµ(x) such that, setting
~̂
E =

~̇̂
A− ~∂Â0, we have

(1) −∂µ(∂µÂν − ∂νÂµ) +m2Âν(x) = 0,

(2) [Âi(0, ~x), Âj(0, ~y)] = [Êi(0, ~x), Êj(0, ~y)] = 0,

[Âi(0, ~x), Êj(0, ~y)] = iδijδ(~x− ~y),

(3) eitĤÂµ(x0, ~x)e−itĤ = Âµ(x0 + t, ~x),

(4) Ω is cyclic for Âµ(x).

The above problem has a solution, which is unique up to unitary equivalence,

which we describe below.

For the Hilbert space we should take the bosonic Fock spaceH = Γs(ZPr) and for

Ω the Fock vacuum. The annihilation operator is denoted by â(k, σ). The quantized

potentials are

Âµ(x) = (2π)−
3
2

∫
d~k√
2ε(~k)

∑
σ=0,±1

(
uµ(k, σ)eikxâ(k, σ) + uµ(k, σ)e−ikxâ∗(k, σ)

)

The quantum Hamiltonian is

Ĥ =
∑

σ=0,±1

∫
ε(~k)â∗(k, σ)â(k, σ)d~k.
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3.3. Classical theory based on the Klein-Gordon equation

In an alternative approach to vector fields one considers first the Klein-Gordon

equation on functions with values in R1,3:

(−2 +m2)ζµ(x) = 0 (8)

(without the Lorentz condition). The space of smooth real space-compact solutions

of (8) will be denoted by Yvec. We have a symplectic form on Yvec

ζ1ωvecζ2 =

∫ (
−ζ̇1ν(t, ~x)ζν2 (t, ~x) + ζ1ν(t, ~x)ζ̇ν2 (t, ~x)

)
d~x.

Aµ(x) is the linear functional on Yvec given by

〈Aµ(x)|ζ〉 := ζµ(x).

We clearly have

(−2 +m2)Aµ(x) = 0. (9)

The conjugate variable is Πµ(x) := Ȧµ(x). The Poisson structure is given by the

equal time brackets

{Aµ(t, ~x), Aν(t, ~y)} = {Πµ(t, ~x),Πν(t, ~y)} = 0,

{Aµ(t, ~x),Πν(t, ~y)} = gµνδ(~x− ~y).

The Hamiltonian is

H =

∫ (1

2
Πµ(t, ~x)Πµ(t, ~x) +

1

2
Aµ,i(t, ~x)Aµ,i(t, ~x) +

m2

2
Aµ(t, ~x)Aµ(t, ~x)

)
d~x.

The Hamiltonian is unbounded from below.

Introduce two subspaces of Yvec

YLor := {ζ ∈ Yvec : ∂µζ
µ = 0},

Ysc := {ζ ∈ Yvec : ζµ = ∂µχ, χ ∈ YKG}.

Note that Yvec = YLor ⊕ Ysc is a decomposition into symplectically orthogonal

subspaces each preserved by the Poincaré group. If ζ ∈ Yvec, then its projection

onto Ysc is

ζµsc :=
1

m2
∂µ∂νζ

ν .

Elements of YLor satisfy the Proca equation, so that we can make the identifi-

cation

YLor = YPr.

On YLor the forms ωvec and ωPr coincide.

Clearly, we are back with the theory introduced at the beginning. In particular,

the Hamiltonian restricted to YLor is now positive.
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In order to diagonalize the Hamiltonian, besides the polarization vectors u(k, σ)

with σ = 0,±1, we will need the scalar polarization vectors:

u(k, sc) :=
1

m
(ε(~k),~k).

The potentials can be decomposed as

Aµ(x) = (2π)−
3
2

∑
σ

∫
d~k√
2ε(~k)

(
uµ(k, σ)eikxa(k, σ) + uµ(k, σ)e−ikxa∗(k, σ)

)
.

Clearly, the restriction to YLor amounts to dropping all scalar components.

We diagonalize the Hamiltonian

H =
∑

σ=0,±1

∫
d~kε(~k)a∗(k, σ)a(k, σ)−

∫
d~kε(~k)a∗(k, sc)a(k, sc).

W(+)
vec will denote the subspace of CYvec consisting of positive frequency solutions:

W(+)
vec := {g ∈ CYPr : a∗(k, σ)g = 0, σ = ±, 0, sc}.

For g1, g2 ∈ W(+)
vec we have a natural scalar product

(g1|g2) := ig1ωvecg2

=
∑

σ=0,±1

∫
〈a(k, σ)|g1〉〈a(k, σ)|g2〉d~k −

∫
〈a(k, sc)|g1〉〈a(k, sc)|g2〉d~k

=

∫
gµν〈aµ(k)|g1〉〈aν(k)|g2〉d~k.

Unfortunately, the above definition gives an indefinite scalar product. We can also

introduce a positive definite scalar product, which unfortunately is not covariant:

(g1|g2)+ :=
∑
µ

∫
〈aµ(k)|g1〉〈aµ(k)|g2〉d~k.

The positive frequency space W(+)
vec completed in the norm given by (·|·)+ will be

called Zvec.

W(+)
vec can be in the obvious way decomposed into the direct sum of orthogonal

subspaces W(+)
Lor and W(+)

sc . On W(+)
Lor the scalar product (10) is positive definite, on

W(+)
sc it is negative definite. Their completions will be denoted ZLor and Zsc.

As usual, any ζ ∈ Yvec can be projected on W(+)
vec which allows us to define a

real scalar product on Yvec:

〈ζ1|ζ2〉Y := Re(ζ
(+)
1 |ζ(+)

2 )

=

∫ ∫
ζ̇1µ(0, ~x)(−i)D(+)(0, ~x− ~y)ζ̇µ2 (0, ~y)d~xd~y

+

∫ ∫
ζ1µ(0, ~x)(−∆~x +m2)(−i)D(+)(0, ~x− ~y)ζµ2 (0, ~y)d~xd~y.

Again, this scalar product is positive definite on YLor and negative definite on Ysc.
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3.4. Quantizations based on the Klein-Gordon equation

There exist at least two methods of quantization, which use the symplectic space

Yvec introduced in (8) as the starting point.

(1) The first insists on using only positive definite Hilbert spaces. Unfortunately,

the Hamiltonian turns out to be unbounded from below.

(2) In the Gupta-Bleuler approach the potentials Âµ(x) evolve with positive fre-

quencies. Unfortunately, it uses an indefinite scalar product.

In the quantization on a positive definite Hilbert space we use

Γs(ZLor ⊕Zsc) (10)

equipped with a positive definite scalar product. More explicitly, we replace a(k, σ)

with â(k, σ) for σ = 0,±1. We replace a(k, sc) with b̂∗(k, sc). They satisfy the

standard commutation relations

[â(k, σ), â∗(k′, σ′)] = δσ,σ′δ(~k − ~k′),
[b̂(k, sc), b̂∗(k′, sc)] = δ(~k − ~k′).

â(k, σ), b̂(k, σ) kill the vacuum:

â(k, σ)Ω = b̂(k, sc)Ω = 0.

The quantized potentials and Hamiltonian become

Âµ(x) = (2π)−
3
2

∑
σ=0,±1

∫
d~k√
2ε(~k)

(
uµ(k, σ)eikxâ(k, σ) + uµ(k, σ)e−ikxâ∗(k, σ)

)

+(2π)−
3
2

∫
d~k√
2ε(~k)

(
uµ(k, sc)eikxb̂∗(k, sc) + uµ(k, sc)e−ikxb̂(k, sc)

)
,

Ĥ =
∑

σ=0,±1

∫
d~kε(~k)â∗(k, σ)â(k, σ)−

∫
d~kε(~k)b̂∗(k, sc)b̂(k, sc).

Vectors built by applying fields satisfying the Lorentz condition to the vacuum

will be called physical. Equivalently, physical vectors are elements of the Fock space

built on W(+)
Lor . After the completion the physical space coincides with Γs(ZLor).

Thus we obtain the same space as in the method “first reduce, then quantize”.

It will be convenient to reformulate this method in the C∗-algebraic language.

Let CCR(Yvec) denote the (Weyl) C∗-algebra of the CCR over Yvec, that is, the

C∗-algebra generated by W (ζ), ζ ∈ Yvec, such that

W (ζ1)W (ζ2) = e−i
ζ1ωvecζ2

2 W (ζ1 + ζ2), W (ζ)∗ = W (−ζ).

Choose the state on CCR(Yvec) defined by

ψ
(
W (ζ)

)
(11)

= exp
(
− 1

2
〈ζ1|ζ2〉Y −

1

m2
〈∂µζµ|∂νζν〉Y

)
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Let (Hψ, πψ,Ωψ) be the GNS representation generated by the state ψ. Hψ can be

identified with Γs(ZLor ⊕Zsc) and the fields are related to the Weyl operators by

πψ(W (ζ)) = eiÂ((ζ)).

The Gupta-Bleuler approach also uses the symplectic space Yvec as the basic

input. It follows almost verbatim the usual steps of quantization of the Klein-Gordon

equation. We introduce the bosonic Fock space Γs(Zvec), which has an indefinite

scalar product and can be viewed as a Krein space.

We replace a(k, σ) by â(k, σ). The commutation relations have a wrong sign for

the scalar component:

[â(k, σ), â∗(k′, σ′)] = κσ,σ′δ(~k − ~k′).

The annihillation operators kill the vacuum:

â(k, σ)Ω = 0.

The expressions for the Hamiltonian and potentials are the same as in the clas-

sical case:

Ĥ =
∑

σ=0,±1

∫
d~kε(~k)â∗(k, σ)â(k, σ)−

∫
d~kε(~k)â∗(k, sc)â(k, sc).

Âµ(x) = (2π)−
3
2

∑
σ

∫
d~k√
2ε(~k)

(
uµ(k, σ)eikxâ(k, σ) + uµ(k, σ)e−ikxâ∗(k, σ)

)
.

Similarly as in the previous method, vectors created by applying fields satisfying

the Lorentz condition to the vacuum will be called physical. On the space of physical

vectors the scalar product is positive definite and after the completion coincides with

Γs(ZLor).

4. Massless photons

4.1. Classical theory based on the Maxwell equation

If we set m = 0 in the Proca equation we obtain

−∂µ (∂µζν(x)− ∂νζµ(x)) = 0, (1)

which we will call the Maxwell equation. It has to be treated separately from the

Proca equation, because of the gauge invariance. It is invariant w.r.t. the replace-

ment of ζµ with ζµ+∂µχ, where χ is an arbitrary smooth function on the space-time.

This property poses problems both for the classical and quantum theory.

The space of smooth real space compact solutions of the Maxwell equation is

denoted Y
M̃ax

. It is equipped with a gauge-invariant presymplectic form:

ζ1ωM̃ax
ζ2

=

∫ (
−
(
~̇ζ1(t, ~x)− ~∂ζ10(t, ~x)

)
~ζ2(t, ~x) + ~ζ1(t, ~x)

(
~̇ζ2(t, ~x)− ~∂ζ10(t, ~x)

))
d~x.
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We say that a solution ζ of the Maxwell equation is in the Coulomb gauge if

ζ0 = 0, div~ζ = 0.

Note that every ζ ∈ Y
M̃ax

is gauge-equivalent to a unique solution of the Maxwell

equation in the Coulomb gauge, denoted by ζCoul.

We have three equivalent characterizations of solutions that physically describe

the zero configuration, as described in the following easy proposition:

Proposition 4.1. Let ζ ∈ Y
M̃ax

. We have the following equivalence:

ζ ∈ Kerω
M̃ax

⇔ ζCoul = 0 ⇔ ζ = ∂χ.

Define YMax to be Y
M̃ax

divided by the gauge equivalence. By Proposition 4.1

YMax coincides with the symplectic reduction of Y
M̃ax

:

YMax := Y
M̃ax

/Kerω
M̃ax

.

Obviously, it is equipped with a natural symplectic form ωMax.

Let Aµ(x) denote the functional on Y
M̃ax

given by

〈Aµ(x)|ζ〉 := ζµ(x). (2)

Obviously, Aµ(x) is not defined on YMax.

We introduce also the functional ACoul
µ (x) on Y

M̃ax
, called the classical potential

in the Coulomb gauge,

ACoul
0 (x) := 0, ~ACoul(x) := ~A(x)− ~∂∆−1div ~A(x).

Note that

〈ACoul
µ (x)|ζ〉 = 〈Aµ(x)|ζCoul〉 = ζCoul

µ (x).

ACoul(x) does not depend on the gauge, hence can be interpreted as a functional

on YMax. It is not, however, Lorentz covariant.

We also introduce Lorentz covariant functionals Fµν(x) on Y
M̃ax

, called the

fields:

〈Fµν(x)|ζ〉 := ∂µζν(x)− ∂νζµ(x).

They also do not depend on the gauge, hence can be interpreted as functionals on

YMax.

We will write Ei(x) = F0i(x). Clearly, ~E = ∂t ~A
Coul and

div ~ACoul(x) = 0, div ~E(x) = 0. (3)

In what follows we will usually drop the subscript Coul from ACoul(x), even

though this introduces a possible ambiguity with A(x) acting on Y
M̃ax

.

The symplectic structure on the space YMax leads to a Poisson bracket on the

level of functions on YMax:

{A i(t, ~x), A j(t, ~y)} = {Ei(t, ~x), Ej(t, ~y)} = 0,

{A i(t, ~x), Ej(t, ~y)} =

(
δij −

∂i∂j
∆

)
δ(~x− ~y).
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For ζ ∈ YMax the corresponding spatially smeared potential is a functional on

YMax given by

A((ζ)) =

∫ (
−ζ̇µ(t, ~x)Aµ(t, ~x) + ζµ(t, ~x)Eµ(t, ~x)

)
d~x.

Note that

{A((ζ1)), A((ζ2))} = ζ1ωζ2.

A((ζ)) depends on ζ only modulo gauge transformations and is Lorentz covariant.

In the mass zero case the plane waves |k, 0) and the plane wave functionals a∗(k, 0)

and a(k, 0) are ill defined. However the plane waves k,±1) and the corresponding

plane wave functionals a∗(k,±1) and a(k,±1) are well defined and can be used to

express the potentials as

Aµ(x)

= (2π)−
3
2

∑
σ=±1

∫
d~k√
2ε(~k)

(
uµ(x, σ)eikxa(k, σ) + uµ(x, σ)e−ikxa∗(k, σ)

)
.

Plane wave functionals diagonalize the Hamiltonian and the symplectic form:

H =
∑
σ=±1

∫
d~kε(~k)a∗(k, σ)a(k, σ),

iωMax =
∑
σ=±1

∫
a∗(k, σ) ∧ a(k, σ)d~k.

W(+)
Max will denote the subspace of CYMax consisting of classes of solutions that

in the Coulomb gauge have positive frequencies.

For g1, g2 ∈ W(+)
Max we define the scalar product

(g1|g2) := ig1ωMaxg2 =
∑
σ=±1

∫
〈a(k, σ)|g1〉〈a(k, σ)|g2〉d~k.

The definition of W(+)
Max depends on the choice of coordinates. It is however easy

to see that the space W(+)
Max is invariant w.r.t. R1,3 oO↑(1, 3).

We set ZMax to be the completion of W(+)
Max in this scalar product.

We can identify YMax with W(+)
Max and transport the scalar product onto YMax,

which for ζ1, ζ2 is given by

〈ζ1|ζ2〉Y := Re(ζ
(+)
1 |ζ(+)

2 )

=

∫ ∫ (
ζ̇Coul
1i (0, ~x)(−i)D(+)(0, ~x− ~y)ζ̇Coul

2i (0, ~y)d~xd~y

+

∫ ∫
ζCoul
1i (0, ~x)(−∆~x)(−i)D(+)(0, ~x− ~y)ζCoul

2i (0, ~y)d~xd~y.
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4.2. Quantization based on the Maxwell equation

The quantization of the Maxwell equation is similar to that of the Proca equation

described in Subsect. 3.2. Condition (1) is replaced with

−2Âi(x) = 0, ∂iÂi(x) = 0, Â0(x) = 0.

Condition (2) is replaced by

[Â i(0, ~x), A j(0, ~y)] = [Êi(0, ~x), Êj(0, ~y)] = 0,

[Âi(0, ~x), Êj(0, ~y)] = i

(
δij −

∂i∂j
∆

)
δ(~x− ~y).

The above problem has a solution unique up to a unitary equivalence. We set

H := Γs(ZMax). The annihilation operators are denoted by â(k, σ). Ω will be the

Fock vacuum. We set

Â,i(x) := (2π)−
3
2

∫
d~k√
2ε

∑
σ=±1

(
ui(k, σ)eikxâ(k, σ) + ui(k, σ)e−ikxâ∗(k, σ)

)
,

The quantum Hamiltonian is

Ĥ :=
∑
σ=±1

∫
â∗(k, σ)â(k, σ)ε(~k)d~k.

The group R1,3 oO↑(1, 3) acts on H.

Here is the C∗-algebraic version of the above construction. Let CCR(Y
M̃ax

)

denote the (Weyl) C∗-algebra of canonical commutation relations over Y
M̃ax

. By

definition, it is generated by W (ζ), ζ ∈ Y
M̃ax

, such that

W (ζ1)W (ζ2) = e−i
ζ1ωM̃ax

ζ2

2 W (ζ1 + ζ2), W (ζ)∗ = W (−ζ).

R1,3 oO↑(1, 3) acts on CCR(Y
M̃ax

) by ∗-automorphisms defined by

r̂(a,Λ) (W (ζ)) := W
(
r(a,Λ)(ζ)

)
.

We are looking for a cyclic representation of this algebra with the time evolution

generated by a positive Hamiltonian.

Consider the state on CCR(Y
M̃ax

) defined for ζ ∈ Y
M̃ax

by

ψ
(
W (ζ)

)
= exp

(
− 1

2
〈ζ|ζ〉Y

)
.

Note that the state is gauge and Poincare invariant. Let (Hψ, πψ,Ωψ) be the

GNS representation. Hψ is naturally isomorphic to Γs(ZMax). Ωψ can be identified

with the vector Ω. πψ(W (ζ)) can be identified with eiÂ((ζ)). In particular, if ζ1 and

ζ2 are gauge equivalent, then Â((ζ1)) = Â((ζ2)). However, Â(x) (in the original sense,

not in the Coulomb gauge) is not well defined.
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4.3. Classical theory based on the d’Alembert equation

So far, our treatment of the massless vector fields was based on the Coulomb gauge,

which depends on the choice of the temporal coordinate. One can ask whether

massless vector fields can be studied in a manifestly covariant fashion.

Let Ξ be an arbitrary space-time function. The Maxwell equation allow us to

impose a generalized Lorentz condition

∂µA
µ = Ξ. (4)

The Maxwell equation together with (4) imply

−2Aµ = ∂µΞ. (5)

The function Ξ has no physical meaning. Therefore it is natural to adopt the

simplest choice Ξ = 0, that is the usual Lorentz condition, for which (5) reduces to

the d’Alembert’s equation for vector valued functions

−2Aµ = 0.

We will discuss this approach in what follows.

Recall that the Proca equation is equivalent to the Klein-Gordon equation for

vector fields together with the Lorentz condition. Therefore, one can first develop

its theory on the symplectic space Yvec, and then reduce it to the subpace YLor, as

described before.

One can follow a similar route for the Maxwell equation. However, there is a

difference: the reduction by the Lorentz condition is insufficient, one has to make

an additional reduction.

Anyway, let us start by introducing the space Yvec, the form ωvec, the subspace

YLor and the potentials Aµ(x), as for the Proca equation except that now m = 0.

In the massive case YLor was symplectic (that means, the form ωvec restricted

to YLor was nondegenerate). This is no longer true in the massless case. Instead,

YLor is coisotropic. (That means, if ζ is symplectically orthogonal to YLor, then

ζ ∈ YLor).

YLor is a subspace of Y
M̃ax

and on YLor the forms ω
M̃ax

and ωvec coincide. The

following fact is easy to show:

Proposition 4.2. Any ζ ∈ Y
M̃ax

is gauge equivalent to an element of YLor.

Therefore, the symplectically reduced YLor coincides with the symplectically

reduced Y
M̃ax

, that is, with YMax. This shows that both approaches to the Maxwell

equation are equivalent.

W(+)
Lor will denote the subspace of CYLor consisting of solutions that have positive

frequencies.

For g1, g2 ∈ W(+)
Lor we define the scalar product

(g1|g2) := ig1ωvecg2

= igCoul
1 ωvecg

Coul
2 . (6)
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Note that the definition of (6) does not depend on the choice of coordinates and is

invariant wrt. the group R1,3 oO↑(1, 3).

The scalar product is positive semidefinite, but not strictly positive definite. Let

W(+)
Lor,0 be the subspace of elements W(+)

Lor with a zero norm. W(+)
Lor,0 consists of pure

gauges. The spaceW(+)
Lor /W

(+)
Lor,0 has a nondegenerate scalar product. Its completion

is naturally isomorphic to the space ZMax.

We have a natural identification of YLor withW(+)
Lor given by the obvious projec-

tion. For ζ ∈ YLor we will denote by ζ(+) the corresponding element of W(+)
Lor . This

identification allows us to define a positive semidefinite scalar product on YLor:

〈ζ1|ζ2〉Y := Re(ζ
(+)
1 |ζ(+)

2 )

=

∫ ∫
ζ̇Coul
1i (0, ~x)(−i)D(+)(0, ~x− ~y)ζ̇Coul

2i (0, ~y)d~xd~y

+

∫ ∫
ζCoul
1i (0, ~x)(−∆~x)(−i)D(+)(0, ~x− ~y)ζCoul

2i (0, ~y)d~xd~y.

4.4. Quantizations based on the d’Alembert equation

One can try to use the symplectic space Yvec of real vector valued solutions of the

Klein-Gordon equation as the basis for quantization. In the literature, this starting

point is employed by two approaches.

(1) The first, which we call the approach with a subsidiary condition has the ad-

vantage that it uses only positive definite Hilbert spaces. Unfortunately, in this

approach there are problems with the potential Âµ(x). Besides, the full Hilbert

space turns out to be non-separable.

(2) In the Gupta-Bleuler approach the potentials Âµ(x) are well defined and covari-

ant. Unfortunately it uses indefinite scalar product spaces.

Let us start to describe the first approach. It is convenient to use the C∗-algebraic

formulation described in Subsect. 3.4. In particular, CCR(Yvec), the (Weyl) C∗-

algebra of canonical commutation relations over Yvec, is well defined also for m = 0

and is invariant wrt the Poincaré group.

Strictly speaking, the spaces Yvec and hence the algebras CCR(Yvec) are different

for various m. We can identify them by using the initial conditions at t = 0.

Recall that in the massive case

(Ω|Â((ζ))
2
Ω) = 〈ζ|ζ〉Y +

2

m2
〈∂µζµ|∂νζν〉Y . (7)

Clearly, if m↘ 0, (7) is divergent to +∞ for ζ 6∈ YLor and equals 〈ζ|ζ〉Y for ζ ∈ YLor.

So, the following state on CCR(Yvec) is the limit of the state that was considered

for the Proca equation:

ψ
(
W (ζ)

)
=

{
exp

(
− 1

2 〈ζ|ζ〉Y
)
, ζ ∈ YLor,

0, ζ 6∈ YLor.
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Let (Hψ, πψ,Ωψ) denote the GNS representation for this state. We have an

identification

J : Hψ → l2 (Yvec/YLor,Γs(ZMax)) . (8)

To describe this identification, first note that Yvec/YLor can be parametrized by

smooth space-compact functions

Ξ = ∂µζ
µ,

which can be called the values of the Lorentz condition. For each Ξ choose ζΞ ∈ Yvec

such that ∂µζ
µ
Ξ = Ξ. We demand that(

Jπψ
(
W (ζΞ)

)
Ωψ

)
(Ξ) =

{
Ω, ∂µζ

µ = Ξ,

0, ∂µζ
µ 6= Ξ.

Then J is given by

(
Jπψ

(
W (ζ)

)
Ωψ
)

(Ξ) =

{
e

i
2 ζωvecζΞeiÂ((ζ−ζΞ))Ω, ∂µζ

µ = Ξ,

0, ∂µζ
µ 6= Ξ.

Note that Hψ is non-separable – it is a direct sum of superselection sectors corre-

sponding to various values of the Lorentz condition.

Special role is played by the (separable) subspace corresponding to the Lorentz

condition ∂µA
µ(x) = 0. On this subspace, the fields are equivalent to the usual

quantization obtained by the method “first reduce, then quantize”.

Note that πψ(W (ζ)) maps between various sectors of (8) if ∂µζ
µ 6= 0. The

unitary group R 3 t 7→ πψ (W (tζ)) is strongly continuous if and only if ∂µζ
µ = 0.

If this is the case, we can write πψ(W (ζ)) = eiÂ((ζ)). We have Â((ζ1)) = Â((ζ2)) if in

addition ζ1 differs from ζ2 by a pure gauge. Â((ζ)) is ill defined if ∂µζ
µ 6= 0.

The approach that we described above, restricted to the 0th sector was typical

for older presentations, eg. Jauch and Rohrlich.9 However, without the language of

C∗-algebras it is somewhat awkward to describe. One usually says that the Lorentz

condition ∂µÂ
µ(x) = 0 is enforced on the Hilbert space of states and constitutes a

subsidiary condition.

The Gupta-Bleuler approach follows the same lines as in the massive case until

we arrive at the algebraic Fock space built onW(+)
Lor . As we know, the scalar product

onW(+)
Lor is only semidefinite. We factorW(+)

Lor by the null space of its scalar product,

obtaining W(+)
Max. We complete it, obtaining ZMax and we take the corresponding

Fock space Γs(ZMax) – thus the resulting physical theory is the same as with the

other quantizations.

5. The m → 0 limit

In order to understand the m → 0 limit let us consider quantum vector field in-

teracting with an external conserved current, that is a function R1,3 3 x 7→ Jµ(x)
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satisfying

∂µJ
µ(x) = 0.

We assume that Jµ is a Schwarz function on the space-time. (Massive and massless)

quantum fields interacing with Jµ satisfy the equation

−∂µ
(
∂µÂν(x)− ∂νÂµ(x)

)
+m2Âν(x) = Jν(x). (9)

The corresponding scattering operator can be computed exactly. In particular, for

a positive mass it is

Ŝ = exp

(
i

2

∫
dkJ i(k)

1

m2 + k2 − i0

(
gij −

kikj

m2 + ~k2

)
J i(k)

− i

2

∫
dk

1

~k2 +m2
|J0(k)|2

)

× exp

−i
∑

σ=0,±1

∫
d~ka∗(k, σ)

uµ(k, σ)√
2ε(~k)

Jµ(k)


× exp

−i
∑

σ=0,±1

∫
d~ka(k, σ)

uµ(k, σ)√
2ε(~k)

Jµ(k)


= Ŝtr ⊗ Ŝlg,

(Jµ(k) denotes the Fourier transform of Jµ(x)). Here the transversal scattering

operator is

Ŝtr = exp

(
i

2

∫
dkJ i(k)

1

m2 + k2 − i0

(
gij −

kikj
k2

)
Jj(k)

− i

2

∫
dk

1

~k2 +m2
|J0(k)|2

)

× exp

−i
∑
σ=±1

∫
d~ka∗(k, σ)

uµ(k, σ)√
2ε(~k)

Jµ(k)


× exp

−i
∑
σ=±1

∫
d~ka(k, σ)

uµ(k, σ)√
2ε(~k)

Jµ(k)


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and converges as m ↘ 0 to the scattering operator for the massless theory in the

Coulomb gauge. The longitudinal scattering operator is

Ŝlg = exp

(
i

2
m2

∫
dkJ i(k)

1

m2 + k2 − i0

kikj

(m2 + ~k2)~k2
Jj(k)

)

× exp

−i

∫
d~ka∗(k, 0)

uµ(k, 0)√
2ε(~k)

Jµ(k)


× exp

−i

∫
d~ka(k, 0)

uµ(k, 0)√
2ε(~k)

Jµ(k)

 .

This can be rewritten as

Ŝlg = exp

(
i

2
m2

∫
dk

| ~J · ~k|2

(m2 + k2)(m2 + ~k2)~k2

)

× exp

(
−1

2

∫
d~k
m2|J0(k)|2

2ε(~k)~k2

)

× exp

i

∫
d~ka∗(k, 0)

mJ0(k)

|~k|
√

2ε(~k)


× exp

i

∫
d~ka(k, 0)

mJ0(k)

|~k|
√

2ε(~k)

 ,

where the integral on the first line should be understood as the principal value.

Thus Ŝlg, under rather general circumstances, converges to 1l as m↘ 0.
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