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Quantum Electrodynamics is an extremely successful physical theory, in spite

of its mathematical problems. Its perturbative predictions agree with exper-

imental values in a spectacular way. They are, perhaps, one of the greatest

achievements of human science.

The famous example is the anomalous magnetic moment of the electron:

ge = 2.00231930436118(26) experiment (Gabrielse et al, 2023);

ge = 2.00231930436092(43)(5) theory (the first bracket is the uncertainty

of the finestructure constant, the second –theoretical uncertainty

(difference between 5-loop contribution according to Volkov and Kinoshita).

ge has a rather clean and well-understood perturbative expansion (it follows

from scattering of free electrons in an external magnetic field).



Another great success of QED is the precise computation of bound state

energies. Their real part gives the famous Lamb shift.

Here the theoretical problem is polluted by effects from outside of QED: the

finite radius of the nucleus, weak and strong interactions. I will say more about

the comparison of theory and experiment at the end of my talk.

Theoretical (perturbative) derivation of bound state energies in QED is much

more intricate than that of the magnetic moment. In my opinion, this derivation

is not understood in a satisfactory way. I would like to formulate it as a rigorous

mathematical question.

I am not a professional in this subject, just a dillettante. However, I know

a few specialists, and I coorganized a small workshop in the Institute Henri

Poincaré in 2013 on this topic. We were asked to organize a panel discussion.

I will start with my recollections of this discussion.
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“BUT THERE IS NO HAMILTONIAN”

According to Quantum Mechanics, a physical system is described by a Hilbert

space with a distinguished self-adjoint operator called Hamiltonian that gener-

ates the dynamics.

QED is a quantum theory, so one could expect this kind of a description. Un-

fortunately, it is difficult to find a well-defined Hilbert space and a Hamiltonian

in textbooks on QED, or more generally, on Quantum Field Theory. So what

is the main object of QFT if it is not a Hamiltonian? Most textbooks are not

very clear about this point.

One possible answer, stated eg. in Itzykson-Zuber, is the following: it is the

collection of time-ordered n-point vacuum correlation functions.



Why Hamiltonians are not good?

Suppose a physical system is described by a (huge) Hilbert space H. The

dynamics is described by a (poorly known) Hamiltonian H. Inside H we have

a (relatively small) subspace H0, which is well understood. We can write

H =

[
H00 H01

H10 H11

]
.

Suppose that the initial state belongs to H0 and we can measure the final

state if it falls into H0. The probability of a measurement is the square of the

absolute value of the corresponding amplitude:

(Ψ+|e−itHΨ−), Ψ+,Ψ− ∈ H0.



Measurable quantities can be described by the Laplace transform of the ex-

pectation values

−i

∫ ∞
0

(Ψ+|e−itHΨ−)eitEdt =
(
Ψ+|(E1l−H)−1Ψ−

)
.

where ImE > 0.

Now, by the (Feshbach-)Schur formula(
Ψ+|(E1l−H)−1Ψ−

)
=
(
Ψ+|(E1l0 −Heff(E))−1Ψ−

)
, (1)

where

Heff(E) := H00 −H01(E1l1 −H11)−1H10.



Thus complete physical information about the subsystem H0 is contained not

in an energy-dependent dissipative effective Hamiltonian E 7→ H(E). We do

not need to know whether it is derived from a self-adjoint Hamiltonian on a

bigger space!

Assume that the spectrum of (the big) H is absolutely continuous. Then the

effective Hamiltonian can often be extended in E to the real axis, so that

1

i

(
Heff(E + i0)−Heff(E + i0)∗

)
≤ 0, E ∈ R.

Often it can be even extended below the real axis, to the non-physical sheet of

the complex plane. Its singularities will be called bound state energies. Typically

they have a negative imaginary part.



Why time-ordered correlation functions are good?
Suppose that Ω is the ground state of H and

φ[f ] =

∫
φ(ξ)f (ξ)dξ

is a family of auxiliary operators called fields, which for simplicity we assume to

be self-adjoint. We will write

φ[t, f ] := eitHφ[f ]e−itH =

∫
φ(t, ξ)f (ξ)dξ

for these operators in the Heisenberg picture.



The time-ordered correlation functions (also called Green functions) are de-

fined as (
Ω
∣∣T(φ(tn, ξn) · · ·φ(t1, ξ1)

)
Ω
)

They are often measurable!

Indeed, suppose the experimentalist can prepare the state Ω in distant past,

and he/she can measure Ω in distant future. We also suppose that he/she

can perturb the dynamics in a controllable way by adding to the Hamiltonian

a field, so that the dynamics is generated by

H [f ] := H + φ[f ].



Thus the resulting amplitude

lim
t+,−t−→∞

(
Ω
∣∣Texp

(
− i

∫ t+

t−
H [f (t)]dt

)
Ω

)

=

(
Ω
∣∣Texp

(
− i

∫ ∞
−∞

φ[t, f (t)]dt
)

Ω

)

=

∞∑
n=0

(−i)n

n!

∫
· · ·
∫ (

Ω
∣∣T(φ(tn, ξn) · · ·φ(t1, ξ1)

)
Ω
)

×f (tn, ξn) · · · f (t1, ξn)dtndξn · · · dt1dξ1

is expressed in terms of time-ordered correlation functions.



Two-times Green functions
One can also consider a slightly different picture of a realistic experiment. Let

us assume that the space of experimentally accessible states H0 have the form

ΨF :=

∫ ∫
· · ·
∫
F (ξn . . . , ξ1)φ(ξn) · · ·φ(ξ1)Ωdξn · · · ξ1

for some fixed values of n and some space of functions F . The corresponding

amplitudes (
ΨF+

∣∣e−i(t+−t−)HΨF−

)
=

∫
· · ·
∫

dξ+
1 · · · dξ−1 F+(ξ+

n+, . . . , ξ
+
1 )F−(ξ−n−, . . . , ξ

−
1 )

×
(

Ω
∣∣φ(t+, ξ+

1 ) · · ·φ(t+, ξ+
n+)φ(t−, ξ−n−) · · ·φ(t−, ξ−1 )Ω

)
are expressed in terms of two-times Green functions.



Taking the Laplace transform of two-times Green functions wrt t = t+ − t−

we obtain the effective Hamiltonian:(
ΨF+

∣∣(E −Heff(E)
)−1

ΨF−

)
.

Clearly, two-times Green functions can be obtained as limits of the usual

time-ordered Green functions.(
Ω
∣∣φ(t+, ξ+

1 ) · · ·φ(t+, ξ+
n+)φ(t−, ξ−n−) · · ·φ(t−, ξ−1 )Ω

)
= lim

ε↘0

(
Ω
∣∣T(φ(t+1,ε, ξ

+
1 ) · · ·φ(t+n+,ε, ξ

+
n+)φ(t−n−,ε, ξ

−
n−) · · ·φ(t−1,ε, ξ

−
1 )
)
Ω
)
,

t+j,ε := t+ + ε(n− j), t−j,ε := t− − (n− j)ε.



Quantum Electrodynamics
QED is a perturbative theory of charged particles interacting with (massless)

photons. By Furry’s Theorem, QED amplitudes without external photons de-

pend only on even powers of e. Therefore, in practice instead of e one uses the

finestructure constant α = e2

4π~c.

We will always assume that charged particles are massive. One can also as-

sume that photons have a (small) mass µ. Then, to my understanding QED

rigorously produces a formal power series in α for renormalized Green func-

tions, uniquely fixed by the physical masses of all particles and their charges.

In addition, for charged bosons one needs to put a condition on the value of 4-

point function. (One should apply the Bogoliubov-Parasiuk-Hepp-Zimmermann

renormalization scheme with the photon propagator in the Feynman gauge. Al-

ternatively, one can define it by renormalization flow equations à la Polchinski).



Because of the infrared problem only selected quantities, called infrared safe

have a limit as the photon mass µ goes to zero. One can expect that bound

state energies are among them.

The usual approach uses e (or, equivalently, α) as the small parameter. It

allows us to compute e.g. inclusive scattering cross-sections of various processes

involving free particles. This is described in every textbook,

The theory with e = 0 corresponds to noninteracting charged particles and

photons. We will not see bound states in the perturbative treatment. This is

not surprising: in the usual Quantum Mechanical N -body problem the situation

is analogous.

Fortunately, there are at least two approaches, where bound states can be

seen already at the zeroth approximation.



QED in external potentials
Suppose that some of the particles are so heavy, that they can be treated just

as the sources of the electromagnetic field moving along prescribed trajectories.

Then we can use QED with both external and quantized electromagnetic poten-

tials. In the Lagrangian for charged particles we replace eAµ with eAµ +Aext
µ ,

where Aext
µ is a prescribed function on spacetime. (Note that there is no small

constant e in front of Aext
µ ).



Setting e = 0, beside independent photons, we obtain independent charged

particles in an external potential. The theory of charged particles is quadratic,

and hence well understood nonperturbatively. In principle their Green functions

are well defined.

If Aext
µ is stationary, singularities of Green functions correspond to bound

states of the (one-body) Dirac/Klein-Gordon Hamiltonian.

Then one can again use e (or α) as the small parameter to add radiative

corrections.



This approach is used most often to take into account the potential Zα|~x| gen-

erated by the nucleus, especially in heavily charged ions such as Uranium, for

which Zα is not a small parameter.

Mathematical problem: Does this method yield a systematic algorithm for

the bound state energy as a (formal and probably divergent) power series in α

and lnα? If so, describe this algorithm. If not, at which order it breaks down?

Note that above a certain order (6?) this is perhaps an academic question,

irrelevant for, say, Hydrogen, because pure QED is polluted by effects of a finite

size of the nucleus, weak interactions, etc.



Nonrelativistic limit of QED
In the nonrelativistic limit of QED we expect to obtain the many-body Schrödinger-

Coulomb Hamiltonian of several species of particles. Photons are not in the

picture any more.

For each bosonic “relativistic species”, we have two “nonrelativistic species”

corresponding to particles and antiparticles, which in the fermionic case have

spin 1
2.



The Hamiltonian is the sum of kinetic terms and 2-body interaction terms.

For every species p the kinetic term is

1

2mp

∫
d~xa∗p(~x)(−∆)ap(~x)

For every pair of species p 6= q the interaction term is

1

2

∫
d~x

∫
d~ya∗p(~x)a∗q(~y)

αzpzqe
−µ|~x−~y|

|~x− ~y|
aq(~y)ap(~x).



Clearly, the many-body Schrödinger-Coulomb Hamiltonian is a well defined

self-adjoint operator. Its Green functions are well defined nonperturbatively

and one can study rigorously their singularities. They correspond to true bound

states and metastable states (resonances) of N -body subsystems.

It is possible (although not easy) to treat Schrödinger-Coulomb Green func-

tions as the zeroth approximation to QED Green functions. One can use 1
c , or

equivalently α, as the small parameter. e is kept constant.

One can also often treat m
M as a small parameter.



This approach is applicable only to systems with small charges. For practi-

cal reasons, one usually treats only few particle systems. Typical applications

include

1. positronium,

2. Hydrogen with nucleus of finite mass,

3. Helium.

Mathematical problem: Similarly as previously, does this method yield a sys-

tematic algorithm for the bound state energy as a power series in α and lnα?



The two lowest levels of Hydrogen are 1s and 1p1
2
. According to the Dirac

equation they should coincide. QED corrections make them sligthly different.

This difference (or actually the main part of it) is called the Lamb shift.

The sharpness of energy levels is limited by various effects. One of them is

the natural breadth of the lines. Another is the hyperfine splitting due to the

magnetic momentum of the nucleus. The latter is taken into account by a

weighted average of all relevant levels. There are also problems due to various

non-QED contributions. One of them is the radius of the proton—this has been

measured recently independently with the help of muonic atoms.

Here are the relatively recent values of the Lamb shift:

1057.8298(32) MHz — experiment (Hessels et al, 2019)

1057.83412(23)(13) MHz — theory (Yerokhin, Pachucki, Patkóš, 2018)
The first bracket is the uncertainty within QED, the second bracket is non-

QED uncertainty. New unpublished results of Yerokhin decrease the first bracket.
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