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Abstract
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Hartree–Fock–Bogolyubov problem by using the Cartesian deformed
harmonic-oscillator basis. In the new version, we implemented the following
new features: (i) zero-range three- and four-body central terms, (ii) zero-range
three-body gradient terms, (iii) zero-range tensor terms, (iv) zero-range
isospin-breaking terms, (v) finite-range higher-order regularized terms, (vi)
finite-range separable terms, (vii) zero-range two-body pairing terms, (viii)
multi-quasiparticle blocking, (ix) Pfaffian overlaps, (x) particle-number and
parity symmetry restoration, (xi) axialization, (xii) Wigner functions, (xiii)
choice of the harmonic-oscillator basis, (xiv) fixed omega partitions, (xv)
consistency formula between energy and fields, and we corrected several errors
in the previous versions.

Keywords: nuclear DFT, harmonic-oscillator basis, HFODD

S Supplementary material for this article is available online

1. Introduction

The method of solving the Hartree–Fock (HF) equations in the Cartesian harmonic oscillator
(HO) basis was presented in [1]. Seven versions of the code HFODD were previously pub-
lished in seven independent publications: (v1.60r) [2], (v1.75r) [3], (v2.08i) [4], (v2.08k) [5],
(v2.40h) [6], (v2.49t) [7] and (v2.73y) [8]. Version (v2.08i) [4] introduced solutions of the
Hartree–Fock–Bogolyubov (HFB) equations. Below, we refer to these publications by using
roman capitals II–VIII. We also acknowledge earlier applications of the Cartesian deformed
HO basis to the solution of the nuclear self-consistent problem [9, 10]. The user’s guide
for version (v2.40h) is available in [11] and the user’s guide for the present version (v3.06h)
will be published in [12]. The full distribution of the version (v3.06h) of the code HFODD can
be found in the supplemental material (https://stacks.iop.org/JPG/48/102001/mmedia). The
code home page is at http://fuw.edu.pl/ d̃obaczew/hfodd/hfodd.html, and the code repository
is at https://webfiles.york.ac.uk/HFODD/. The repository is meant to serve as the first point
of contact for users wishing to run the code. It contains the full downloadable distribution of
the version (v3.06h) of the code HFODD along with numerous examples of the input data
files accompanied with the corresponding output files. In the future, the repository will be
dynamically upgraded; it will contain future distributions of the code along with any bugfixes
implemented before the next version of HFODD will have been published in a journal. It will
also contain descriptions of new features and examples of new input data files.

The present guide is a long write-up of the new version (v3.06h) of the code HFODD.
This extended version supersedes all previous versions of the program. It features a number of
new implementations listed in section 2. In serial mode, the new version (v3.06h) of the code
HFODD remains fully compatible with all previous versions. One should note, however, that
in the new version (v3.06h), features of the parallel mode were not thoroughly tested, and the
new developments are not recommended for use in parallel mode. In the same way, options
related to temperature or fission were not in the main focus of the present developments and
should be considered fragile. Otherwise, information provided in previous publications [1–8]
remains valid, unless explicitly mentioned in the present long write-up.
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The user must have access to various BLAS, LAPACK and LINPACK subroutines, which
should be either pre-installed on a given system or downloaded from the Netlib Repository
at the University of Tennessee, Knoxville: http://netlib.org/. Otherwise, generic versions of
subroutines are also included in the HFODD distribution, available in the supplemental mate-
rial and from the code repository at https://webfiles.york.ac.uk/HFODD/, and can be compiled
along with the main program and its modules.

Version (v3.06h) of the code HFODD is free software. Anyone can redistribute it and/or
modify it under the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the license, or any later version. Code HFODD is distributed
in the hope that it will be useful, but without any warranty; without even the implied warranty
of merchantability or fitness for a particular purpose. See the GNU General Public License at
http://gnu.org/licenses/, for more details. The authors will gladly receive any communication
regarding the code. However, no dedicated workforce is available for providing user support
of any kind.

In section 2, we review the modifications introduced in version (v3.06h) of the code
HFODD. Section 3 lists all additional new input keywords and data values, introduced or
modified in version (v3.06h). The rules of building the input data file were defined in section
II-3 [2] and in the serial mode of version (v3.06h) they remain exactly the same. These rules
specify the generic structure of the input data file, irrespective of which specific keywords are
used. In particular, the keywords can be read in any order and, unless explicitly stated in their
description, they are independent of one another. In every new version of the code HFODD, the
list of keywords grows and covers new implementations, but they always abide by the same
rules specified in section II-3 [2]. With the new keywords introduced in the present version
(v3.06h) of the code HFODD, the list of available keywords already contains 311 items and
their descriptions are scattered over nine different publications. The new user’s guide [12] will
contain comprehensive coverage of the complete information.

2. Modifications introduced in version (v3.06h)

2.1. Zero-range three- and four-body central terms

In his seminal article [13], Skyrme suggested complementing an effective two-body interaction
with a contact three-body term. He also underlined the fact that such a three-body interac-
tion, averaged over one of the particles, gives a contribution to the two-body contact term
proportional to the local scalar density ρ0. This observation motivated the use of a two-body
contact density-dependent two-body term by Vautherin and Brink [14]. Their interaction was
later extended to include the possibility of having different weights for its spin-direct and spin-
exchange parts and, possibly, a nonlinear dependence on the density with a power α. It is
usually written as,

v̂3(i, j) =
1
6

t3
(
1 + x3P̂σ

i j

)
ρα0
(
Ri j

)
δ
(
ri j

)
, (1)

where Ri j and ri j are the center-of-mass and relative positions of the interacting particles. This
general density-dependent two-body interaction cannot be related to an underlying three-body
force (even in the case where x3 and α are set to 1) but provides a phenomenological represen-
tation of many-body effects [14]. We recall that this term does not completely obey the Pauli
exclusion principle and it generates self-interaction terms.

It was pointed out that the latter features might prevent the unambiguous implementation
of the multi-reference (MR) extensions of nuclear energy density functionals (EDFs) [15–20].
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In addition, non-integer values of α can lead to multivalued energy kernels in MR calculations
[17, 21]. Therefore, it is interesting to go back to Skyrme’s original idea and to consider a
zero-range gradientless three-body interaction. The form implemented in version (v3.06h) of
the code HFODD is the one defined in [22, 23],

v̂3(i, j, k) = 3 u0 δ(ri j) δ(rik). (2)

In the literature, t3 = 3u0 is often used for the coupling constant instead [14, 24]. Skyrme’s
article [13] also proposed a gradientless four-body contact interaction, which in some recent
beyond mean-field calculations [25] was used to complement the three-body pseudopotential
of equation (2). The form implemented in version (v3.06h) of the code HFODD is again the
one defined in [22],

v̂4(i, j, k, l) = 12 v0 δ(ri j) δ(rik) δ(ril). (3)

The factors three and twelve in equations (2) and (3), respectively, count the number of different
permutations of the coordinates in the delta functions [22]. The contributions from these two
terms in the particle–hole and like-particle particle–particle channels of the energy density as
detailed in [22] are fully implemented in version (v3.06h) of the code HFODD.

2.2. Zero-range three-body gradient terms

To allow for a greater flexibility of the three-body contribution to the EDF, one can also consider
contact interactions with gradients. Terms of this kind have occasionally been considered since
the 1970s, see [23] for an overview, but to date have never been used systematically. The most
general isospin-invariant central three-body pseudo-potential with two gradients can be written
as [23],

v̂(i, j, k) = u1

{(
1 + y1P̂σ

i j

) 1
2

[
k̂ † 2

i j δ(rik) δ(r jk) + δ(rik) δ(r jk) k̂ 2
i j

]

+
(
1 + y1P̂σ

ik

) 1
2

[
k̂ † 2

ik δ(ri j) δ(r jk) + δ(ri j) δ(r jk) k̂ 2
ik

]

+
(
1 + y1P̂σ

jk

) 1
2

[
k̂ † 2

jk δ(ri j) δ(rik) + δ(ri j) δ(rik) k̂ 2
jk

]}

+ u2

{[
1 + y21P̂σ

i j + y22
(
P̂σ

ik + P̂σ
jk

)]
k̂ †

i j δ(rik) δ(r jk) · k̂i j

+
[
1 + y21P̂σ

ik + y22
(
P̂σ

i j + P̂σ
jk

)]
k̂ †

ik δ(ri j) δ(r jk) · k̂ik

+
[
1 + y21P̂σ

jk + y22
(
P̂σ

i j + P̂σ
ik

)]
k̂ †

jk δ(ri j) δ(rik) · k̂ jk

}
, (4)

with the five parameters u1, y1, u2, y21 and y22. The EDF resulting from the three-body contact
generators can be expressed as an integral over a local energy density that is built out of the
same normal and pairing densities as the standard Skyrme EDF. Contributions from the three-
body contact generators to the particle–hole and like-particle T = 1 particle–particle terms in
the EDF, as elaborated in [23], are fully implemented in version (v3.06h) of the code HFODD.

2.3. Zero-range tensor terms

The Skyrme interaction, in the majority of practical implementations, does not include tensor
terms. In version (v3.06h) of the code HFODD, we implemented the conventional zero-range
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tensor interaction considered already by Skyrme in his seminal work [13], see also [26–31]
and references therein:

v̂T(i, j) =
1
2

te
{(

3(σi · k′)(σ j · k′) − (σi · σ j)k
′2) δ (ri j

)
+ δ

(
ri j

) (
3(σi · k)(σ j · k) − (σi · σ j)k

2)}
+ to

{
3
2

(σi · k′)δ
(
ri j

)
(σ j · k) +

3
2

(σ j · k′)δ
(
ri j

)
(σi · k)

− (σi · σ j)k
′δ
(
ri j

)
k
}

, (5)

where the first term acts in the relative S- and D-waves, whereas the second component acts in
the P-wave. Parameters te and to are new low-energy coupling constants (LECs), which have
to be adjusted to experimental data.

The contact tensor interaction contributes to both the time-even (bilinear in time-even den-
sities) and time-odd (bilinear in time-odd densities) terms of the local EDF. The tensor part of
the generalized Skyrme EDF in the time-even (t-even) sector is:

HT,t−even
t (r) = CJ

t J2
t +ΔHT,t−even

t (r)

= (CJ
t + BJ

t )J2
t + BX

t
1
2

{
(Tr Jt)2 + Tr J2

t

}
, (6)

where t = 0, 1 denotes isoscalar and isovector densities, respectively. Within the conventional
pn-separable DFT, these are simply sums and differences of the neutron and proton densities,
respectively. The standard local spin-current pseudotensor density Jt,μν(r) is defined through
the nonlocal spin density st,ν(r, r′) as:

Jt,μν(r) =
1
2i

{
(∇μ −∇′

μ)st,ν(r, r′)
}

r=r′
(7)

with the sum of the squares of its components conventionally denoted as J2
t ,

J2
t ≡

∑
μν

J2
t,μν. (8)

The tensor part of the generalized Skyrme EDF in the time-odd (t-odd) sector is:

HT,t−odd
t (r) = CT

t st · Tt + CΔs
t st ·Δst +ΔHT,t−odd

t (r)

= (CT
t + BT

t )st · Tt + (CΔs
t + BΔs

t )st ·Δst

+ BF
t st · Ft + B∇s

t (∇ · st)
2, (9)

where s and T are the standard spin and spin-kinetic densities, respectively, and the tensor-
kinetic density [27] F reads,

Ft,ν(r) =
1
2

[∑
μ

{
(∇ν∇′

μ +∇′
ν∇μ)st,μ(r, r′)

}]
r=r′

. (10)

In equations (6) and (9), CJ
t , CT

t and CΔs
t denote the functional tensor coupling constant

due to the central field, as defined in [1, 32]. Tensor interaction (5) adds to these terms its own
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contributions, BJ
t , BT

t and BΔs
t , respectively, but these additions do not change the structure of

the functional. However, the tensor force also adds new terms of the functional specified by
terms ΔHT,t−even

t and ΔHT,t−odd
t , and by coupling constants BX

t , BF
t and B∇s

t . The new func-
tional coupling constants BX

t , BF
t and B∇s

t for t = 0, 1, are encoded under the names CSCT_X,
CKIT_X and CSPT_X for X = P,M, respectively, and printed in the code’s output.

The twelve new coupling constants BJ
t , BX

t , BT
t , BΔs

t , BF
t and B∇s

t for t = 0, 1 relate to the
two parameters of the tensor interaction te and 3to as,

BJ
0 =

1
8

(te + 3to), BJ
1 = −1

8
(te − to), (11)

BΔs
0 =

3
32

(te − to), BΔs
1 = − 1

32
(3te + to), B∇s

t = 3BΔs
t (12)

BX
t = −3BJ

t , BT
t = −BJ

t , BF
t = 3BJ

t . (13)

In order to elucidate the role of the last term on the right-hand side of equation (6) it is
convenient to decompose the spin-current pseudotensor density (7) into pseudoscalar, vector
and rank-2 pseudotensor components [27], which gives equation (8) in the form:

J2
t =

1
3

(
J(0)

t

)2
+

1
2

Jt
2 +

∑
μν

(
J(2)

t,μν

)2
. (14)

Moreover, since,

1
2

⎧⎨
⎩
(∑

μ

Jt,μμ

)2

+
∑
μν

Jt,μνJt,νμ

⎫⎬
⎭ =

2
3

(
J(0)

t

)2 − 1
4

Jt
2 +

1
2

∑
μν

(
J(2)

t,μν

)2
, (15)

the contribution ΔHT,t−even
t (r) can be rewritten into the following form (see [27]):

ΔHT,t−even
t = BJ0

t

(
J(0)

t

)2
+ BJ1

t Jt
2 + BJ2

t

(
J(2)

t,μν

)2
, (16)

where,

BJ0
t = −5

3
BJ

t , BJ1
t =

5
4

BJ
t , and BJ2

t = −1
2

BJ
t . (17)

This means that the contact zero-range tensor force does not introduce new terms into the
time-even part of the Skyrme functional. It only modifies the conventional Skyrme EDF cou-
pling constants CJ0

t = 1
3 CJ

t , CJ1
t = 1

2 CJ
t and CJ2

t = CJ
t [27]. Hence, within the single-reference

DFT the effect of the tensor interaction can be mimicked by readjusting the Skyrme-force
values of CJ0

t , CJ1
t and CJ2

t , which explains why the tensor interaction is often neglected within
the standard Skyrme force. In particular, in version (v3.06h) of the code HFODD, separate
use of the coupling constants CJ0

t , CJ1
t and CJ2

t has not yet been implemented. Nevertheless, a
readjustment or, in general, a direct fit of the functional’s coupling constants to a dedicated set
of empirical data is well within the spirit of the single-reference DFT, which treats EDF as a
primary physical object [28, 30, 31]. One should bear in mind, however, that it breaks bonds
between the functional and the underlying interaction, which precludes its application within
the MR extensions due to singularities that appear in the energy kernels [17–20].

Values of the tensor LECs, te and to, can be determined through the large-scale multi-
parameter fit to masses, see e.g. [28, 30]. An alternative way was proposed in [29]. This
method is based on the simultaneous fit of the spin–orbit strength and tensor’s LECs to the
single-particle levels and spin–orbit splittings in double-magic nuclei 40Ca, 48Ca and 56Ni.
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2.4. Zero-range isospin-breaking terms

Isospin symmetry is not a fundamental symmetry of nature. At the fundamental level of quan-
tum chromodynamics, it is broken due to different masses and charges of constituent quarks.
At the energy scales typical for nuclear physics, where quarks and gluons are not resolvable
and the proper degrees of freedom are point-like nucleons, the isospin-symmetry breaking
(ISB) comes, predominantly, from long-range Coulomb interaction and, albeit to a much lesser
degree, from short-range effective ISB nuclear forces.

Effective nuclear force can be divided into four different classes following the scheme intro-
duced by Henley and Miller [33, 34]. Apart of the dominant class-I isoscalar force, there are
three different classes of ISB forces including class-II isotensor force, class-III isovector force
and class IV force, which mixes isospin already at the two-body level. In finite nuclei the
ISB effects manifest themselves very clearly already in the simplest observables, the nuclear
masses, through mirror displacement energy (MDE):

MDE = BE(T, Tz = −T) − BE(T, Tz = +T), (18)

and triplet displacement energies (TDEs):

TDE = BE(T = 1, Tz = −1) + BE(T = 1, Tz = +1) − 2BE(T = 1, Tz = 0). (19)

The MDEs and TDEs are almost exclusively sensitive to the charge-symmetry breaking (CSB
or class-III) and charge-independence breaking (CIB or class-II) terms in the nuclear Hamil-
tonian, respectively. Class-IV force will be neglected as no firm evidence of the effects related
to this force has been identified so far in many-body data.

It is well known that none of the displacement energies (18) or (19) can be reproduced
using models involving Coulomb interaction as the only source of the ISB, see [35–43] and
references cited therein. This deficiency concerns, in particular, the nuclear DFT including its
most popular realization based on Skyrme forces, which are isoscalar by construction.

In order to account for the MDEs and TDEs, we extended the conventional Skyrme interac-
tion by adding, first, the leading-order (LO) contact interactions of class-II and class-III [41]
and, subsequently, generalizing the ISB Skyrme interaction to the next-to-leading (NLO) order
in gradient expansion [43]. The introduced ISB terms read:

V̂ II(i, j) = tII
0

(
1 + xII

0 P̂σ
i j

)
δ
(
ri j

)
T̂ (i j)

+

[
1
2

tII
1

(
1 + xII

1 P̂σ
i j

) (
δ
(
ri j

)
k2 + k′2δ

(
ri j

))

+ tII
2

(
1 + xII

2 P̂σ
i j

)
k′δ

(
ri j

)
k
]

T̂ (i j), (20)

V̂ III(i, j) = tIII
0

(
1 + xIII

0 P̂σ
i j

)
δ
(
ri j

)
T̂ (i j)

z

+

[
1
2

tIII
1

(
1 + xIII

1 P̂σ
i j

) (
δ
(
ri j

)
k2 + k′2δ

(
ri j

))

+ tIII
2

(
1 + xIII

2 P̂σ
i j

)
k′δ

(
ri j

)
k
]

T̂ (i j)
z , (21)
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where P̂σ
i j represents the spin-exchange operator, ri j = ri − r j, k = 1

2i

(
∇i −∇ j

)
, and k′ =

− 1
2i

(
∇i −∇ j

)
are the standard relative-momentum operators acting to the right and left,

respectively, whereas T̂ (i j) = 3τ̂ (i)
3 τ̂ ( j)

3 − �̂τ (i) ◦ �̂τ ( j) and T̂ (i j)
z = τ̂ (i)

3 + τ̂ ( j)
3 are the isotensor and

isovector operators. The contributions to EDF from the isovector and isotensor forces read:

HIII
NLO =

1
2

tIII
0

(
1 − xIII

0

) (
ρ2

n − ρ2
p − s2

n + s2
p

)
+

1
4

tIII
1

(
1 − xIII

1

) (
τnρn − τpρp − Tn · sn + Tp · sp

)
+

1
4

tIII
2

(
1 + xIII

2

) (
3τnρn − 3τpρp + Tn · sn − Tp · sp

)
− 3

16
tIII
1

(
1 − xIII

1

) (
Δρnρn −Δρpρp −Δsn · sn +Δsp · sp

)
+

1
16

tIII
2

(
1 + xIII

2

) (
3Δρnρn − 3Δρpρp +Δsn · sn −Δsp · sp

)
− 1

4
tIII
1

(
1 − xIII

1

) (
j2n − j2p − J2

n + J2
p

)
− 1

4
tIII
2

(
1 + xIII

2

) (
3j2n − 3j2p + J2

n − J2
p

)
, (22)

HII
NLO =

1
2

tII
0

(
1 − xII

0

) (
ρ2

n + ρ2
p − 2ρnρp − 2ρnpρpn − s2

n − s2
p + 2sn · sp

+ 2snp · spn

)
+

1
4

tII
1

(
1 − xII

1

) (
τnρn + τpρp − τnρp − τpρn

− τnpρpn − τpnρnp − Tn · sn − Tp · sp + Tn · sp + Tp · sn

+ Tnp · spn + Tpn · snp

)
+

1
4

tII
2

(
1 + xII

2

)(
3τnρn + 3τpρp − 3τnρp

− 3τpρn − 3τnpρpn − 3τpnρnp + Tn · sn + Tp · sp − Tn · sp

− Tp · sn − Tnp · spn − Tpn · snp

)
− 3

16
tII
1

(
1 − xII

1

)
(Δρnρn

+Δρpρp −Δρnρp −Δρpρn −Δρnpρpn −Δρpnρnp

−Δsn · sn −Δsp · sp +Δsn · sp +Δsp · sn +Δsnp · spn

+Δspn · snp

)
+

1
16

tII
2

(
1 + xII

2

) (
3Δρnρn + 3Δρpρp − 3Δρnρp

− 3Δρpρn − 3Δρnpρpn − 3Δρpnρnp +Δsn · sn +Δsp · sp

−Δsn · sp −Δsp · sn −Δsnp · spn −Δspn · snp

)
− 1

4
tII
1

(
1 − xII

1

)
×
(

j2
n + j2p − 2jn · jp − 2jnp · jpn − J2

n − J2
p + 2Jn · Jp

+ 2Jnp · Jpn

)
− 1

4
tII
2

(
1 + xII

2

) (
3j2n + 3j2p − 6jn · jp − 6jnp · jpn

+ J2
n + J2

p − 2Jn · Jp − 2Jnp · Jpn

)
, (23)
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Table 1. Values of LECs for LO and NLO ISB forces adjusted to the experimental data
for the following parameterizations of the (isoscalar) Skyrme forces: SVISB

T , SVISB
T, SO,

SkM∗ISB and SLy4ISB. The t0 parameter is given in MeV fm3, whereas the t1 and t2
parameters are in MeV fm5.

LO approximation NLO approximation

Skyrme force t Class-II Class-III t Class-II Class-III

SVT t0 3.7 ± 0.4 −7.3 ± 0.3

t0 −16 ± 3 11 ± 2
t1 22 ± 3 −14 ± 4
t2 1 ± 1 −7.8 ± 0.8

SVT,SO t0 −6.7 ± 0.3

t0 5 ± 2
t1 −3 ± 3
t2 −7.4 ± 0.7

SkM∗ t0 5.2 ± 0.8 −5.4 ± 0.2
SLy4 t0 5.1 ± 0.8 −5.5 ± 0.2

where ρ, τ , s, T, j, and J denote the standard particle, kinetic, spin, spin-kinetic, current and
vector spin-current densities, respectively. It is important to emphasize that the contributions
of class-III local force (22) depend on the standard nn and pp densities. Therefore, this force
can be taken into account within the conventional pn-separable DFT approach. In contrast,
contributions due to the class-II force (23) depend explicitly on the mixed pn-densities and
require the use of pn-mixed DFT formulated in [44, 45] and implemented in the previous
version (v2.73y) of code HFODD [8] together with the isocranking method [44, 46, 47], which
allows control of the isospin degree of freedom.

The inclusion of spin-exchange terms in the ISB contact forces (20) and (21) leads to a
simple rescaling of the tII

i and tIII
i (for i = 0, 1 and 2) parameters. Hence, the spin-exchange

terms are effectively redundant and can be omitted from the ISB contact forces. Hence, the
LO (NLO) ISB forces introduce two (six) new LECs, which must be adjusted to the existing
data. Our studies [41, 43] show that the fitting strategy for the new LECs can be considerably
simplified for the following reasons. First, for the physically relevant values of the ISB LECs,
contributions of the ISB terms to the total binding energies appear to be relatively small (at
least this can be concluded from studies performed in the vicinity of the N = Z line). This
implies that the ISB terms can be treated as small perturbations to the Skyrme force with frozen
parameters. Second, the MDEs and TDEs are almost exclusively sensitive to the CSB and CIB
terms in the nuclear Hamiltonian, respectively. As a consequence, the isovector and isotensor
LECs can be adjusted separately through the global fit to the experimental MDEs and TDEs,
respectively. This strategy was applied to the SLy4 [48] and SkM∗ [49] forces as well as to the
two variants, SVT and SVT,SO (see [20, 50]), of the SV density-independent Skyrme interaction
[24] that can be used in the beyond-mean-field MR DFT calculations. The resulting parameters
are collected in table 1. They seem to be consistent with the values given in [42], where a
different fitting strategy was used. The adjusted LECs lead to an excellent global description
of the existing data on MDEs and TDEs in the isospin doublets and triplets, see [41, 43] for
further details.

9
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2.5. Finite-range higher-order regularized terms

Following the notation introduced in [51], see also [52–54], we define the Cartesian form of
the (non-antisymmetrized) central pseudopotential as,

VC(r′1r′2; r1r2) =
∑

n j

(
W (n)

j 1̂σ1̂τ + B(n)
j 1̂τ P̂σ − H(n)

j 1̂σP̂τ − M(n)
j P̂σP̂τ

)

× Ô(n)
j (k′, k)δ(r′1 − r1)δ(r′2 − r2)ga(r1 − r2), (24)

which contains the standard identity (1̂σ,τ ) and exchange (P̂σ,τ ) operators in the spin and isospin
spaces and a Gaussian formfactor,

ga(r) =
e−r2/a2(
a
√
π
)3 , (25)

defined by its width a. In equation (24), index n = 0, 2, . . . denotes the order of
differential operator Ô(n)

j (k′, k), index j = 1, 2, . . . numbers different operators of the
same order, and the relative-momentum operators are defined as k = (∇1 −∇2)/2i and
k′ = (∇′

1 −∇′
2)/2i. The standard Wigner, Bartlett, Heisenberg, and Majorana coupling con-

stants, W (n)
j , B(n)

j , H(n)
j and M(n)

j , can also be expressed by the strength parameters t(n)
j , x(n)

j , y(n)
j

and z(n)
j as,

W (n)
j = t(n)

j , B(n)
j = t(n)

j x(n)
j , H(n)

j = t(n)
j y(n)

j , M(n)
j = t(n)

j z(n)
j . (26)

Up to sixth order (n = 6), a full classification of operators Ô(n)
j (k′, k) was presented in

equations (39)–(54) of [51]. The EDF generated from the pseudo-potential functional genera-
tors for both the particle and pairing channels can be found in [55]. All fields are implemented
self–consistently in the present version (v3.06h) of the code HFODD and the computation
of the HO-basis spatial matrix elements of pseudopotentials is coded using the following
integrated-by-parts form:

〈n′
1n′

2|Ô(n)
j |n1n2〉 ≡

∫
dr′1 dr′2 dr1 dr2 δ(r′1 − r1)δ(r′2 − r2)ga(r1 − r2)

× Ô(n)
j (k′, k)ψn′1

(r′1)ψn′2
(r′2)ψn1 (r1)ψn2 (r2), (27)

whereψn(r) ≡ ψnxnynz(x, y, z) are the 3D deformed HO wave functions, equations (I-71)–(I-73)
[1].

Using the explicit expressions [51] for differential operators Ô(n)
j (k′, k), one can tediously

but straightforwardly rewrite them as sums of terms that are products of differential operators
acting in the x, y and z directions,

Ô(n)
j (k′, k) =

∑
m,l

K(n;m)
j;l Ô(mx )

lx
(k′x, kx)Ô

(my)
ly

(k′y, ky)Ô
(mz)
lz

(k′z, kz), (28)

where K(n;m)
j;l ≡ K

(n;mx ,my ,mz)
j;lx ,ly,lz

for mx + my + mz = n are integer coefficients and 1D differential

operators Ô(m)
l (k′, k) of order m = 0, 2, . . . and index l = 0, 1, . . . , m/2 are given by,

10
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Ô(m)
l (k′, k) ≡

(
(k′ 2 + k2)/2

)l(
k′k
)m/2−l

= 2−l
l∑

l′=0

(
l
l′

)
k′ m/2+2l′−lkm/2−2l′+l

. (29)

The matrix element given in equation (27) is thus equal to the sum of the products of 1D matrix
elements 〈n′

1n′
2|Ô

(m)
l |n1n2〉,

〈n′
1n′

2|Ô(n)
j |n1n2〉 =

∑
m,l

K(n;m)
j;l 〈nx

′
1nx

′
2|Ô(mx )

lx
|nx1nx2〉

× 〈ny
′
1ny

′
2|Ô

(my)
ly

|ny1ny2〉〈nz
′
1nz

′
2|Ô

(mz)
lz

|nz1nz2〉, (30)

where,

〈n′
1n′

2|Ô(m)
l |n1n2〉 =

∫
dr′1 dr′2 dr1 dr2 δ(r′1 − r1)δ(r′2 − r2)ga(r1 − r2)

× Ô(m)
l (k′, k)ψn′1

(r′1)ψn′2
(r′2)ψn1 (r1)ψn2 (r2), (31)

and where the 1D Gaussian form factor (25) reads ga(r) = e−r2/a2
/
(
a
√
π
)
.

The standard way to proceed, which for the local LO term Ô(0)
1 = 1 was developed in [56],

is to replace the products of HO wave functions ψn′1
(r1)ψn1 (r1) and ψn′2

(r2)ψn2 (r2) by sums
of the HO wave functions. Then, one can use the Moshinsky brackets to introduce the rel-
ative coordinate r1 − r2 on which the Gaussian form factor depends. At higher orders, this
approach requires the explicit treatment of terms that stem from expanding powers of relative-
momentum operators that appear in equation (29). Although this tedious procedure was imple-
mented up to fourth order in version (v3.06h) of the code HFODD, an alternative and more
compact procedure is to reverse the order of steps and begin by performing two Moshinsky
transformations,

ψn′1
(r′1)ψn′2

(r′2) =

n′1+n′2∑
N′=0

M
n′1n′2
N′ ψN′ (R′)ψn′1+n′2−N′(r′), (32)

ψn1 (r1)ψn2(r2) =
n1+n2∑
N=0

Mn1n2
N ψN(R)ψn1+n2−N(r), (33)

for R′ =
r′1+r′2√

2
, r′ =

r′1−r′2√
2

, R = r1+r2√
2

and r = r1−r2√
2

. Since in equation (29), the relative-

momentum operators k = −i√
2

∂
∂r and k′ = −i√

2
∂
∂r′ act only on wave functions ψn1+n2−N(r) and

ψn′1+n′2−N′ (r′), respectively, the integrals over R′ and r′ can be performed, which gives,

〈n′
1n′

2|Ô(m)
l |n1n2〉 =

(−1)m/2

2l+m/2

n′1+n′2∑
N′=0

M
n′1n′2
N′

n1+n2∑
N=0

Mn1n2
N

[∫
dRψN′ (R)ψN(R)

]

×

⎡
⎣ l∑

l′=0

(
l
l′

)∫
dr ψ(m/2+2l′−l)

n′1+n′2−N′ (r)ψ(m/2−2l′+l)
n1+n2−N (r)ga

(√
2r
)⎤⎦ , (34)

11
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where superscripts denote derivatives of wave functions: ψ(i)
n (r) = di

dri ψn(r). The orthogonality
of wave functions ψN(R) allows for the presentation of the final result as,

〈n′
1n′

2|Ô
(m)
l |n1n2〉 =

(−1)m/2

2l+m/2

min(n′1+n′2,n1+n2)∑
N=0

M
n′1n′2
N Mn1n2

N

×
l∑

l′=0

(
l
l′

)
C(m/2+2l′−l,m/2−2l′+l)

n′1+n′2−N,n1+n2−N (a), (35)

where,

C(i′ ,i)
n′,n (a) =

∫
dr ψ(i′)

n′ (r)ψ(i)
n (r)ga

(√
2r
)
. (36)

Similarly, as was shown in [56], relatively simple analytic expressions can be derived
for coefficients C(i′ ,i)

n′ ,n (a). However, these expressions involve alternating-sign sums of ratios
of large factorials and are thus prone to generating significant numerical instabilities [57,
58]. Here, we argue that using these analytical expressions in practical implementations is
not necessary. Indeed, a very simple and extremely stable numerical derivation based on
Gauss–Hermite quadratures is possible; it was already implemented in the previous version
(v2.73y) of HFODD [8] to treat the Gogny force.

In the context of the higher-order finite-range functional generators (24) discussed here, the
numerical implementation works as follows. First, we represent derivatives of the HO wave
functions (I-72) as,

ψ(i)
n (r) =

di

dri
ψn(r) ≡ bi+1/2H(i)

n (ξ)e−ξ2/2, (37)

where ξ = br is the position r scaled by the oscillator constant b =
√

mω/h̄, and H(i)
n (ξ) are

polynomials of order n + i, which can be easily derived from the standard Hermite polynomials
H(0)

n (ξ) and their first derivatives H(0)′
n (ξ), e.g.:

H(1)
n (ξ) = H(0)′

n (ξ) − ξH(0)
n (ξ), (38)

H(2)
n (ξ) =

(
ξ2 − 2n − 1

)
H(0)

n (ξ), (39)

H(3)
n (ξ) =

(
ξ2 − 2n − 1

)
H(0)′

n (ξ) −
(
ξ3 − (2n + 3)ξ

)
H(0)

n (ξ), (40)

H(4)
n (ξ) = 4ξH(0)′

n (ξ) +
(
ξ4 − (4n + 6)ξ2 + 4n2 + 4n + 3

)
H(0)

n (ξ). (41)

This allows one to represent equation (36) as,

C(i′ ,i)
n′,n (a) =

bi′+i

a
√
π

∫
dξ H(i′)

n′ (ξ)H(i)
n (ξ)e−

2+b2a2

b2a2 ξ2

=
bi′+i+1

√
π
√

2 + b2a2

∫
dη H(i′)

n′ (εη)H(i)
n (εη)e−η2

=
bi′+i+1

√
π
√

2 + b2a2

K∑
k=1

WkH(i′)
n′ (εηk)H(i)

n (εηk), (42)

12
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where,

ε =
ba√

2 + b2a2
, (43)

and Wk and ηk are, respectively, weights and nodes of the Gauss–Hermite quadrature of order
K = n′ + n + i′ + j + 1. For calculations employing the HO basis of up to N0 quanta in the
given Cartesian direction x, y, or z, and for derivatives up to fourth order, the quadrature of
order K = 2N0 + 5 thus gives the exact result, and no accumulation of numerical errors is
expected.

Exactly the same method can be used to evaluate the Moshinsky coefficients, which in their
exact analytical form (VI-63) [6] also involve numerically unstable alternating-sign sums of
ratios of large factorials. Indeed, by setting in equation (33) r1 = r2 ≡ r and inserting equation
(37) for i = 0, we obtain:

H(0)
n1

(ξ)H(0)
n2

(ξ) =
n1+n2∑
N=0

Mn1n2
N H(0)

N (
√

2ξ)H(0)
n1+n2−N(0). (44)

We now can multiply both sides by
√

2H(0)
N′ (

√
2ξ)e−2ξ2

, integrate over ξ, and use the orthog-
onality condition of the Hermite polynomials on the right-hand side. This finally gives,∫

dη H(0)
n1

(
η√
2

)
H(0)

n2

(
η√
2

)
H(0)

N (η)e−η2
= Mn1n2

N H(0)
n1+n2−N(0), (45)

where η =
√

2ξ. This allows one to determine the exact Moshinsky coefficients through a
numerically stable Gauss–Hermite quadrature of order K = n1 + n2 + N + 1,

Mn1n2
N =

(
H(0)

n1+n2−N(0)
)−1 K∑

k=1

WKH(0)
n1

(
ηk√

2

)
H(0)

n2

(
ηk√

2

)
H(0)

N (ηk). (46)

Therefore, equations (42) and (46) give an exact and numerically stable representation of
the 1D matrix elements (35) of higher-order generators. Furthermore, coefficients Mn1n2

N and

C(i′,i)
n′,n (a) have to be calculated only once and if needed, stored.

In the special case of local generators discussed in [52], the central pseudopotential (24)
reduces for W (n) ≡ W (n)

1 − W (n)
2 , B(n) ≡ B(n)

1 − B(n)
2 , H(n) ≡ H(n)

1 − H(n)
2 and M(n) ≡ M(n)

1 − M(n)
2

to,

V loc
C

(
r′1r′2; r1r2

)
=
∑

n

(
W (n)1̂σ 1̂τ + B(n)1̂τ P̂σ − H(n)1̂σP̂τ

− M(n)P̂σP̂τ
)
δ(r′1 − r1)δ(r′2 − r2)V (n)(r1 − r2), (47)

where,

V (n)(r) ≡ 2−nΔn/2ga(r), (48)

and where Δ is the standard differential Laplace operator. Explicitly, this gives:

V (0)
n (r) = ga(r), (49)

V (1)
n (r) =

1
a2

(
2

(
r2

a2

)
− 3

)
ga(r), (50)

13
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V (2)
n (r) =

1
a4

(
4

(
r4

a4

)
− 20

(
r2

a2

)
+ 15

)
ga(r), (51)

V (3)
n (r) =

1
a6

(
8

(
r6

a6

)
− 84

(
r4

a4

)
+ 210

(
r2

a2

)
− 105

)
ga(r). (52)

Similarly, as for the nonlocal operators above in equation (28), we can now rewrite the
potentials (48) as sums of terms that are products of powers of positions x, y, and z. That is,

V (n)(r) =
∑

m

K(n;m)xmx ymy zmz , (53)

where K(n;m) ≡ K(n;mx ,my ,mz) for 0 � mx + my + mz � n are integer coefficients. The matrix ele-
ment of two-body potential V (n)(r1 − r2) is thus equal to the sum of the products of 1D matrix
elements,

〈n′
1n′

2|V (n)|n1n2〉 =
1(

a
√
π
)3

∑
m

K(n;m)〈n′
x1

n′
x2
|(x1 − x2)mx e−(x1−x2)2/a2

× |nx1nx2〉〈n′
y1

n′
y2
|(y1 − y2)my e−(y1−y2)2/a2 |ny1ny2〉

× 〈n′
z1

n′
z2
|(z1 − z2)mz e−(z1−z2)2/a2 |nz1nz2〉, (54)

where,

〈n′
1n′

2|(r1 − r2)m e−(r1−r2)2/a2 |n1n2〉 =
∫

dr1 dr2 (r1 − r2)m e−(r1−r2)2/a2

× ψn′1
(r1)ψn′2

(r2)ψn1 (r1)ψn2(r2)

=
N̄∑

N=0

M
n′1n′2
N Mn1n2

N C(m)
n′1+n′2−N,n1+n2−N(a),

(55)

and where N̄ = min(n′
1 + n′

2, n1 + n2) and,

C(m)
n′,n(a) =

b1−m

√
π
√

2 + b2a2

K∑
k=1

WkH(0)
n′ (εηk)H(0)

n (εηk) × (εηk)m, (56)

for ε given in equation (43) and Wk and ηk being, respectively, weights and nodes of the
Gauss–Hermite quadrature of order K = n′ + n + m + 1.

2.6. Finite-range separable terms

The separable pairing force in the isovector 1S0 channel, introduced by Tian et al in the spher-
ical case [59] and by Nikšić et al in the 3D deformed case [60, 61], is implemented in version
(v3.06h) of the code HFODD. The general expression of this interaction in the 3D Cartesian
coordinates is,

14
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VS(r′1r′2; r1r2) =
(

W̃1̂σ 1̂τ + B̃1̂τ P̂σ − H̃1̂σP̂τ − M̃P̂σP̂τ
)

× δ(R′ − R)P(r′)P(r), (57)

where formfactor P(r) is equal to a sum of Gaussians (25),

P(r) =
K∑
k

Akgak (r), (58)

and r′ = r′1 − r′2, r = r1 − r2, R′ = 1
2 (r′1 + r′2) and R = 1

2 (r1 + r2) are the relative and center-
of-mass coordinates. To avoid redundancy with coupling constants W̃, B̃, H̃ and M̃, one should
use normalization

∑
k Ak = 1.

A detailed derivation of the matrix elements of the separable generators in zero order can be
found in [62] and references therein. This implementation was compared with an updated ver-
sion of the code HOSPHE [63], where the separable interaction was implemented in spherical
symmetry. The figure of [64] was reproduced up to a precision of 1 eV, therefore confirming
the accuracy of our implementation.

2.7. Zero-range two-body pairing terms

In version (v3.06h) of the code HFODD, all terms of the pairing functional [27] that correspond
to the Skyrme functional were implemented.

2.8. Multi-quasiparticle blocking

Quasiparticle blocking was initially introduced in version (v2.40h) of the code HFODD (see
VI) to allow for the description of odd-A or odd–odd paired nuclei. It consists of looking for a
solution of the HFB equations with as ansatz a vacuum |Φ〉 onto which a single-quasiparticle
excitationβ†

k is applied, |Φk〉 = β†
k |Φ〉. Specifically, at each iteration, the code selects the quasi-

particle state k in the matrix ϕ and exchanges its upper (B∗) and lower (A∗) components with
those (A, B) of its partner of opposite quasiparticle energy, see equations (VI-83)–(VI-86) [6].
According to the option requested by the user, see keywords BLOCKFIX_N or BLOCKFIX_P
in section VI-3.3 [6], blocked quasiparticle k may be kept the same throughout the calculation
or selected at each iteration as the one having the maximum overlap with a single-particle state
(or its time-reversed image) chosen beforehand.

In version (v3.06h) of the code HFODD, this method was extended to HFB states |Φk〉 with
an arbitrary number r of quasiparticle excitations k ≡ (k1, . . . , kr):

|Φk〉 =
r∏

ν=1

β†
kν
|Φ〉, (59)

where |Φ〉 is the HFB vacuum for the quasiparticle operators βk, k = 1, . . . , M. The wave
function in equation (59) is represented by the 2M × M matrices (ϕk,χk) obtained by swapping
the components of the blocked quasiparticles in the solutions of the HFB solution (ϕ,χ). For
instance, the wave functions associated with negative energies may schematically be written
as,

ϕk =

(
B∗

1 . . . Ak1 B∗
k1+1 . . . Akr . . . B∗

M

A∗
1 . . . Bk1 A∗

k1+1 . . . Bkr . . . A∗
M

)
. (60)
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Numerically, the quasiparticles kν , ν = 1 → r, defined via successive applications of the
procedure described above, whilst ensuring a given label, can be selected only once.

2.9. Pfaffian overlaps

Computation of the overlap kernels between HFB wave functions is of crucial importance in
MR calculations and for symmetry restoration. To date, these scalar products were most often
evaluated using the Onishi formula [65], which suffers from a sign ambiguity due to a square-
root appearing there. This limitation was then overcome by Robledo via a new expression
involving a Pfaffian [66]. Version (v3.06h) of the code HFODD includes a new module based
on an equivalent Pfaffian formulation derived in [67], which allows for determining the overlap
between two arbitrary, potentially blocked HFB states of the general form (59) as,

〈Φk|Φ′
k′ 〉 = (−1)M(M−1)/2(−1)r(r−1)/2pf

⎛
⎜⎜⎝

BTA BT p† BTq′T BTB′∗

−p∗B q∗p† q∗q′T q∗B′∗

−q′B −q′q† p′q′T p′B′∗

−B′†B −B′†q† −B′†p′T A′†B′∗

⎞
⎟⎟⎠ . (61)

This relation holds for non-normalized wave functions. Square matrices A and B (A′ and
B′) denote the usual blocks of the Bogolyubov transformation, which correspond to the
non-blocked HFB state |Φ〉 (|Φ′〉), whereas rectangular matrices p and q (p′ and q′) con-
tain components of the r (r′) blocked quasiparticle states, see [67]. In the case of single-
quasiparticle blocking, the latter matrices reduce to row vectors, whereas for non-blocked HFB
wave functions, the corresponding rows and columns do not appear in matrix (61).

Equation (61) is valid only for a complete quasiparticle space. Consequently, the Pfaffian
formula cannot be used when a cut-off in the space of quasiparticle states is implemented, see
section IV-3.1 [4]. Therefore, to use the Pfaffian formula, the pairing cut-off must be handled
within the two-basis method, see section VII-2.2.1 [7]. Moreover, since the Pfaffian formula
is based on associating the non-blocked (even) HFB state with the product of all quasiparticle
annihilation operators acting on the true vacuum, |Φ〉 ∝

∏
i β i|0〉, the number of quasiparticles

must be even. This implies that the dimension of the single-particle space generated by the
two-basis method must be even.

2.10. Particle-number and parity symmetry restoration

The HFB method accounts for pairing correlations through the breaking of the U(1) symmetry
associated with particle-number conservation. The above computation of overlaps allows us
to implement the restoration of correct proton and neutron numbers by projection after varia-
tion of a symmetry-unrestricted HFB state |Φ〉 [68]. In version (v3.06h) of the code HFODD,
projections of the total particle number A and isospin projection (IP) Tz = (N − Z)/2 were
implemented by introducing two new independent keywords. Activating only one of those
projections thus allows for a full particle-number-symmetry restoration for nuclei where one
of the species, protons or neutrons, is unpaired in |Φ〉. In future releases, this implementation
will be optimized by considering a 1D gauge-angle integration that allows for the simultane-
ous restoration of both proton- and neutron-number symmetries, according to the methodology
presented in [15] and routinely used in other implementations, see, e.g. [69].

Version (v3.06h) of the code HFODD also incorporates parity restoration by means of the
projector P̂π = (1 + πΠ̂)/2 whereπ = ± and Π̂ is the inversion transformation. Finally, a state
with good quantum numbers A, Tz, Iπ , M, and K is obtained as,
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|ATz; IπMK〉 = P̂AP̂TzP̂
I
MKP̂π|Φ〉

=
2I + 1
16π4

∫ π

0
dφ e−iφA

∫ π

0
dφT e−iφT Tz

∫
dΩDI∗

MK(Ω)eiφÂ eiφT T̂z R̂(Ω)(1 + πΠ̂)|Φ〉.

(62)

The operations detailed in section VI-2.1 [6] for the angular-momentum projection (AMP)
of Slater determinants were generalized to the HFB states. Quasiparticles ϕ̃T , transformed by
generic symmetry operators T̂ that appear in equation (62), read:

ϕ̃T =

(
T 0

0 T∗

)(
B∗

A∗

)
=

(
TB∗

T∗A∗

)
, for ϕ̃ =

(
B∗

A∗

)
, (63)

characterizing state |Φ〉 and T denoting the representation of T̂ in the single-particle basis.
Then, kernels of observables are computed according to the generalized Wick’s theorem [70]
in terms of the transition normal and pairing densities, and the overlap kernels are evaluated
according to equation (61).

In version (v3.06h) of the code HFODD, particle-number projection is realized by using
Gauss–Tchebyschev quadratures, whereas the discrete parity projector is applied explicitly.
The numerical treatment of the integration over the Euler angles Ω was described in section
VI-2.1 [6].

2.11. Axialization

In version (v3.06h) of the code HFODD, axial self-consistent solutions can be obtained by
projecting wave functions on the axial shape, with the symmetry axis oriented along the z axis.
This is achieved by projecting the particle-hole or pairing mean-field and/or particle-hole or
pairing density matrix (pairing tensor) on those corresponding to the axial symmetry. Specif-
ically, this is achieved by expanding the Cartesian harmonic-oscillator basis used by the code
on states having good quantum numbers Ωk, which are the eigenvalues of the z component of
the single-particle angular momentum. Then, at each iteration, only the matrix elements of the
particle-hole matrices that are diagonal in Ωk are kept and/or only the off-diagonal (Ωk,−Ωk)
matrix elements of the pairing matrices are kept. At convergence, an axial state is obtained
with all single-particle or quasiparticle states having good quantum numbers Ωk. The axial-
ization helps to stabilize the convergence of states, which at self-consistency are axial, but
during the convergence can wander towards non-axial deformations and thus converge slowly
or sometimes not at all.

2.12. Wigner functions

To perform the angular-momentum and isospin-projection calculations, previously the code
HFODD used the Wigner formula to compute the Wigner d functions, d j

m,n(θ). For j � 50, the
Wigner formula is known to suffer from a loss of precision [71], which is due to the fact that
with j � 1 and θ = 0, π, it relies on the cancellation of very large terms with alternating signs.

In [71], a robust procedure of computing the d functions was proposed. In this method, the
d functions were expended using the Fourier series. In [72], another method was proposed,
which was based on the diagonalization of the angular-momentum operator Jy in the basis of
eigenstates of Jz. Version (v3.06h) of the code HFODD, after implementing a few corrections,
uses the code published in [72].
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2.13. Choice of the harmonic-oscillator basis

To fix the HO basis used in the program (see section II-4 [2]), one needs to choose suitable
oscillator constants bk or, equivalently, oscillator frequencies ωk or oscillator lengths, Lk, in
three Cartesian directions,

bk =

√
mωk

h̄
, Lk =

√
h̄

mωk
, for k = x, y, z. (64)

There are many possible ways to determine bk or ωk. The methods implemented in version
(v3.06h) of the code HFODD are described below. They correspond to different values of the
variable INPOME set by using new functionalities of keyword FREQBASIS, see section 3.9,
which are described below.

(a) For the default value INPOME = 0, the code uses values of the basis-deformation input
parameters α2μ to define surface Σ:

Σ : R(θ,φ) = c(α)

⎛
⎝1 +

∑
λμ

αλμY∗
λμ(θ,φ)

⎞
⎠ , (65)

and then it determines the mean squared values of positions r2
k over the interior of Σ:

R2
k =

∫
r<R(θ,φ)

r2
k dV , k = x, y, z. (66)

Conditions,

ωxRx = ωyRy = ωzRz, (67)

and,

ωxωyωz = ω3
0, (68)

are then used to determine ωk, with ω0 calculated according to equation (I-3) [1].
Parameter c(α) is fixed by the condition that the volume V0 inside Σ is equal to,

V0 =
4
3
πR3

0, (69)

where R0 = r0A1/3, and r0 is given by variable R0PARM read under keyword
SURFACE_PAR, see section II-3.6 [2]. This prescription works well assuming that αλμ

are real and α21 = 0, which means, among others, that surface (65) is in the principal-axes
frame of the quadrupole deformation.

(b) For INPOME= 1, the oscillator frequencies ωk are given explicitly as input parameters of
the program; ωx = BASINX, ωy = BASINY, ωz = BASINZ.

(c) For INPOME = 2, the oscillator lengths Lk are given explicitly as input parameters of the
program; Lx = BASINX, Ly = BASINY, Lz = BASINZ.

(d) For INPOME = 3, the oscillator constants bk are given explicitly as input parameters of
the program; bx = BASINX, by = BASINY, bz = BASINZ.
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(e) For INPOME = 4, to calculate the oscillator lengths Lk the code uses the value of the
basis-deformation input parameter α20,

Lx = L0 exp(−
√

5
16π

α20), (70)

Ly = L0 exp(−
√

5
16π

α20), (71)

Lz = L0 exp(

√
5

4π
α20), (72)

in analogy to equation (1.88) in [70]. This prescription generates an axial basis. Here, the
code uses L0 =

√
2∗20.735 53/h̄ω0 for h̄ω0 = 1.2 ∗ 41 ∗ A−1/3.

(f ) For INPOME = 5, the code uses values of mass quadrupole constraints, Q̄20 and Q̄22 (in
barn), see keyword MULTCONSTR in section II-3.7 [2], to calculate β and γ deformation
parameters as,

β = C
√

Q̄2
20 + Q̄2

22, γ = atan (Q̄22/Q̄20), (73)

where,

C = 102

√
5π

3AR2
0

, R0 = r0A1/3, (74)

and r0 (in fm) is given by variable R0PARM read under keyword SURFAC_PAR, see
section II-3.6 [2]. Then, to fix frequencies ωk, the code employs conditions (67) and (68)
with,

Rk = R0

(
1 +

√
5

4π
β cos(γ − 2kπ/3)

)
. (75)

(g) For INPOME= 6, the code uses values of the basis-deformation input parameters α20 and
α22 to calculate oscillator frequencies ωk as,

ωk = ω0 exp

(
−
√

5
4π

β cos(γ − 2kπ/3)

)
, (76)

where,

β =
√
α2

20 + 2α2
22, γ = atan (

√
2α22/α20), (77)

and ω0 is calculated according to equation (I-3) [1].
(h) For INPOME= 7, the code uses values of mass multipole constraints, Q̄λμ (in barn λ/2),

see keyword MULTCONSTR in section II-3.7 [2], to calculate Bohr deformations αλμ

according to the method presented in section VI-2.5 [6], see also keyword BOHR_BETAS
in section VI-3.5 [6]. Values of αλμ are then used in the algorithm developed for INPOME
= 0, see point (a) above.

Options INPOME = 5 and 7 were developed to automatically adjust the HO basis to the
quadrupole constraints requested in, e.g. fission-barrier calculations. However, a new function-
ality of keyword MULTCONSTR, see section 3.9, allows for reading values of Q̄λμ irrespective
of whether they are used as constraints.
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OptionsINPOME= 0 and 4–7 ignore values of input data BASINX, BASINY and BASINZ.
Options INPOME = 0, 4 and 6 use values of the basis-deformation input parameters α2μ

read under keyword SURFAC_DEF, see section II-3.6 [2]. However, for IBCONT = 1, see
keyword CONT_BASIS, values read from the basis file override those read under keyword
SURFAC_DEF.

Note also that in the parallel mode of the code HFODD, the basis deformation can be
automatically adjusted by setting IBASIS = 1 under keyword BASISAUTOM, see section
VIII-3.1.4 [8].

2.14. Fixed Ω partitions

In version (v3.06h) of the code HFODD, without pairing and for broken simplex symmetry,
arbitrary partitions of particles among different Ω blocks were implemented, where Ω denotes
the eigenvalue of a given Cartesian component of the single-particle angular momentum on
the axial-symmetry axis. To this end, every single-particle state with the calculated projection
of the angular momentum equal to Ωi is attributed to a given Ω block if Ω− 1

2 � Ωi < Ω+ 1
2 .

Although this attribution can always be performed, it can serve its purpose only if the single-
particle states are eigenstates of the given Cartesian component of the angular momentum, that
is, their alignments are properly quantized. This requires that (i) the nucleus has an axial shape
and (ii) the Kramers degeneracy is lifted by aligning individual angular momenta along the
symmetry axis. The first requirement can be fulfilled by constraining the non-axial quadrupole
deformation to zero, see section II-3.7 [2], or better, by using the axialization option described
in sections 2.11 and 3.4. The second requirement can be fulfilled by using a small value
(≈1 keV) of the cranking frequency along the symmetry axis. Indeed, when an unpaired
nucleus has axial symmetry with the symmetry axis aligned with the given Cartesian direction,
cranking along that axis does not change the single-particle wave functions, but only splits the
corresponding single-particle energies as required. A soft attribution condition specified above
allows for a correct convergence to an axial state even if during the convergence one or both
requirements (i) and (ii) are only approximately fulfilled.

2.15. Consistency formula between energy and fields

Many authors of Hartree–Fock solvers have implemented a consistency formula, which allows
one to check, by summing over the energies of the occupied single-particle states, whether the
total energy and mean field are consistent in their implementation (see for example [73, 74]).
Such a formula was also used to define the stability energy employed in the code HFODD as
a criterion to terminate iterations, see equation (I-37) [1]. Here, we show that the consistency
formula can be extended to the case of the HFB calculations and to the energy density, which
contains linear, bilinear, trilinear, quadrilinear or possibly higher couplings of densities. Note
that this energy density is not necessarily derived from an interaction; it is sufficient that it
contains products of densities that are contractions of n creation and n annihilation operators
evaluated in an HFB state |Φ〉.

Up to n = 4, the total energy of a nucleus can be split as,

E = E1 + E2 + E3 + E4, (78)

with,

E1 =
∑

i j

v(1)
i j ρ ji, (79)
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E2 =
∑
i jkl

(
v(2)

i j,kl ρkiρl j + ṽ(2)
i j,kl κ

∗
i jκkl

)
, (80)

E3 =
∑

i jklmn

(
v(3)

i jk,lmn ρliρm jρnk + ṽ(3)
i jk,lmn κ

∗
i jκlmρnk

)
, (81)

E4 =
∑

i jklmnop

(
v(4)

i jkl,mnop ρmiρn jρokρpl + ṽ(4)
i jkl,mnop κ

∗
i jκmnρokρpl

+ ˜̃v(4)
i jkl,mnop κ

∗
i jκ

∗
klκmnκop

)
, (82)

where v(1) is the one-body kinetic operator and v(2), ṽ(2), v(3), ṽ(3), v(4), ṽ(4) and ˜̃v(4) are two-,
three- and four-body scalar Hermitian matrix elements, which fulfill the same usual properties
under the exchange of indices as the matrix elements of interactions, and the standard density
matrix and pairing tensor of state |Φ〉 are given by ρi j = 〈Φ|a†

jai|Φ〉 and κi j = 〈Φ|ajai|Φ〉.
For simplicity, the consistency formula is here derived assuming one species of nucle-

ons only, that is, only one chemical potential λ. We also do not consider the possibility that
the n-body matrix elements depend on the one-body density (as is the case when they are
derived from a density-dependent interaction or when the Slater approximation is used for the
Coulomb-exchange term of the energy). The generalization for these cases is straightforward.

From the energy (78), one obtains the normal field:

hi j = v(1)
i j +

∑
kl

2 v(2)
ik, jl ρlk +

∑
klmn

(
3 v(3)

ikl, jmn ρmkρnl + ṽ(3)
lki,mn j κ

∗
klκmn

)

+
∑

klmnop

(
4 v(4)

iklm, jnop ρnkρolρpm + 2 ṽ(4)
lkmi,nopj κ

∗
lkκnoρpm

)
, (83)

and the pairing field:

h̃i j =
∑

kl

2 ṽ(2)
i j,kl κ

∗
lk +

∑
klmn

2 ṽ(3)
kln, jim κ∗

klρmn

+
∑

klmnop

(
2 ṽ(4)

klmn, jiop κ
∗
klρomρpn + 4 ˜̃v(4)

klmn,opji κ
∗
klκ

∗
mnκop

)
. (84)

Assuming the HFB equations have been solved, the quasiparticle wave-function spinors,

Ψ j =

(
U j

V j

)
, (85)

fulfill the equations:∑
j

hi jU j + h̃i jV j = (Ei + λ) Ui, (86)

∑
j

h̃∗
i jU j − h∗

i jV j = (Ei − λ) Vi, (87)

21



J. Phys. G: Nucl. Part. Phys. 48 (2021) 102001 Guide

where Ei are the (positive) quasiparticle energies. Multiplying the second equation by V∗
i and

summing over i, one obtains the consistency formula:

E1 + 2E2 + 3E3 + 4E4 =
∑

i

V2
i (λ− Ei) . (88)

This allows one to define the HFB stability energy,

δEHFB =
∑

i

V2
i (λ− Ei) − (E1 + 2E2 + 3E3 + 4E4), (89)

which can be used as a measure of deviation of state |Φ〉 from the self-consistent solution.

2.16. Corrected errors

In version (v3.06h) of the code HFODD, we corrected a few little significant errors and two
significant errors, sections 2.16.1 and 2.16.2, found in the previous versions of HFODD.

2.16.1. Incorrect signs of the Yukawa energies. In the published versions (v2.08i) [4],
(v2.08k) [5], (v2.40h) [6], (v2.49t) [7] and (v2.73y) [8] of the code HFODD, the signs of
the Yukawa energies were inverted. This error was corrected in the results published in [75].

2.16.2. Incorrect off-diagonal generator coordinate method (GCM) kernels. Between ver-
sions (v2.10a) and (v2.99u), calculations of the off-diagonal GCM kernels were incorrect. The
error manifested itself only when the single-particle wave functions were not real, and was
present in the published versions (v2.40h) [6], (v2.49t) [7] and (v2.73y) [8].

2.16.3. Definition of the Schiff moment. Between versions (v2.19n) and (v2.80m), the factor
of 1/10 usually included in the definition of the standard Schiff moment, see equation (2) in
[75], was missing from the values printed on the output file. This inconsistent definition was
implemented in the published versions (v2.40h) [6], (v2.49t) [7] and (v2.73y) [8].

2.16.4. Time-odd symmetries in AMP. Before version (v2.66b), for conserved time-odd sym-
metries (ISIMTX = 1, or ISIMTY = 1 or ISIMTZ = 1, see section IV-3.2 [4]), the AMP
was allowed and might give inconsistent results. This error was thus present in the published
version (v2.49t) [7] of HFODD and corrected in the published version (v2.73y) [8]. However,
in the latter publication it was not described.

2.16.5. Very large harmonic-oscillator bases. As it turns out, for very large harmonic-
oscillator bases of NOSCIL > 36, see section II-3.6 [2], the code may behave erratically.
Therefore, beginning with version (v2.81b), calculations with NOSCIL > 36 are not allowed.
This issue awaits future debugging.

2.16.6. Inconsistent input data in angular-momentumand isospin projection. When keywords
PROJECTGCM (section VI-3.2 [6]) and PROJECTISO (section VII-3.1 [7]) were simultane-
ously used in the input data file, the type of calculation performed could depend on the order
in which they were used. This contradicted the rules of building the input data file defined in
section II-3 [2]. Moreover, for IPRROT = 0 (see section 3.9), the remaining input data read
under keyword PROJECTGCM were not ignored, which could trigger the AMP against the
user’s intentions.

In version (v3.06h) of the code HFODD, variables

• IPRROT (keyword PROJECTGCM)
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• IPRISO (keyword PROJECTISO)
• IPRNUM (keyword PROJPARNUM)
• IPRVEC (keyword PROJVECNUM)
• IPRPTY (keyword PROJPARITY)

must be synchronized, that is, their non-zero values must all be equal to one another. Internally,
they are replaced by the single variable IPRGCM. For any of these variables equal to 0 (not
equal to 0), the remaining input data read under the corresponding keyword are ignored (used
for defining the corresponding projection).

2.16.7. Inconsistent input data in tilted angular momentum. When keywords OMEGA_XYZ
and OMEGA_RTP (section IV-3.5 [4]) were simultaneously used in the input data file, the type
of calculation performed could depend on the order in which they were used. This contradicted
the rules of building the input data file defined in section II-3 [2]. In version (v3.06h) of the
code HFODD, the simultaneous use of these two keywords is no longer allowed.

2.16.8. Incorrect information stored on the kernel file. For runs without isospin-symmetry
restoration, not all kernels were stored on the kernel file, see section VI-3.2 [6]; nevertheless
those not stored were later used in the printouts. This was causing differences between results
printed in the runs where the kernels were calculated and those where the kernels were read
from the kernel file.

2.16.9. Incorrect information stored on the RECORD file. After version (v1.78), Fermi ener-
gies, pairing gaps and Lipkin–Nogami parameters were incorrectly stored on the RECORD
file. Consequently, the smooth continuation of runs with pairing could have been impeded.
The error had no effect on the final converged results. It was present in all published versions
of HFODD after the pairing was introduced in version (v2.08i) [4].

2.16.10. Incorrect description of keyword FILSIG_NEU. In version (v2.40h) [6], the descrip-
tion of keyword FILSIG_NEU was incorrect. It should have referred to twice the number of
particles, that is, it should have read: ‘matrices KOFILG contain twice the number of parti-
cles put into the states between KHFILG and KPFILG, by using partial occupation factors of
KOFILG/(KPFILG-KHFILG+ 1)/2’ for them.

3. Input data file

The rules of building the input data file were defined in section II-3 [2]; in version (v3.06h) of
the code HFODD these rules remain exactly the same. All previous items (keywords) of the
input data file remain valid, and several new ones were added, as described in sections 3.1–3.7.
For some previous items, new features or new values of variables were added (section 3.9).

For every keyword listed below, we give the default values and names of the variables read.
Apart from character variables, which must start at the 13th column of the input line, all other
variables are read in FORTRAN free format. Nevertheless, it is good practice to include in
the input file the integer or real constants when reading the INTEGER TYPE [IMPLICIT
INTEGER (I-N)] or REAL TYPE [IMPLICIT REAL (A-H, O-Z)] variables, respectively.

3.1. Interaction

3.1.1. Zero-range central terms. .
Keyword: 2BODYDELTA
0., 0 = TWOINP, ITWOIN
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For ITWOIN = 1, the value of a two-body zero-range parameter TWOINP is added to the
Skyrme parameter t0. This option is introduced only for convenience of handling the input data
in cases when a two-body zero-range interaction is handled independently of the Skyrme force.
For ITWOIN = 0, the value of TWOINP is ignored.

Keyword: 3BODYDELTA
0., 0 = THRINP, ITHRIN
For ITHRIN = 1, the value of THRINP defines the three-body zero-range parameter u0,

equation (2). For ITHRIN= 0, the value of THRINP is ignored and the three-body zero-range
force is not taken into account.

Keyword: 4BODYDELTA
0., 0 = FOUINP, IFOUIN
For IFOUIN = 1, the value of FOUINP defines the four-body zero-range parameter v0,

equation (3). For IFOUIN= 0, the value of FOUINP is ignored and the four-body zero-range
force is not taken into account.

Keyword: SKYRMEINPU

0., 0., 0., 0., 0., 0., 0., 0., 0., 1. = T0_DAT, X0_DAT,
T1_DAT, X1_DAT,
T2_DAT, X2_DAT,
T3_DAT, X3_DAT,
WW_DAT, PO_DAT

Keyword: SKYRME_ERR

0., 0., 0., 0., 0., 0., 0., 0., 0., 1. = T0_ERR, X0_ERR,
T1_ERR, X1_ERR,
T2_ERR, X2_ERR,
T3_ERR, X3_ERR,
WW_ERR, PO_ERR

Keyword: SKYRME_FAC

0., 0., 0., 0., 0., 0., 0., 0., 0., 1. = T0_FAC, X0_FAC,
T1_FAC, X1_FAC,
T2_FAC, X2_FAC,
T3_FAC, X3_FAC,
WW_FAC, PO_FAC

For the Skyrme-force acronym, section IV-3.1 [4]), SKYRME = INPU, values of the ten
input parameters above correspond to the standard Skyrme parameters, t0, x0, t1, x1, t2, x2, t3,
x3, W0 and α, where α is the power of density in the density-dependent term. Each parameter
is determined as, e.g. t0 = T0_DAT+ T0_ERR∗T0_FAC. The formula allows for a systematic
modification of the central value T0_DAT, shifted by a step T0_ERR multiplied by a factor
T0_FAC. This is useful when building the Jacobian matrix [76] of derivatives of observables
over the Skyrme parameters.

Keyword: SKYRMEPAIR
0 = KETAPA
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For KETAPA = 1 or 2, the pairing terms of the Skyrme functional [27, 77] are taken into
account. However, for KETAPA = 2, the pairing terms generated by the spin–orbit force W0

are neglected. For KETAPA = 0, all pairing terms of the Skyrme functional are neglected.
KETAPA= 1 allows for a fully self-consistent pairing calculation performed for theSKYRME=
SKP Skyrme parameters [77], but of course it can also be used for any other variant of the
Skyrme force. KETAPA > 0 requires NOZEPA = 0. In version (v3.06h) of the code HFODD,
KETAPA > 0 still requires ISIMPY = 0, ISIQTY = 0, IPNMIX = 0, IFTEMP = 0 and
KETA_T = 0.

3.1.2. Zero-range three-body gradient terms. .
Keyword: 3BODYGRAD
0., 0., 0., 0., 0., 0 = TGRA10, TGRA11, TGRA20, TGRA21, TGRA22, IGRAIN
For IGRAIN = 1, the parameters of the three-body gradient force (4) are defined as u1 =

TGRA10, y1 = TGRA11, u2 = TGRA20, y21 = TGRA21 and y22 = TGRA22. For IGRAIN= 0,
the values of TGRA10, TGRA11, TGRA20, TGRA21 and TGRA22 are ignored and the three-
body gradient force is not taken into account. In a given run of the code HFODD, keyword
3BODYGRAD must not be simultaneously used with keyword 3BODYGRUY.

Keyword: 3BODYGRUY
0., 0., 0., 0., 0., 0 = TGRA10, TU1_Y1, TGRA20, TU2Y21, TU2Y22, IGRAIN
For IGRAIN = 1, parameters of the three-body gradient force (4) are defined as u1 =

TGRA10, u1y1 = TU1_Y1, u2 = TGRA20, u2y21 = TU2Y21, and u2y22 = TU2Y22. For
IGRAIN= 0, the values of TGRA10, TU1_Y1, TGRA20, TU2Y21, and TU2Y22 are ignored
and the three-body gradient force is not taken into account. For keyword 3BODYGRUY, values
of TGRA10= 0 or TGRA20= 0 are not allowed. In a given run of the code HFODD, keyword
3BODYGRUY must not be simultaneously used with keyword 3BODYGRAD.

3.1.3. Zero-range tensor terms. .
Keyword: SKYRMETENS
0., 0., 0 = TEINPU, TOINPU, KETA_T
For KETA_T = 2, parameters of the zero-range tensor force, equation (5), are defined as

te = TEINPU, to = TOINPU. For KETA_T = 1, the values of te and to correspond to those
pre-defined for a given Skyrme force selected by its acronym, see section IV-3.1 [4]. For
KETA_T= 0, the values of TEINPU andTOINPU, are ignored and the tensor force is not taken
into account. In version (v3.06h) of the code HFODD, KETA_T> 0 still requires IPNMIX= 0
and KETAPA= 0.

Keyword: TEN_ADD_PM

0., 0., 0., 0., 0., 0., = ASCT_P, ASCT_M,
AKIT_P, AKIT_M,
ASPT_P, ASPT_M

By using keyword TEN_ADD_PM, tensor coupling BX
t , BF

t and B∇s
t for t = 0, 1, see section

2.3, can be shifted by adding the values of ASCT_X, AKIT_X, and ASPT_X for X = P, M,
respectively.

Keyword: TEN_ADD_TS
The same as for keyword TEN_ADD_PM but for the tensor coupling constants in the total-

sum representation, see equations (I-14)–(I-15) [1] and section II-3.2 [2].
Keyword: TEN_SCA_PM
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0., 0., 0., 0., 0., 0., = ASCT_T, ASCT_S,
AKIT_T, AKIT_S,
ASPT_T, ASPT_S

0., 0., 0., 0., 0., 0., = SSCT_P, SSCT_M,
SKIT_P, SKIT_M,
SSPT_P, SSPT_M

By using keyword TEN_SCA_PM, tensor coupling BX
t , BF

t and B∇s
t for t = 0, 1, see section

2.3, can be scaled by multiplying them with the values of SSCT_X, SKIT_X and SSPT_X for
X = P, M, respectively.

Keyword: TEN_SCA_TS

0., 0., 0., 0., 0., 0., = SSCT_T, SSCT_S,
SKIT_T, SKIT_S,
SSPT_T, SSPT_S

The same as for keyword TEN_SCA_PM but for the tensor coupling constants in the total-
sum representation, see equations (I-14)–(I-15) [1] and section II-3.2 [2].

3.1.4. Zero-range isospin-breaking terms. Keyword: CBR_CC_CL2

0, 0., 0., 0., 0., 0., 0. = I_2CBR, T02CBR, X02CBR,
T12CBR, X12CBR,
T22CBR, X22CBR

For I_2CBR = 1, class-II ISB terms are included in the calculation with parameters: tII
0 =

T02CBR, xII
0 = X02CBR, tII

1 = T12CBR, xII
1 = X12CBR, tII

2 = T22CBR, xII
2 = X22CBR, see

equation (20). Note, that the interaction of class II requires p–n mixing (IPNMIX = 1). In
version (v3.06h) of the code HFODD, I_2CBR = 1 still requires IPRGCM = 0.

Keyword: CBR_CC_CL3

0, 0., 0., 0., 0., 0., 0. = I_3CBR, T03CBR, X03CBR,
T13CBR, X13CBR,
T23CBR, X23CBR

For I_3CBR= 1, class-III ISB terms are included in the calculation with parameters: tIII
0 =

T03CBR, xIII
0 = X03CBR, tIII

1 = T13CBR, xIII
1 = X13CBR, tIII

2 = T23CBR, xIII
2 = X23CBR,

see equation (21). In version (v3.06h) of the code HFODD, I_3CBR = 1 still requires
IPRGCM = 0.
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3.1.5. Higher-order regularized terms. .
Keyword: REGULFORCE
0 = I_REGA
For I_REGA > 0, the average mean-field energies of the finite-range regularized central

pseudopotentials (24) or (47) are calculated. For I_REGA = 2 or 3, the corresponding direct
mean fields are included in the self-consistent mean field. For I_REGA = 2 or 4, the cor-
responding exchange mean fields are included in the self-consistent mean field. Altogether,
I_REGA = 1 demands calculations of contributions to energy only, whereas I_REGA = 2
demands full self-consistent calculations with both direct and exchange mean fields included.
For I_REGA = 0, the finite-range regularized central pseudopotential is ignored.

For I_REGA > 0 and IPAHFB > 1, the code issues a warning to the effect that, unless
the zero-range pairing strengths are explicitly set to zero, see section IV-3.1 [4], the corre-
sponding pairing will still be active. For NOZEPA = 1, see section 3.8, the zero-range pair-
ing is neglected, and the warning is not printed. In version (v3.06h) of the code HFODD,
I_REGA > 0 still requires IPNMIX= 0, IRENMA= 0 and IBROYD= 0.

Keyword: REGUL_PAIR
0 = IREGPA
For IREGPA> 0, the average pairing energies of the finite-range regularized central pseu-

dopotential (24) or (47) are calculated. For IREGPA= 2, the corresponding pairing fields are
included in the self-consistent pairing field. Altogether, IREGPA = 1 demands calculations
of contributions to the pairing energy, whereas I_REGA = 2 demands full self-consistent
calculations with pairing fields included. For I_REGA = 0, the pairing contribution of the
finite-range regularized central pseudopotential is ignored.IREGPA> 0 requiresI_REGA> 0
and IPAHFB > 0. In version (v3.06h) of the code HFODD, IREGPA > 0 still requires
IPNMIX = 0, IRENMA = 0 and IBROYD= 0.

Keyword: REGUCOUPLI

100, 0, 1. = IREREJ(1), NREREJ(1), REGWID
0., 0., 0., 0. = REJVCC(1, 1), REJVCC(1, 2), REJVCC(1, 3), REJVCC(1, 4)
0., 0., 0., 0. = REJVCC(2, 1), REJVCC(2, 2), REJVCC(2, 3), REJVCC(2, 4)

.................................................................................
0., 0., 0., 0. = REJVCC(i, 1), REJVCC(i, 2), REJVCC(i, 3), REJVCC(i, 4)

After reading the first line, the code reads i = IREREJ(1) lines with

• Four coupling constants W (n)
j , B(n)

j , H(n)
j and M(n)

j per line (for NREREJ(1) < 0) and uses
pseudopotential (24).

• Four coupling constants W (n), B(n), H(n) and M(n) per line (for NREREJ(1) > 0), and uses
local pseudopotential (47).

N = 2 ∗ |NREREJ(1)| denotes the order of expansion (the maximum value of n) and a =
REGWID denotes the width of the Gaussian formfactor ga(r), see section 2.5.

For NREREJ(1) < 0, the code reads the coupling constants corresponding to the terms
defined in equations (42)–(54) of [51], with the exception of coupling constants correspond-
ing to the terms that depend on the T̂3 operator, see equation (41) of [51]. The latter terms
were not yet implemented. Consecutive lines of input are numbered by index k = 1, . . . , i and
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correspond to the coupling constants defined by indices n and j as:

(90)

The number of lines read i must be consistent with the order of expansion, that is, for
NREREJ(1) < 0 or NREREJ(1) � 0, there must be exactly i = (N + 2)(N + 4)/8 or i =
(N + 2)/2 lines read, respectively.

For IREREJ(1) = 0, no lines with parameters are read, and the code uses the local higher-
order pseudopotential (47) with coupling constants W (n), B(n), H(n) and M(n) derived from the
Gogny interaction up to order N. The methodology and equations developed in [52] are then
used. For IREREJ(1) = 0, NREREJ(1) < 0 is not allowed.

In a given run of the code HFODD,

• Keyword REGUCOUPLI must not be simultaneously used with keyword REGUL_TXYZ.
• All read values of array IREREJ must be the same and are internally used as variable
IREREG.

• All read values of array NREREJ must be the same and are internally used as variable
N3LORD.

Internally, the code uses array REGVCC = REJVCC. To inform the code on whether the
coupling constants had been read from the input data file, all elements of array IREREJ are
predefined to 100.

In version (v3.06h) of the code HFODD, calculations with nonlocal pseudopotential (24)
or local pseudopotential (47) are implemented up to order N = 4 (N2LO) or N = 6 (N3LO),
respectively. Consequently, the only allowed values are −2 � N3LORD � 3.

Keyword: REGCOUPERR

100, 0, = IREREJ(2), NREREJ(2)
0., 0., 0., 0. = REJERR(1, 1), REJERR(1, 2), REJERR(1, 3), REJERR(1, 4)
0., 0., 0., 0. = REJERR(2, 1), REJERR(2, 2), REJERR(2, 3), REJERR(2, 4)

................................................................................
0., 0., 0., 0. = REJERR(i, 1), REJERR(i, 2), REJERR(i, 3), REJERR(i, 4)

Keyword: REGCOUPFAC

100, 0, = IREREJ(3), NREREJ(3)
0., 0., 0., 0. = REJFAC(1, 1), REJFAC(1, 2), REJFAC(1, 3), REJFAC(1, 4)
0., 0., 0., 0. = REJFAC(2, 1), REJFAC(2, 2), REJFAC(2, 3), REJFAC(2, 4)

...............................................................................
0., 0., 0., 0. = REJFAC(i, 1), REJFAC(i, 2), REJFAC(i, 3), REJFAC(i, 4)

Keyword: REGUL_TXYZ
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100, 0, 1. = IREREJ(4), NREREJ(4), REGWID
0., 0., 0., 0. = REJTCC(1, 1), REJTCC(1, 2), REJTCC(1, 3), REJTCC(1, 4)
0., 0., 0., 0. = REJTCC(2, 1), REJTCC(2, 2), REJTCC(2, 3), REJTCC(2, 4)

.................................................................................
0., 0., 0., 0. = REJTCC(i, 1), REJTCC(i, 2), REJTCC(i, 3), REJTCC(i, 4)

The three keywords above allow for reading the coupling constants of pseudopotentials
(24) or (47) in the format analogous to that used for keyword REGUCOUPLI. Array REJTCC
contains the strength parameters of equation (26), that is,

REGVCC(:, 1) = REJTCC(:, 1)
REGVCC(:, 2) = REJTCC(:, 1)∗REJTCC(:, 2)
REGVCC(:, 3) = REJTCC(:, 1)∗REJTCC(:, 3)
REGVCC(:, 4) = REJTCC(:, 1)∗REJTCC(:, 4).

(91)

Arrays REJERR and REJFAC modify array REGVCC as

REGVCC(:, :) = REGVCC(:, :) + REJERR(:, :)∗REJFAC(:, :). (92)

This modification of array REGVCC is performed regardless of whether keyword
REGUL_TXYZ or REGUCOUPLI was used to define it. In a given run of the code HFODD,

• Keyword REGUCOUPLI must not be simultaneously used with keyword REGUL_TXYZ.
• All read values of array IREREJ must be the same and are internally used as variable
IREREG.

• All read values of array NREREJ must be the same and are internally used as variable
N3LORD.

To inform the code on whether the coupling constants had been read from the input data
file, all elements of array IREREJ are predefined to 100.

3.1.6. Separable terms. .
Keyword: SEPARGAUSS
0 = I_SEPA
For I_SEPA > 0, the average mean-field energies of the separable pseudopotential (57)

are calculated. For I_SEPA = 2 or 3, the corresponding direct mean fields are included in
the self-consistent mean field. For I_SEPA= 2 or 4, the corresponding exchange mean fields
are included in the self-consistent mean field. Altogether, I_SEPA= 1 demands calculations
of contributions to energy only, whereas I_SEPA = 2 demands full self-consistent calcula-
tions with both direct and exchange mean fields included. For I_SEPA = 0, the mean field
corresponding to the separable pseudopotential is ignored.

For I_SEPA > 0 and IPAHFB > 1, the code issues a warning to the effect that, unless
the zero-range pairing strengths are explicitly set to zero, see section IV-3.1 [4], the corre-
sponding pairing will still be active. For NOZEPA = 1, see section 3.8, the zero-range pair-
ing is neglected, and the warning is not printed. In version (v3.06h) of the code HFODD,
I_SEPA > 0 still requires IPNMIX= 0, IRENMA= 0 and IBROYD= 0.

Keyword: SEPAR_PAIR
0 = ISEPPA
For ISEPPA > 0, the average pairing energies of the separable pseudopotential (57)

are calculated. For ISEPPA = 2, the corresponding pairing fields are included in the self-
consistent pairing field. Altogether, ISEPPA= 1 demands calculations of contributions to the
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pairing energy, whereas I_SEPA = 2 demands full self-consistent calculations with pairing
fields included. For I_SEPA = 0, the pairing contribution of the separable pseudopotential
is ignored. ISEPPA > 0 requires IPAHFB > 0. In version (v3.06h) of the code HFODD,
ISEPPA > 0 still requires IPNMIX= 0, IRENMA= 0 and IBROYD= 0.

Keyword: SEPCOUPLI

0, 0 = IVISEP, N3SERD
0., 0., 0., 0. = SEPVIC(1, 1), SEPVIC(1, 2), SEPVIC(1, 3), SEPVIC(1, 4)

After reading the first line, the code reads one line with the four coupling constants W̃, B̃, H̃
and M̃ and uses separable pseudopotential (57). In version (v3.06h) of the code HFODD, only
values of i = IVISEP= 0 or 1 and n = N3SERD = 0 are allowed; other values may become
available after higher-order derivative terms are implemented, in analogy to those of the regu-
larized pseudopotential (24). Unless keywordSEPAR_FORMwithNUSEGA> 0 is used, the use
of keyword SEPCOUPLI implies that the formfactor (58) is composed of one Gaussian only,
with the default values of K = NUSEGA= 1, A1 = SEPGAU(1) = 1 and a1 = SEPWID(1) = 1.
Internally, the code uses variable IRESEP = IVISEP and array SEPVCC = SEPVIC. In a
given run of the code HFODD, keyword SEPCOUPLI must not be simultaneously used with
keyword SEP_TXYZ.

Keyword: SEP_TXYZ

0, 0 = IVISEP, N3SERD
0., 0., 0., 0. = SEPTIC(1, 1), SEPTIC(1, 2), SEPTIC(1, 3), SEPTIC(1, 4)

Keyword: SEPCOUPERR

0 = IERSEP
0., 0., 0., 0. = SEPERR(1, 1), SEPERR(1, 2), SEPERR(1, 3), SEPERR(1, 4)

Keyword: SEPCOUPFAC

0 = IFASEP
0., 0., 0., 0. = SEPFAC(1, 1), SEPFAC(1, 2), SEPFAC(1, 3), SEPFAC(1, 4)

The three keywords above allow for reading the coupling constants of the separable
pseudopotential (57) in the format analogous to that used for keyword SEPCOUPLI. Array
SEPTIC contains strength parameters t̃, x̃, ỹ and z̃ defining the coupling constants as W̃ = t̃,
B̃ = t̃ x̃, H̃ = t̃ỹ and M̃ = t̃z̃, that is,

SEPVIC(:, 1) = SEPTIC(:, 1)
SEPVIC(:, 2) = SEPTIC(:, 1) ∗ SEPTIC(:, 2)
SEPVIC(:, 3) = SEPTIC(:, 1) ∗ SEPTIC(:, 3)
SEPVIC(:, 4) = SEPTIC(:, 1) ∗ SEPTIC(:, 4).

(93)
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Internally, the code uses variable IRESEP= IVISEP and array SEPVCC= SEPVIC. Arrays
SEPERR and SEPFAC modify array SEPVCC as,

SEPVCC(:, :) = SEPVCC(:, :) + SEPERR(:, :) ∗ SEPFAC(:, :). (94)

This modification of array SEPVCC is performed regardless of whether keyword SEP_TXYZ
or SEPCOUPLIwas used to define it. In version (v3.06h) of the code HFODD, only values of
i = IERSEP = IFASEP = IVISEP = 0 or 1 and n = N3SERD = 0 are allowed. In a given
run of the code HFODD, keyword SEP_TXYZmust not be simultaneously used with keyword
SEPCOUPLI.

Keyword: SEPAR_FORM

1 = NUSEGA
1., 1., . . . , 1. = SEPWID(1), SEPWID(2), . . . , SEPWID(NUSEGA)
1., 0., . . . , 0. = SEPGAU(1), SEPGAU(2), . . . , SEPGAU(NUSEGA)

After reading the first line, for K = NUSEGA> 0 the code reads two lines with widths ak =
SEPWID(k) and amplitudes Ak = SEPGAU(k) of Gaussians that define formfactor (58) of the
separable pseudopotential (57).

3.2. Symmetries

Keyword: HFB2HF
0, 0, = IPA2HF(0), IPA2HF(1)
Keyword: GAP2HF
0., 0., = DEL2HF(0), DEL2HF(1)

The two keywords above allow for the use of a hybrid method of calculations, where the
HF method is used for neutrons (protons),IPA2HF(0)= 1(0), and the HFB method is used for
protons (neutrons),IPA2HF(0)= 0(1). For IPA2HF(0)= IPA2HF(1)= 0, the hybrid method
is inactive and the code proceeds as dictated by other keywords handling the HF/HFB method,
whereas for IPA2HF(0) = IPA2HF(1) = 1, the HF method is enforced for both neutrons and
protons, irrespective of what is dictated by other keywords handling the HF/HFB method.

For IPA2HF(0) = 2 or IPA2HF(1) = 2, the HFB calculations requested for neutrons or
protons will during the iterations automatically switch over to HF as soon as the neutron or
proton pairing gap goes below DEL2HF(0) or DEL2HF(1), respectively. The user is responsi-
ble for properly setting the keywords handling the HF method before the HFB run is started,
because the correctness and consistency of these keywords would not have been pre-tested.
IPA2HF(0) > 0 or IPA2HF(1) > 0 requires IPAHFB(0) > 0.

3.3. Symmetry restoration

Keyword: PROJPARNUM
0, 1 = IPRNUM, NPNKNO

For IPRNUM = 1(2) and NPNKNO > 1, and for diagonal (non-diagonal) GCM kernels, see
section VI-3.2 [6], the code performs a projection on total particle number A = IN_FIX +
IZ_FIX. The number of Gauss–Tchebyschev points used to perform the integration over
gauge angleφ covering the domain of 0 � φ < π is defined byNPNKNO.IPRNUM> 0 requires
that it is equal to all other nonzero projection switches: IPRROT, IPRISO, IPRVEC and
IPRPTY, see section 2.16.6.
Keyword: PROJVECNUM
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0, 1 = IPRVEC, NTZKNO
For IPRVEC = 1(2) and NTZKNO > 1, and for diagonal (non-diagonal) GCM kernels, see

section VI-3.2 [6], the code performs a projection on the doubled z-component of the isospin.
2Tz = IN_FIX-IZ_FIX. The number of Gauss–Tchebyschev points used to perform the
integration over gauge angle φT covering the domain of 0 � φT < π is defined by NTZKNO.
IPRNUM > 0 requires that it is equal to all other nonzero projection switches: IPRROT,
IPRISO, IPRNUM and IPRPTY, see section 2.16.6.
Keyword: PROJPARITY
0, 0, +1 = IPRPTY, NPAKNO, IPAPRO

For IPRPTY = 1(2) and NPAKNO = 2, and for diagonal (non-diagonal) GCM kernels,
see section VI-3.2 [6], the code performs parity projection onto the positive-parity (for
IPAPRO = +1) or negative-parity (for IPAPRO = −1) states. IPRPTY > 0 requires that it
is equal to all other nonzero projection switches: IPRROT, IPRISO, IPRNUM and IPRVEC,
see section 2.16.6.
Keyword: ONISHI
0 = IONISH

For IONISH= 0 or 1, the code uses the Pfaffian or Onishi formula, respectively, see section
2.9, to compute the overlap kernels between the HFB wave functions involved in the symme-
try projection (keywords PROJECTGCM, PROJPARITY, PROJPARNUM or PROJVECNUM).
IPRGCM > 1 with IPAHFB > 1 and IONISH = 0 requires ITWOBA = 1 and NUQEVE = 1.
In version (v3.06h) of the code HFODD, IPRGCM > 1 with IPAHFB > 1 and IONISH = 0
still requires ISIMPY = 0 and ISIQTY = 0.
Keyword: PROJ_J2_T2
0, 0 = KETAJ2, KETAT2

For KETAJ2 = 1 (KETAT2 = 1) and IPRGCM > 0, the code com-
putes the expectation value of the square of the total angular momentum
(total isospin) in the projected states. This calculation is performed to con-
trol the precision of the angular-momentum (isospin) projection. KETAJ2 =
1 (KETAT2 = 1) is ignored unless NUBKNO = 1 (NBTKNO = 1). Either KETAJ2 = 1
or KETAT2 = 1 requires ISAKER = 0 or 2.
Keyword: KERNINVERS
0, 0, = IKEINV, IKEKAR

For IKEINV > 0 or IKEKAR > 0, and for IPRGCM = 1, the ‘right’ wave function of the
kernel calculated within the diagonal GCM mode, see section VI-3.2 [6], is initially trans-
formed according to one of the DT

2h symmetry operations enumerated for variables INIINV
and INIKAR under keyword INI_INVERS in section VI-3.2 [6]. Compared to the opera-
tions requested by keyword INI_INVERS, which generates the transformed wave function
that can later be used by employing keyword PROJECTGCM in the non-diagonal GCM mode,
see section VI-3.2 [6], keyword KERNINVERS ensures that the phase relations between the
‘right’ and ‘left’ wave functions are properly maintained.
Keyword: NOBLOLIPKI

0, 0, = LIPNON, LIPNOP
For LIPNON = 1 or LIPNOP = 1, the blocked neutron or proton orbitals are excluded

from the calculation of the neutron or proton Lipkin parameters λ2, respectively. Since the
occupation probabilities of the blocked states are by definition equal to 1, their contributions
to particle-number fluctuations should not be, in principle, counted. LIPNON = 1 requires
LIPKIN = 1 and LIPNOP= 1 requires LIPKIP = 1.
Keyword: PROJE_DENS

0 = IDENSU
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For IDENSU = 1, the particle-number projection is performed with ignored gauge-angle
dependence of the density in the p-h and p-p density-dependent terms.

3.4. Configurations

Keyword: AXIALIZE
0 = IAXIAP
For |IAXIAP| = 1, the code axializes, see section 2.11, the particle-hole and pairing (for

IPAHFB> 0) mean-fields. For IAXIAP=−1, the code in addition axializes the particle-hole
density matrix and pairing tensor (for IPAHFB > 0). For |IAXIAP| = 1, ICONTI = 1 and
IFCONT = 0, the code issues a warning to the effect that a smooth continuation of axialized
wave functions may require continuation from fields, that is, IFCONT= 1, see section VI-3.8
[6]. In version (v3.06h) of the code HFODD, |IAXIAP| = 1 still requires IGOGPA = 0 and
IAXIAP = −1 is incompatible with the AMP (NUBKNO > 1).

Keyword: VACNONANEU

0, 1 = NLSIZN, MXALIN
0, . . . , 0 = LALSIZ(−MXALIN, 0),

LALSIZ(−MXALIN+ 2, 0),
.........................................
LALSIZ(+MXALIN− 2, 0),
LALSIZ(+MXALIN, 0)

After reading the first line, the code reads the second line that contains MXALIN+ 1 num-
bers LALSIZ(:, 0) of neutrons in the Ω-blocks, from Ω = −MXALIN/2 to Ω = +MXALIN/2,
see section 2.14. |NLSIZN| = 1, 2 or 3 stands for the Cartesian direction of x, y, or z, respec-
tively. For NLSIZN> 0, the code distributes neutrons in the Ω-blocks according to the values
of LALSIZ(i, 0). For LALSIZ(i, 0) > 0, the |LALSIZ(i, 0)| lowest neutron states are occu-
pied in the block Ω = i/2. For LALSIZ(i, 0) < 0, the |LALSIZ(i, 0)| − 1 lowest neutron
states are occupied in the block Ω = i/2, the state number |LALSIZ(i, 0)| is kept empty,
and the state number |LALSIZ(i, 0)| + 1 is kept occupied. For NLSIZN < 0, the code does
not fix occupations in the Ω-blocks but determines and prints the distribution of neutrons
across the Ω-blocks. MXALIN must be odd. For IPAIRI = 0, IPNMIX = 0, ISIMPY = 0,
ISIQTY= 0, IVACUM= 0 and NLSIZN> 0, the sum of numbers of neutrons in all Ω-blocks,
that is, the sum of |LALSIZ(:, 0)|, must be equal to the number of neutrons given by IN_FIX.
|NLSIZN| > 0 requires ISIMPY= 0 and ISIQTY= 0.

Keyword: VACNONAPRO

0, 1 = NLSIZP, MXALIP
0, . . . , 0 = LALSIZ(−MXALIP, 1),

LALSIZ(−MXALIP+ 2, 1),
.........................................
LALSIZ(+MXALIP− 2, 1),
LALSIZ(+MXALIP, 1)

The same as in keyword VACNONANEU but for protons.
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Keyword: VACPARANEU

0, 1 = NLSIQN, MXALIN
0, . . . , 0 = LALSIQ(−MXALIN, 0, 0),

LALSIQ(−MXALIN+ 2, 0, 0),
...........................................
LALSIQ(+MXALIN− 2, 0, 0),
LALSIQ(+MXALIN, 0, 0)

0, . . . , 0 = LALSIQ(−MXALIN, 1, 0),
LALSIQ(−MXALIN+ 2, 1, 0),
...........................................
LALSIQ(+MXALIN− 2, 1, 0),
LALSIQ(+MXALIN, 1, 0)

After reading the first line, the code reads two lines that each contain MXALIN + 1 num-
bers of neutrons LALSIQ(:, 0, 0) and LALSIQ(:, 1, 0) in the positive-parity and negative-
parity Ω-blocks, respectively, from Ω = −MXALIN/2 to Ω = +MXALIN/2, see section 2.14.
|NLSIQN| = 1, 2 or 3 stands for the Cartesian direction of x, y, or z, respectively. For
NLSIQN> 0, the code distributes neutrons in the positive-parity and negative-parityΩ-blocks
according to the values of LALSIQ(i, j, 0), where j = 0(1) stands for the positive (negative)
parity. For LALSIQ(i, j, 0) > 0, the |LALSIQ(i, j, 0)| lowest neutron states are occupied in
the block Ω = i/2 for a given parity. For LALSIQ(i, j, 0) < 0, the |LALSIQ(i, j, 0)|− 1
lowest neutron states are occupied in the block Ω = i/2 for a given parity, the state number
|LALSIQ(i, j, 0)| is kept empty, and the state number |LALSIQ(i, j, 0)| + 1 is kept occupied.
For NLSIQN< 0, the code does not fix occupations in the Ω-blocks but determines and prints
the distribution of neutrons across the Ω-blocks of both parities. MXALIN must be odd. For
IPAIRI = 0, IPNMIX = 0, ISIMPY = 0, ISIQTY = 1, IVACUM = 0 and NLSIQN > 0,
the sum of the number of neutrons in all Ω-blocks of a given parity, that is, the sum of
|LALSIQ(:, j, 0)|, must be equal to the number of neutrons given by KVASIQ(j, 0), see section
IV-3.3 [4].10 |NLSIQN| > 0 requires ISIMPY = 0 and ISIQTY = 1.

Keyword: VACPARAPRO

0, 1 = NLSIQP, MXALIN

0, . . . , 0

= LALSIQ(−MXALIN, 0, 1),
LALSIQ(−MXALIN+ 2, 0, 1),
...........................................
LALSIQ(+MXALIN− 2, 0, 1),
LALSIQ(+MXALIN, 0, 1)

0, . . . , 0 = LALSIQ(−MXALIN, 1, 1),
LALSIQ(−MXALIN+ 2, 1, 1),
...........................................
LALSIQ(+MXALIN− 2, 1, 1),
LALSIQ(+MXALIN, 1, 1)

The same as in keyword VACPARANEU but for protons.

10 In [4] p 175, description of keywords VACPAR_NEU and VACPAR_PRO should refer to variables KVASIQ(0,0),
KVASIQ(1,0) and KVASIQ(0,1), KVASIQ(1,1), respectively.
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Keyword: VACLASTORB
0, 0, = LASTAN, LASTAP
ForLASTAN= 1 or LASTAP= 1, calculations are performed with only one, highest-energy

neutron or proton orbital, respectively, occupied in each Ω-block, see section 2.14. This option
can be used to perform the AMP of a single orbital, after the code is restarted from a converged
solution. For LASTAN = 1, the option of using negative values of LALSIZ or LALSIQ, see
keywordsVACNONANEU or VACPARANEU, respectively, is not allowed. The same rule applies
to protons.

Keyword: FILNON_NEU
2, 1, 0 = KPFILZ(0), KHFILZ(0), KOFILZ(0)
Keyword FILNON_NEU is an analog of keyword FILSIG_NEU, see section VI-3.2 [6],

and demands calculations performed within the filling approximation applied to neutrons in the
no-symmetry case. Variables KPFILZ(0) and KHFILZ(0) contain indices of particle (empty)
and hole (occupied) states, respectively. Variable KOFILZ(0) contains the number of particles
put into the states between KHFILZ(0) and KPFILZ(0) by using partial occupation factors
of KOFILZ(0)/(KPFILZ(0) − KHFILZ(0) + 1) for them. For KOFILZ(0) = 0, the filling
approximation is inactive. KOFILZ(0) > 0 is incompatible with IPAIRI = 1, IFLIPI = 0
or KOFLIZ(0) = 0.

Keyword: FILNON_PRO
2, 1, 0 = KPFILZ(1), KHFILZ(1), KOFILZ(1)
The same as for keyword FILNON_NEU but it demands calculations performed within the

filling approximation applied to protons in the no-symmetry case.
Keyword: MBLOCSIZ_N

0 = NBBLOC
1, 0 = INSIZN(1), IDSIZN(1),
1, 0 = INSIZN(2), IDSIZN(2),

.......................................
1, 0 = INSIZN(NBBLOC), IDSIZN(NBBLOC)

Keyword MBLOCSIZ_N generalizes the quasiparticle blocking requested by keyword
BLOCKSIZ_N in the case of no symmetries, see section IV-3.3 [4], to multi-quasiparticle
blocking, see section 2.8. After reading the first line, the code reads NBBLOC pairs of data,
INSIZN(i) and IDSIZN(i), for i = 1, . . . , NBBLOC. For IDSIZN(i) =+1 or −1, the blocked
quasiparticle state is selected by having the largest overlap with the INSIZN(i)th neutron
single-particle eigenstate of the HFB mean-field Routhian or with its time-reversed partner,
respectively. Note that for rotating states, the time-reversed eigenstate is not necessarily an
eigenstate of the Routhian. For IDSIZN(i) = 0, the blocking of the ith quasiparticle is omit-
ted. For any i, |IDSIZN(i)|=1 requiresISIMPY= 0,IPARTY= 0, IPAHFB= 1 andIROTAT
= 1. In a given run of the code HFODD, keyword MBLOCSIZ_N must not be simultaneously
used with keyword BLOCKSIZ_N.

Keyword: MBLOCSIZ_P

0 = NBBLOC
1, 0 = INSIZP(1), IDSIZP(1),
1, 0 = INSIZP(2), IDSIZP(2),

......................................
1, 0 = INSIZP(NBBLOC), IDSIZP(NBBLOC)
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The same as for keyword MBLOCSIZ_N but for the proton multi-quasiparticle blocking.
Keyword: NUMBCUTOFF
0, 0 = NCUTOF(0), NCUTOF(1)
For NCUTOF(0) > 0 and/or NCUTOF(1) > 0, the number of lowest neutron and/or pro-

ton single-particle states used in the two-basis method, see section VII-2.2.1 [7], are lim-
ited to NCUTOF(0) and/or NCUTOF(1), respectively. This option overrides the energy cutoff
specified by variable ECUTOF read under keyword CUTOFF, see section IV-3.1 [4]. This
option allows for the calculation of the transition densities when it is performed for dif-
ferent left and right HFB states, that is for IPRGCM > 1. Indeed, this type of calculation
requires that the numbers of quasiparticle states defining the left and right HFB states are equal.
NCUTOF(0) > 0 and/or NCUTOF(1) > 0 is incompatible with ITWOBA = 0 (for now),
LIMQUA = 1 or LAMCUT = 1.

3.5. Numerical parameters

Keyword: ADPARBASIS
0 = ILIBAS

In version (v3.06h) of the code HFODD, the names of variables defining the oscillator
frequency h̄ω0, which are read under keyword SURFAC_PAR, have changed and now read
INBASI, IZBASI and R0PARM, see section II-3.5 [2]. This allows for dynamically linking
the original variables INNUMB and IZNUMB to neutron and proton numbers IN_FIX and
IZ_FIX, see section II-3.1 [2], depending on the value of variable ILIBAS, which has the
allowed values of 0, 1, 2 and 3. Namely,

• For ILIBAS = 1 or ILIBAS = 3, INNUMB is set to IN_FIX; otherwise it is set to
INBASI.

• For ILIBAS = 2 or ILIBAS = 3, IZNUMB is set to IZ_FIX; otherwise it is set to
IZBASI.

For example, for ILIBAS = 0, the code defines h̄ω0 (as before) by using variables read
under keyword SURFAC_PAR, whereas for ILIBAS= 3, it does so by using the neutron and
proton numbers IN_FIX and IZ_FIX.

Keyword: NEW_WIGNER
0 = NEWWIG
For NEWWIG= 0 or 1, version (v3.06h) of the code HFODD uses the old and new method

to calculate the Wigner d functions, respectively, see section 2.12.
Keyword: EVENQPNUMB
0 = NUQEVE
For ITWOBA = 1 or IPRGCM > 0, NUQEVE = 1 enforces even numbers of single-

particle and quasiparticle states, which is needed for the implementation of the Pfaffian
method, see section 2.9. In version (v3.06h) of the code HFODD, NUQEVE = 1 still requires
ISIMPY = 0.

3.6. Output parameters

Keyword: ALLNILABS
0 = INUNIL
For INUNIL> 0 and IREVIE> 0, up to INUNIL= 99, non-dominant Nilsson labels are

printed for each single-particle state on the REVIEWFILE, see section II-3.9 [2].
Keyword: PRINT_ELEC
0 = IELPRI
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Switch IELPRI defines the type of matrix elements of the electric, magnetic, surface or
Schiff operators between angular-momentum-projected states, which are printed in version
(v3.06h) of the code HFODD.

• For IELPRI= 0, the code prints reduced matrix elements of the operators defined in the
code, see section IV-2.4 [4].

• For IELPRI= 1, the code prints reduced matrix elements of the standard operators, that
is, the particular units defined in section IV-2.4 [4] are removed.

• For IELPRI = 2, the code prints the standard reduced transition rates BEλ(Ii → I f )
and/or BMλ(Ii → I f ).

• For IELPRI = 3, the code prints the standard spectroscopic matrix elements.

Keyword: PRINTMATEL
1, 0 = ILIMAM, IALLAM
For ILIMAM = 0(1), the code does not (does) calculate reduced kernels and/or matrix ele-

ments that are not required for printing, as defined by the ranges of angular momenta specified
in variables ISLPRI, ISUPRI, see section VI-3.6 [6]. For IALLAM= 0(1), the code does not
(does) print reduced kernels and/or matrix elements between the ‘left’ (bra) angular momen-
tum larger than the ‘right’ (ket) angular momentum. Those between smaller or equal angular
momenta are always printed.

Keyword: PRINTALLRM
0 = IPRALL
For IPRALL = 1, the code prints all reduced kernels and/or matrix elements irrespective

of restrictions otherwise imposed by switches IPRGCM, IELPRI or IAXIAL.
Keyword: REDMATSAVE
0 = IWRIRM
For IWRIRM= 1, an ASCII file with the reduced kernels and/or matrix elements, see key-

word REDMATFILE, is saved on disk after the AMP is performed. ILIMAM = 1 allows
for saving the reduced kernels and/or matrix elements that are not required for printing,
see keyword PRINTMATEL. IWRIRM = 1 requires IPRGCM > 0 and is incompatible with
IFTEMP = 1.

Keyword: REDMATFILE
HFODD.RED = FILRED
CHARACTER∗68 is the file name of the ASCII with reduced kernels and/or matrix

elements. Must start at the 13th column of the data line.
Keyword: EFF_G_FACT
0, 1., 1., 1. = IGYROS, GYRORP, GYRSPN, GYRSPP
For IGYROS= 1, the standard single-particle orbital and spin gyroscopic factors, gν,s.p.

l and
gν,s.p.

s , respectively, for neutrons and protons, ν = n, p, which are used to calculate the mag-
netic moments, see section IV-2.4 [4], are multiplied by the corresponding effective gyroscopic
factors and read:

gp
l = gp,s.p.

l ∗ gp,eff
l = +1.000 ∗ GYRORP,

gn
s = gn,s.p.

s ∗ gn,eff
s = −3.826 ∗ GYRSPN,

gp
s = gp,s.p.

s ∗ gp,eff
s = +5.586 ∗ GYRSPP.

(95)

Keyword: QUASIPSAVE
−1 = IWRIQU
For IWRIQU = 1, a binary quasiparticle file, see keyword QUASIPFILE, is saved

on disk after each iteration is completed. The file contains quasiparticle wave functions.
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For IWRIQU = 0, the file is saved only once, after all iterations are completed. For
IWRIBA = −1, the file is never saved. IWRIQU = 0 or 1 requires IPAHFB > 0 and is
incompatible with IFTEMP = 1 or IF_RPA = 1. In version (v3.06h) of the code HFODD,
IWRIQU = 0 or 1 still requires ISIMPY = 1 and IPNMIX= 0.

Keyword: QUASIPFILE
HFODD.QUA = FILQUA
CHARACTER∗68 is the file name of the binary file that contains quasiparticle wave

functions. Must start at the 13th column of the data line.

3.7. Starting, performing, stopping and restarting iterations

Keyword: MAXANTICON
0., 0 = EPSCON, NUCONS
For NUCONS > 0, iterations stop when the changes in the stability energy, equation (I-37)

[1], stay below EPSCON∗EPSITE for NUCONS consecutive iterations. This option aims to
stop iterations when the convergence is extremely slow or when the wave function infinitely
alternates between two solutions both having the same value of the stability energy. Note that
the alternating signs of the stability energy are recognized by the ping-pong divergence con-
dition, see sections III-2.6 and III-3.1 [3] and keyword PING_PONG. NUCONS > 0 requires
EPSCON > 0.

Keyword: QUASISTABI
0 = IQPSTA
For IQPSTA = 1, expression (I-37) [1] for the stability energy is replaced by expression

(89), which is suitable for the HFB calculations.IQPSTA= 1 requiresIPAHFB> 0. In version
(v3.06h) of the code HFODD, IQPSTA = 1 still requires IPNMIX = 0.

Keyword: SLOWALLFIL
0.5, 0 = SLOWAL, I_SLOW
For I_SLOW = 1, the rate of convergence is slowed down by a factor of SLOWAL by mix-

ing the mean field and pairing matrices on the harmonic-oscillator basis instead of mixing
the mean-field potentials on the Gauss–Hermite spatial nodes, see keywords SLOW_DOWN,
section II-3.5 [2], SLOWLIPKIN, section VI-3.2 [6], SLOW_PAIR, section IV-3.4 [4] and
SLOWLIPMTD, section VIII-3.1.2 [8]. I_SLOW = 1 is incompatible with IBROYD = 1.

Keyword: BASIS_SAVE
−1 = IWRIBA
For IWRIBA = 1, the basis file is saved on disk after each iteration is completed. The file

contains Bohr deformation parameters that can be used to restart calculations with the basis
deformation parameters equal to those read from the basis file, see section 2.13 and keyword
CONT_BASIS. For IWRIBA= 0, the file is saved only once, after all iterations are completed.
For IWRIBA = −1, the file is never saved.

Keyword: REPBASFILE
HFODD.BAP = FILBAP
CHARACTER∗68 is the file name of the basis file. Must start at the 13th column of the data

line. For IBCONT= 1, see keyword CONT_BASIS, an ASCII basis file with the name defined
in FILBAP must exist, and will be read. If the filenames FILBAP and FILBAC are identical,
the basis file will be subsequently overwritten as a new basis file.

Keyword: RECBASFILE
HFODD.BAC = FILBAC
CHARACTER∗68 is the file name of the basis file. Must start at the 13th column of the data

line. For IWRIBA = 0 or 1, an ASCII basis file is saved, see keyword BASIS_SAVE.
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Keyword: CONT_BASIS
0 = IBCONT
ForIBCONT= 1, the Bohr deformation parameters stored on the basis file are used to restart

calculations with the basis deformation parameters equal to those read from the basis file, see
section 2.13. For IBCONT = 1, an ASCII basis file with the name defined in FILBAP must
exist, and it will be read. IBCONT = 1 is incompatible with ICONTI = 0.

3.8. Miscellaneous

Keyword: ANTISYMPAI
0 = KAPASY
ForKAPASY= 1, the pairing tensor is antisymmetrized, which removes its possible nonzero

symmetric component that can appear for the quasiparticle cutoff, see section IV-3.1 [4] and
[78, 79].

Keyword: FERMICUT
0 = LAMCUT
For LAMCUT = 1, the quasiparticle cutoff, see section IV-3.1 [4], is applied relatively to

the proton and neutron Fermi energies, and not relatively to the zero of the equivalent single-
particle spectrum, which is the default.

Keyword: LAN4SCALED
0 = LANSCA
For LANSCA = 1, the Landau parameters, see sections IV-2.8 and IV-3.1 [4], are used for

scaled, see section II-3.2 [2], coupling constants of the functional and not for the unscaled ones,
which is the default.

Keyword: NOZEROPAIR
0 = NOZEPA
For NOZEPA = 1, the zero-range pairing force is neglected regardless of the values of

pairing strengths defined in section IV-3.1 [4].

3.9. New features of previously implemented keywords

Keyword: OPTI_GAUSS
1 = IOPTGS
Apart from the value of IOPTGS= 1, implemented in section II-3.5 [2], whereupon expres-

sion (I-94) was used to calculate the orders of the Gauss–Hermite integrations in the three
Cartesian directions, that is, NXHERM= 2∗NXMAXX+ 2, NYHERM= 2∗NYMAXX+ 2, NZHERM
= 2∗NZMAXX + 2, the version (v3.06h) of the code HFODD now accepts a new value of
IOPTGS = 2, for which NXHERM = 3∗NXMAXX + 2, NYHERM = 3∗NYMAXX + 2, NZHERM
= 3∗NZMAXX + 2. The former (latter) values ensure exact Gauss–Hermite integrations of the
two-body (three-body) zero-range terms with second-order gradients. The latter values are thus
suitable for calculations described in section 2.2. For IOPTGS= 0 or IREAWS= 1, the above
expressions do not overwrite values read under keyword GAUSHERMIT.

Keyword: MULTCONSTR
2, 0, 0.01, 42.0, 1 = LAMBDA, MIU, STIFFQ, QASKED, IFLAGQ
Apart from the value of IFLAGQ = 1, previously implemented in section II-3.7 [2], the

version (v3.06h) of the code HFODD now accepts a new value of IFLAGQ = −1 mentioned
in section 2.13, whereupon the value of QASKED for λ = LAMBDA and μ = MIU is used for
a definition of the HO basis, whereas the corresponding constraint is ignored. For IFLAGQ
= 0, the value of QASKED is ignored. Recall that unless IFLAGQ = 0 is explicitly set in the
input data file for LAMBDA= 2 and MIU = 0, the constraint on Q20 = 42b would be active by
default.
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Keyword: FREQBASIS
1.0, 1.0, 1.0, 0 = BASINX, BASINY, BASINZ, INPOME
Apart from the value of INPOME = 1, previously implemented in section VIII-3.1.4 [8],

and the default value of INPOME = 0, version (v3.06h) of the code HFODD now accepts the
new values of INPOME= 2, . . . , 7 described in section 2.13.

Keyword: REVIEW
2 = IREVIE
Apart from the values of IREVIE = 0, 1 and 2, previously implemented in section II-

3.9 [2], version (v3.06h) of the code HFODD now accepts new values of IREVIE = −2,
and 3, . . . , 8, which allows for printing on the REVIEW file the following additional
information:

• For IREVIE = −2, the quasiparticle data are printed.
• For IREVIE � 3, the x and z single-particle alignment data are printed.
• For IREVIE � 4, the proton-neutron single-particle data are printed.
• For IREVIE � 5, the proton-neutron single-particle alignment data are printed.
• For IREVIE � 6, the integration points are printed.
• For IREVIE � 7, the integration weights are printed.
• For IREVIE = 8, the densities are printed.

Keyword: BASIS_SIZE
15, 301, 800.0 = NOSCIL, NLIMIT, ENECUT
Apart from the values of NLIMIT> 0, previously implemented in section II-3.6 [2], version

(v3.06h) of the code HFODD now accepts the value of NLIMIT= 0, whereupon the value of
NLIMIT is instantly recalculated to NLIMIT= ((NOSCIL+ 1)∗(NOSCIL+ 2)∗(NOSCIL+
3))/6, which corresponds to the number of states of a spherical HO with the total number of
quanta not exceeding NOSCIL.

Keyword: CONTLIPKIN
0 = ILCONT
Apart from the values of ILCONT = 0 or 1, previously implemented in section VI-3.8

[6], version (v3.06h) of the code HFODD now accepts the value of ILCONT = 2. This
value does not request reading the LIPKIN FILE, but allows for reading the Lipkin–Nogami
parameters λ2 from the RECORD FILE stored in a previous run. In conjunction with read-
ing the FIELDS FILE (IFCONT = 1), ILCONT = 2 thus allows for a smooth continuation
of the Lipkin–Nogami calculations. ILCONT > 0 is incompatible with either of LIPKIN =
LIPKIP = 0 or IPCONT = 0.

Keyword: HFB
0 = IPAHFB
Apart from the values of IPAHFB = 0 or 1, previously implemented in section IV-3.2 [4],

version (v3.06h) of the code HFODD now accepts the value of IPAHFB = 2, whereupon
the HFB densities are summed in the canonical basis. IPAHFB> 0 requires IPAIRI= 1, see
section II-3.3 [2], andIPAHFB= 2 is incompatible with ITWOBA= 1,IMFHFB= 1, IFSHEL
> 0 or IPNMIX = 1. However, the HFB method was already implemented in all symmetries
and thus in version (v3.06h) of the code HFODD the restriction to ISIMPY = 1, specified in
section IV-3.2 [4], was lifted.
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Keyword: PROJECTGCM

0, 0, 0, 1, 1, 0, 1, 1, 0
IPRROT, IPROMI, IPROMA, NUAKNO, NUBKNO, KPROJE,

IFRWAV, ITOWAV, IWRWAV

The name of the first variable was changed to IPRROT and thus this variable was made
independent from the first variable read under keyword PROJECTGCM, see section 2.16.6. For
IPRROT = 0, the remaining input data read under keyword PROJECTGCM are now ignored.
For IPRGCM = 2, apart from a positive value of IFRWAV, previously implemented in section
VI-3.2 [6], version (v3.06h) of the code HFODD now accepts its negative value, whereupon
the calculation of the GCM kernels is performed between states with labels −IFRWAV and
ITOWAV only, and not between all states with labels from a positive labelIFRWAV toITOWAV.
In version (v3.06h) of the code HFODD, the AMP was implemented for the GCM kernels, so
for NUAKNO = 1 or NUBKNO = 1, IPRGCM = 2 is now allowed.

Keyword: PROJECTISO
0, 2, 1, 1.E-6, 0, 0 = IPRISO, ISOSAD, NBTKNO, EPSISO, ICSKIP, IFERME
The name of the first variable was changed to IPRISO and thus this variable was made

independent from the first variable read under keyword PROJECTGCM, see section 2.16.6. For
IPRISO = 0, the remaining input data read under keyword PROJECTISO are now ignored.

Keyword: SAVEKERNEL
0 = ISAKER
Apart from the values of ISAKER = 0 or 1, previously implemented in section VI-3.2 [6],

version (v3.06h) of the code HFODD now accepts the value of ISAKER = 2, whereupon
the kernel file is stored on the disk in a new format. Although the old format, requested by
ISAKER = 1, is still supported, it should be considered obsolete. The use of the old format
is not recommended because some newly developed features may then be improperly stored.
In particular, ISAKER = 1 is incompatible with KETAJ2 = 1, KETAT2 = 1, NPNKNO > 1,
NTZKNO > 1 or NPAKNO > 1.

For ISAKER = 2 and IPAKER = 1 (see section VI-3.2 [6]), for all values of indices ‘t’
the code attempts to read the kernel files Nxxxxxt-Lyyy-Rzzz-//FILKER, where // denotes
concatenated strings. The one-, three- or five-digit indices are:

• ‘xxxxx’ is the consecutive index of the kernel file, which is equal to KFIKER (see section
VII-3.2 [7]).

• ‘t’ is the number from 0–9 of the consecutive file having the given index ‘xxxxx’.
• ‘yyy’ is the number of the left wave function.
• ‘zzz’ is the number of the right wave function.

In the work directory, the file names for all indices ‘xxxxxt’ are scanned, starting from
xxxxx0. The kernels stored in these files are read into memory and are not recalculated. Those
that have not been found in the kernel files are calculated and stored in the kernel file with
the lowest available index ‘t’. In this way, one can submit many parallel jobs, see the keyword
PARAKERNEL (see section VI-3.2 [6]). The results are then collected in different kernel files
with indices ‘t’ attributed automatically. If any of the jobs is terminated before completing
its task, the same input data can be resubmitted and the calculation automatically continues
from the point where it has been interrupted. Once all the kernels have been calculated (with
IPAKER = 1), which requires large CPU time, AMP can be performed (with IPAKER =
0) within a very small CPU time by reading, again automatically, all the created kernel files
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with indices ‘xxxxxt’. At the AMP stage, KFIKER denotes the maximum index ‘xxxxx’ of
the kernel files that were stored. Note that if at the AMP stage any kernels are missing, the
code will attempt to calculate them. For ISAKER= 2, this feature can be overridden by using
IPAKER = −1 instead of IPAKER = 0, whereupon if any kernels are missing, the code will
stop. ISAKER= 2 requires IPRGCM > 0 and 0 < KFIKER< 99 999.

Keyword: PARAKERNEL
0, 1, 1, 1, 1 = IPAKER, NUASTA, NUASTO, NUGSTA, NUGSTO
Apart from the values of IPAKER = 0 or 1, previously implemented in section VI-3.2

[6], version (v3.06h) of the code HFODD now accepts the value of IPAKER = −1. For
ISAKER= 2, IPAKER= −1 is equivalent to IPAKER= 0. However, if in the earlier parallel
runs (with IPAKER = 1) any kernels were not yet calculated, the code will stop instead of
attempting to calculate them.

4. Fortran source files

The FORTRAN source of version (v3.06h) of the code HFODD is provided in the file
hf306h.f, and its accompanying modules are:

• hfodd_sizes_7.f90: static array size declarations. Contains all PARAMETER state-
ments controlling the sizes of all statically allocated arrays (and some of the dynamically
allocated arrays) used in the code. The static allocations are maintained in the code because
the compiler optimization options are often more efficient when the dimensions of the
arrays are known to the compiler. In practice, only a few size declarations need to be
defined by the user. In module hfodd_sizes_7.f90, these declarations are collected
at the beginning of the module and read:

NDMAIN Maximum number of HO shells
NDBASE Maximum number of HO basis states
NDSTAT Maximum number of HF states without spin
NDXHRM Maximum number of Gauss–Hermite nodes in x direction
NDYHRM Maximum number of Gauss–Hermite nodes in y direction
NDZHRM Maximum number of Gauss–Hermite nodes in z direction
NDPROI Maximum doubled spin in the AMP
NDAKNO Maximum number of nodes in the α and γ Euler AMP angles
NDBKNO Maximum number of nodes in the β Euler AMP angle
NDPROT Maximum doubled isospin in the IP
NDATKN Maximum number of nodes in the αT and γT Euler IP angles
NDBTKN Maximum number of nodes in the βT Euler IP angles

Any version 5 of the module, hfodd_sizes_5.f90, can be upgraded to version 7 by
copying a few lines of the code located at the end of module hfodd_sizes_7.f90.

The code HFODD can be perfectly well run with array sizes smaller than the maximum
ones specified above; the only consequence would be non-optimal memory usage. If a given
requested array size exceeds the maximum, the code stops and prints the new maximum size
that has to be used at compilation.

• hfodd_modules_35.f: definitions of memory-consuming modules. Defines, among
others, the matrices of the Bogolyubov transformation, the eigenvectors of the HF and
HFB equations, etc.

• hfodd_hfbtho_201.f90: hfbtho DFT solver based on version 200d published in
[80].
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• hfodd_interface_5.f90: interface between the HFBTHO and HFODD solvers.
Contains the routine to transform the HFB matrix from the HO basis used in HFBTHO
(hfodd) to the basis used in HFODD (HFBTHO).

• hfodd_functional_4.f90: interface to UNEDF functionals.
• hfodd_mpiio_6.f90: IO interface in MPI calculations. Contains the routine to read

input data for parallel HFODD calculations.
• hfodd_mpimanager_5.f90: MPI toolkit. Defines the list of MPI tasks based on the

data read in the parallel input file hfodd_mpiio.d.
• hfodd_shell_5.f: toolkit for the shell correction.
• hfodd_SLsiz_4.f: toolkit to incorporate ScaLAPACK capabilities.
• hfodd_fission_9.f90: toolkit for fission calculations. Contains several routines to

compute fission fragment properties such as charge, mass, total energy, interaction energy;
the routines needed to use a constraint on the number of particles in the neck; the routines
used for the quantum localization method.

• hfodd_pairs_2.f90: toolkit for defining various derived types related to pairs, lists
of pairs and lists of lists of pairs, as well as the routines needed to manipulate these objects.

• hfodd_pnp_8.f90: toolkit for particle number projection (not supported in the present
version (v3.06h) of the code HFODD).

• hfodd_fits_16.f90: fit module. Allows the code HFODD to work as a routine in an
external program.

• hfodd_lipcorr_31.f90: toolkit for the Lipkin method and Pfaffian overlap
calculations.

• hfodd_tgrad_18.f90: toolkit for the three-body gradient terms.
• hfodd_wigner_6.f90: toolkit for the Wigner functions.

The FORTRAN source of version (v3.06h) of the code HFODD contains numerous undoc-
umented and untested features that are under development. The user should not attempt to
activate or reverse-engineer these features, because this can certainly lead to unpredictable
behavior of the code and even damage to the computer hard drive.
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