next up previous
Next: Fields Up: General forms of the Previous: Building blocks


Potentials

The potential energy to be varied over the wave functions is given in Ref. [4] and reads

\begin{displaymath}
{\cal E} = \int {\rm d}^3\vec{r} {\cal H}(\vec{r}),
\end{displaymath} (36)

for
$\displaystyle {\cal H}(\vec{r})$ $\textstyle =$ $\displaystyle \sum_{{n'L'v'J'}\atop{mI,nLvJ}}
C^{n'L'v'J'}_{mI,nLvJ}\, [\rho_{n'L'v'J'}(\vec{r})[D_{mI}\rho_{nLvJ}(\vec{r})]_{J'}]_0$  
  $\textstyle =$ $\displaystyle \sum_{{n'L'v'J'M'}\atop{mI,nLvJ}}
\!\!\!
C^{n'L'v'J'}_{mI,nLvJ}
{...
...t{2J'+1}}}}
\, \rho_{n'L'v'J'M'}(\vec{r})[D_{mI}\rho_{nLvJ}(\vec{r})]_{J',-M'},$ (37)

where $C^{n'L'v'J'}_{mI,nLvJ}$ are the coupling constants and $\rho_{nLvJ}(\vec{r})$ are the primary densities:
\begin{displaymath}
\rho_{nLvJ}(\vec{r})=\left\{[K_{nL}\rho_v(\vec{r},\vec{r}')]_J \right\}_{\vec{r}'=\vec{r}},
\end{displaymath} (38)

which are built by acting with the relative momentum operators $K_{nLM}$ on the scalar ($v=0$) and vector ($v=1$) non-local densities:
$\displaystyle \rho_{v\mu}\left(\vec{r},\vec{r}\,'\right)$ $\textstyle =$ $\displaystyle \sum_{\sigma\sigma'}\rho\left(\vec{r}\sigma,\vec{r}\,'\sigma'\right)
\left\langle \sigma'\left\vert\sigma_{v\mu}\right\vert\sigma\right\rangle .$ (39)

Note that the sum in Eq. (38) runs over the indices ordered in a specific way, defined in Ref. [4,5], namely,
\begin{displaymath}
\{n'L'v'J'\}\leq\{nLvJ\}.
\end{displaymath} (40)

We first vary ${\cal E}$ over the densities and then, in Section 3.3, we vary densities over the wave functions, that is, we begin with

$\displaystyle \delta{\cal E} = \int {\rm d}^3\vec{r} \delta{\cal H}(\vec{r})$ $\textstyle =$ $\displaystyle \sum_{n'L'v'J'M'}\int {\rm d}^3\vec{r}
\frac{\partial{\cal H}}{\partial\rho_{n'L'v'J'M'}}(\vec{r})\delta\rho_{n'L'v'J'M'} .$ (41)

An explicit variation over the primary densities under the differential operators $D_{mI}$ can be avoided by first integrating by parts and recoupling. The recoupling within a scalar [6] is simple, namely,
$\displaystyle [A_{J'}[B_{I}C_{J}]_{J'}]_0$ $\textstyle =$ $\displaystyle (-1)^{J'+I-J} [C_{J}[B_{I}A_{J'}]_{J}]_0.$ (42)

Hence, the integration by parts gives:
$\displaystyle {\cal H}(\vec{r})$ $\textstyle =$ $\displaystyle \sum_{{n'L'v'J'}\atop{mI,nLvJ}} (-1)^{J'+I-J}
C^{n'L'v'J'}_{mI,nLvJ}\, [\rho_{nLvJ}(\vec{r})[D^T_{mI}\rho_{n'L'v'J'}(\vec{r})]_J]_0$  
  $\textstyle =$ $\displaystyle \sum_{{n'L'v'J'}\atop{mI,nLvJ}} (-1)^{m+J'+I-J}
C^{n'L'v'J'}_{mI,nLvJ}\, [\rho_{nLvJ}(\vec{r})[D_{mI}\rho_{n'L'v'J'}(\vec{r})]_J]_0$  
  $\textstyle =$ $\displaystyle \sum_{{n'L'v'J'}\atop{mI,nLvJ}} (-1)^{J-J'}
C^{nLvJ}_{mI,n'L'v'J'}\, [\rho_{n'L'v'J'}(\vec{r})[D_{mI}\rho_{nLvJ}(\vec{r})]_{J'}]_0 ,$ (43)

where we have used Eq. (33), then we changed the names of indices, and we also used the fact that $m+I$ is even.

Therefore, the variation under the differential operators $D_{mI}$ only gives the transposition of indices $\{n'L'v'J'\}\leftrightarrow\{nLvJ\}$ and the phase. The complete variation of the energy then reads:

$\displaystyle \delta{\cal E}$ $\textstyle =$ $\displaystyle \sum_{n'L'v'J'}\int {\rm d}^3\vec{r}[\delta\rho_{n'L'v'J'}\tilde{U}_{n'L'v'J'}(\vec{r})]_0 ,$ (44)

where we defined potentials
$\displaystyle \tilde{U}_{n'L'v'J'M'}(\vec{r})\!\!\!\!$ $\textstyle =$ $\displaystyle \sum_{mI,nLvJ}\!\!
\left\{C^{n'L'v'J'}_{mI,nLvJ}+(-1)^{J-J'}C^{nLvJ}_{mI,n'L'v'J'}\right\}
[D_{mI}\rho_{nLvJ}(\vec{r})]_{J'M'}.$ (45)

Note that because of the ordering (41), in Eq. (46) either the first or the second term is non-zero (for $\{n'L'v'J'\}\neq\{nLvJ\}$), or both terms add up to $2C^{n'L'v'J'}_{mI,nLvJ}$ (for $\{n'L'v'J'\}=\{nLvJ\}$).


next up previous
Next: Fields Up: General forms of the Previous: Building blocks
Jacek Dobaczewski 2010-01-30