Particle-hole densities

We give the expression for particle density $ \rho$, kinetic density $ \tau$, spin density $ \bbox{s}$, spin-kinetic density $ \bbox{T}$, current density $ \bbox{j}$, and spin-current density $ {\sf J}$. Tensor-kinetic density $ \bbox{F}$ is not used and its expression is omitted.

(a)
Scalar particle density

$\displaystyle \rho_{m}(\bbox{r}) = \rho_{m}(\bbox{r},\bbox{r}')\biggl\vert _{\bbox{r} = \bbox{r}'}$ (21)

where $ m$ takes values 0, 1, 2 and 3. Suffix 0 represents isoscalar component of the density and 1 to 3 are the isovector components. Expressing the density in terms of HFB wavefunctions (20), we obtain

$\displaystyle \rho_{m}(\bbox{r})= \sum_{tt'} \rho^{tt'}(rz) \tau_{t't}^{m}$ (22)

where

$\displaystyle \rho^{tt'}(rz) = \sum_{k}\biggl[ V^{+\ast}_{kt} V^{+}_{kt'}+V^{-\ast}_{kt} V^{-}_{kt'}\biggr],$ (23)

and we use the abbreviation of HFB wave functions

$\displaystyle V^{\pm}_{kt} \equiv V^{\pm}_k(rzt).$ (24)

Isospin components of the particle density are given by

$\displaystyle \rho_{0}(\bbox{r}) =$ $\displaystyle \rho^{nn}(rz) +\rho^{pp}(rz) $    
$\displaystyle =$ $\displaystyle \frac {1} {2} \biggr(\rho^{nn}(rz) +\rho^{pp}(rz)
 + c.c. \biggr),$ (25)
$\displaystyle \rho_{1}(\bbox{r}) =$ $\displaystyle \rho^{np}(rz) +\rho^{pn}(rz) $    
$\displaystyle =$ $\displaystyle \rho^{np}(rz) + c.c., $ (26)
$\displaystyle \rho_{2}(\bbox{r}) =$ $\displaystyle i[\rho^{np}(rz) -\rho^{pn}(rz) ] $    
$\displaystyle =$ $\displaystyle i\rho^{np}(rz) + c.c.,$ (27)
$\displaystyle \rho_{3}(\bbox{r}) =$ $\displaystyle \rho^{nn}(rz) -\rho^{pp}(rz) $    
$\displaystyle =$ $\displaystyle \frac {1} {2} \biggr(\rho^{nn}(rz) -
 \rho^{pp}(rz) + c.c. \biggr).$ (28)

The isospin structure of the particle density given by Eqs. (25)-(28) is identical for all the following particle-hole densities, and these expressions shall not be repeated in the following.
(b)
Kinetic density

$\displaystyle \tau_m (\bbox{r}) = (\bbox{\nabla} \cdot \bbox{\nabla} ')\rho_m(\...
...\biggr\vert _{ \bbox{r} = \bbox{r}'} = \sum_{tt'}\tau^{tt'}(rz) \tau_{t't}^{m},$ (29)

where,

$\displaystyle \tau^{tt'}(rz) =$ $\displaystyle \sum_{k}\biggr\{
 [\partial_{r} V^{+\ast}_{kt}][\partial_{r} V^{+}_{kt'}]
 +[\partial_{r} V^{-\ast}_{kt}][ \partial_{r}V^{-}_{kt'}]$    
  $\displaystyle + \frac{(\Lambda^{-})^{2}}{r^2} V^{+\ast}_{kt}V^{+}_{kt'}
 + \frac{ (\Lambda^{+})^{2}}{r^2} V^{-\ast}_{kt}V^{-}_{kt'} $    
  $\displaystyle + [\partial_{z} V^{+\ast}_{kt}][\partial_{z} V^{+}_{kt'}]
 +[\partial_{z} V^{-\ast}_{kt}][ \partial_{z} V^{-}_{kt'}]\biggr\} .$ (30)

(c)
Pseudovector spin density

$\displaystyle \bbox{s}_{m}(\bbox{r}) = \bbox{s}_{m}(\bbox{r},\bbox{r}') \biggl\vert _{\bbox{r} = \bbox{r}'} = \sum_{tt'} \bbox{s}^{tt'}(rz) \tau_{t't}^{m},$ (31)

where

$\displaystyle \bbox{s}^{tt'}(rz)=$ $\displaystyle \sum_k [
 \bbox{e}_r s_r^{tt'}(rz) + \bbox{e}_\phi s_\phi^{tt'}(rz) + \bbox{e}_z s_z^{tt'}(rz)
 ] $    
$\displaystyle =$ $\displaystyle \sum_{k}\biggr\{ \bbox{e}_{r}[V^{-\ast}_{kt} V^{+}_{kt'}
 +V^{+\ast}_{kt} V^{-}_{kt'}]$    
  $\displaystyle + \bbox{e}_{\phi}i[V^{+\ast}_{kt} V^{-}_{kt'}-V^{-\ast}_{kt} V^{+}_{kt'}]$    
  $\displaystyle + \bbox{e}_{z}[ V^{+\ast}_{kt} V^{+}_{kt'} -V^{-\ast}_{kt} V^{-}_{kt'}]\biggr\}.$ (32)

(d)
Pseudovector spin-kinetic density

$\displaystyle \bbox{T}_m(\bbox{r}) =$ $\displaystyle \biggr[(\bbox{\nabla} \cdot \bbox{\nabla} ')\bbox{s}_m(\bbox{r}, \bbox{r}') \biggr]_{ \bbox{r} = \bbox{r}'} $    
$\displaystyle =$ $\displaystyle \sum_{tt'}\bbox{T}^{tt'}(rz) \tau_{t't}^m,$ (33)

where

$\displaystyle \bbox{T}^{tt'}(rz) =$ $\displaystyle \sum_{k}\biggr\{ \bbox{e}_{r}\biggr( [\partial_{r}V^{+\ast}_{kt}]...
...al_{r} V^{-}_{kt'}]+\frac{\Lambda^{+}\Lambda^{-}}{r^2}V^{+\ast}_{kt}V^{-}_{kt'}$    
  $\displaystyle +[\partial_{z} V^{+\ast}_{kt}][ \partial_{z} V^{-}_{kt'}]+[\partial_{r} V^{-\ast}_{kt}][ \partial_{r} V^{+}_{kt'}] $    
  $\displaystyle + \frac{\Lambda^{-}\Lambda^{+}}{r^2}V^{-\ast}_{kt}V^{+}_{kt'}+[\partial_{z} V^{-\ast}_{kt}][ \partial_{z} V^{+}_{kt'}]\biggr)$    
  $\displaystyle +i\bbox{e}_{\phi}\biggr( [\partial_{r} V^{+\ast}_{kt}][\partial_{r} V^{-}_{kt'}]+\frac{\Lambda^{-}\Lambda^{+}}{r^2}V^{+\ast}_{kt}V^{-}_{kt'} $    
  $\displaystyle +[\partial_{z} V^{+\ast}_{kt}][ \partial_{z} V^{-}_{kt'}]-[\partial_{r} V^{-\ast}_{kt}][ \partial_{r} V^{+}_{kt'}] $    
  $\displaystyle - \frac{\Lambda^{-}\Lambda^{+}}{r^2}V^{-\ast}_{kt}V^{+}_{kt'} -[\partial_{z} V^{-\ast}_{kt}][ \partial_{z} V^{+}_{kt'}]\biggr) $    
  $\displaystyle +\bbox{e}_z\biggr([\partial_{r} V^{+\ast}_{kt}][\partial_{r} V^{+}_{kt'}]+\frac{\Lambda^{-2}}{r^2}V^{+\ast}_{kt}V^{+}_{kt'} $    
  $\displaystyle +[\partial_{z} V^{+\ast}_{kt}][\partial_{z} V^{+}_{kt}]-[\partial_{r} V^{-\ast}_{kt}][ \partial_{r} V^{-}_{kt'}] $    
  $\displaystyle - \frac{\Lambda^{+2}}{r^2}V^{-\ast}_{kt}V^{-}_{kt'}-[\partial_{z} V^{-\ast}_{kt}][ \partial_{z}V^{-}_{kt'}]\biggr) \biggr\}.$ (34)

(e)
Vector current density

$\displaystyle \bbox{j}_{m}(\bbox{r}) =$ $\displaystyle \frac{1}{2i}\biggr[(\bbox{\nabla}-\bbox{\nabla}')\rho_{m}(\bbox{r}, \bbox{r}')\biggr]_{\bbox{r}=\bbox{r}'} $    
$\displaystyle =$ $\displaystyle \sum_{tt'}\bbox{j}^{tt'}(rz) \tau_{t't}^m,$ (35)

where

$\displaystyle \bbox{j}^{tt'}(rz) =$ $\displaystyle \frac{1}{2i}\sum_{k}\biggr\{ \bbox{e}_r\biggr([\partial_{r} V^{+\ast}_{kt}]V^{+}_{kt'}+[\partial_{r} V^{-\ast}_{kt}] V^{-}_{kt'}$    
  $\displaystyle - V^{+\ast}_{kt}[\partial_{r}V^{+}_{kt'}]-V^{-\ast}_{kt} [\partial_{r}V^{-}_{kt'}]\biggr)$    
  $\displaystyle -2i\bbox{e}_{\phi}\biggr( \frac{\Lambda^{-}}{r}V^{+\ast}_{kt}V^{+}_{kt'}+ \frac{\Lambda^{+}}{r}V^{-\ast}_{kt} V^{-}_{kt'}\biggr)$    
  $\displaystyle +\bbox{e}_z\biggr( [\partial_{z}V^{+\ast}_{kt}]V^{+}_{kt'}+[\partial_{z} V^{-\ast}_{kt}] V^{-}_{kt'}$    
  $\displaystyle - V^{+\ast}_{kt}[\partial_{z} V^{+}_{kt'}]-V^{-\ast}_{kt} [\partial_{z} V^{-}_{kt'}]\biggr) \biggr\}.$ (36)

(f)
Tensor spin current density

$\displaystyle {\sf J}_{m}^{ij}=\frac{1}{2i}(\nabla_i-\nabla'_i)s_m^j(\bbox{r}, ...
...gr\vert _{\bbox{r}=\bbox{r}'}
 =\sum_{tt'}{\sf J}^{tt'}_{ij}(rz) \tau^m_{t't} .$ (37)

Explicit expressions of the components are

$\displaystyle {\sf J}_{r\phi}^{tt'}(rz) =$ $\displaystyle \frac{1}{2}\sum_{k}\biggr\{[\partial_{r} V^{+\ast}_{kt}]V^{-}_{kt'}-V^{+\ast}_{kt}[\partial_{r} V^{-}_{kt'}]$    
  $\displaystyle -[\partial_{r} V^{-\ast}_{kt}]V^{+}_{kt'}+V^{-\ast}_{kt}[\partial_{r} V^{+}_{kt'}]\biggr\},$ (38)
$\displaystyle {\sf J}_{rz}^{tt'}(rz) =$ $\displaystyle \frac{1}{2i}\sum_{k}\biggr\{[\partial_{r} V^{+\ast}_{kt}]V^{+}_{kt'}-V^{+\ast}_{kt}[\partial_{r} V^{+}_{kt'}]$    
  $\displaystyle -[\partial_{r} V^{-\ast}_{kt}]V^{-}_{kt'}+V^{-\ast}_{kt}[\partial_{r} V^{-}_{kt'}]\biggr\},$ (39)
$\displaystyle {\sf J}_{\phi z}^{tt'}(rz) =$ $\displaystyle -\sum_{k}\biggr\{ \frac{\Lambda^{-}}{r}V^{+\ast}_{kt}V^{+}_{kt'}-\frac{\Lambda^{+}}{r}V^{-\ast}_{kt}V^{-}_{kt'}\biggr\},$ (40)
$\displaystyle {\sf J}_{z\phi}^{tt'}(rz) =$ $\displaystyle \frac{1}{2}\sum_{k}\biggr\{[\partial_{z} V^{+\ast}_{kt}]V^{-}_{kt'}-V^{+\ast}_{kt}[\partial_{z} V^{-}_{kt'}]$    
  $\displaystyle -[\partial_{z} V^{-\ast}_{kt}]V^{+}_{kt'}+V^{-\ast}_{kt}[\partial_{z} V^{+}_{kt'}]\biggr\},$ (41)
$\displaystyle {\sf J}_{zr}^{tt'}(rz) =$ $\displaystyle \frac{1}{2i}\sum_{k}\biggr\{[\partial_{z} V^{+\ast}_{kt}]V^{-}_{kt'}-V^{+\ast}_{kt}[\partial_{z} V^{-}_{kt'}]$    
  $\displaystyle +[\partial_{z} V^{-\ast}_{kt}]V^{+}_{kt'}-V^{-\ast}_{kt}[ \partial_{z}V^{+}_{kt'}]\biggr\},$ (42)
$\displaystyle {\sf J}_{\phi r}^{tt'}(rz)=$ $\displaystyle -\frac{1}{2}\sum_{k}\biggr\{ \frac{\Lambda^{-}}{r}V^{+\ast}_{kt}V^{-}_{kt'}+\frac{\Lambda^{-}}{r}V^{-\ast}_{kt}V^{+}_{kt'}$    
  $\displaystyle +\frac{\Lambda^{+}}{r}V^{+\ast}_{kt}V^{-}_{kt'}+\frac{\Lambda^{+}}{r}V^{-\ast}_{kt}V^{+}_{kt'}\biggr\},$ (43)
$\displaystyle {\sf J}_{zz}^{tt'}(rz) =$ $\displaystyle \frac{1}{2i}\sum_{k}\biggr\{[\partial_{z} V^{+\ast}_{kt}]V^{+}_{kt'}-V^{+\ast}_{kt}[ \partial_{z}V^{+}_{kt'}]$    
  $\displaystyle -[\partial_{z} V^{-\ast}_{kt}]V^{-}_{kt'}+V^{-\ast}_{kt}[\partial_{z} V^{-}_{kt'}]\biggr\},$ (44)
$\displaystyle {\sf J}_{\phi \phi}^{tt'}(rz)=$ $\displaystyle -\frac{1}{2i}\sum_{k}\biggr\{ \frac{\Lambda^{-}}{r}V^{-\ast}_{kt}V^{+}_{kt'}+\frac{\Lambda^{+}}{r}V^{-\ast}_{kt}V^{+}_{kt'}$    
  $\displaystyle -\frac{\Lambda^{+}}{r}V^{+\ast}_{kt}V^{-}_{kt'}-\frac{\Lambda^{-}}{r}V^{+\ast}_{kt}V^{-}_{kt'}\biggr\},$ (45)
$\displaystyle {\sf J}_{rr}^{tt'}(rz) =$ $\displaystyle \frac{1}{2i}\sum_{k}\biggr\{[\partial_{r} V^{+\ast}_{kt}]V^{-}_{kt'}-V^{+\ast}_{kt}[\partial_{r} V^{-}_{kt'}]$    
  $\displaystyle +[\partial_{r} V^{-\ast}_{kt}]V^{+}_{kt'}-V^{-\ast}_{kt}[\partial_{r} V^{+}_{kt'}]\biggr\}.$ (46)

The trace, antisymmetric, and symmetric parts of the tensor spin-current density are given by

$\displaystyle J_k(\bbox{r}) =$ $\displaystyle \sum_{a=x,y,z} {\sf J}_{kaa}(\bbox{r}), $ (47)
$\displaystyle \bbox{J}_{ka}(\bbox{r}) =$ $\displaystyle \sum_{b,c=x,y,z} \bbox{\epsilon}_{abc} {\sf J}_{kbc}(\bbox{r}), $ (48)
$\displaystyle \underline{\sf J}_{kab}(\bbox{r}) =$ $\displaystyle \frac{1}{2}{\sf J}_{kab}(\bbox{r}) + \frac{1}{2}{\sf J}_{kba}(\bbox{r})
 - \frac{1}{3} J_k(\bbox{r}) \delta_{ab}.$ (49)

Jacek Dobaczewski 2014-12-07