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1 Canonical quantization — conformal gauge

String theory in Mink. space in the conf. gauge is FREE 2D CFT + CONSTRAINTS

T 2 2 2
S = E/Ed o[(0:-X)? — (8,X)?] (1.1)

(Ln = 6.0)[ph) = 0 = (L, — 6,.0)|ph) (1.2)

Set of constraints on physical states: naively 7', | ]ﬁL} =T _ |1f9ﬁ> = 0, but this is not good.

oL
Canonical momenta (px)p = 90X T0.X, (1.3)
CCR: [(X*(1,0), (px)"(1,0")] = in*é(c — o) (1.4)
Open strings: [ak ar] = mopy, —nn", [zM,p"] =", v =2p  (1.5)
Closed string: as above + the same fora & [a,a] =0,, ag = p. (1.6)

1.1 Free field space of states.
Cartan subalgebra i.e. maximal set of the hermitian commuting operators is e.g. [ao |
la) = €'**|0), p|q) = ¢"q)

aplp) =0, m>0,  alp) =2plp) (1.7)
(unphysical) space of states

{H ati p),  m > o} (1.8)

Some of the states has negative norms: e.g. (m > 0)

CCR
a2, [p)* = (plan,a’,,|p) =" —m{pl|p)

Similarly for © . {[[; o™, [T, &".Ip), ni,m; >0}

In the Old Covariant Quantization (OCQ) one does not need ghosts. Virasoro is anomalous.
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1.2 Constraints

1.2.1 VIRASORO ALGEBRA. According to sec.?? for all type of strings:

Ly = a3/2+ Y awon, Lo=3% Y Qmontn, Lom=(Ln)' (19

n>0

[Lma Ln} = (m - n>Lm+n + =

21)6,, 1.1
12m(m )0m.—n (1.10)

Notice that

1.a. all operators must be notmal otdered: non-trivial ordering occures only for: Ly, — leads to

the constant a below in constraints (1.11).
L.b. normal ordering is essential to get the central term in [L,,, L,].
1l.c. L,, generates symmetries (see App.A..
1.d. Lo = 5 [ doTyy is sth-like the energy.

(Below: m; > 0).

1.3 Hpn = Hpn® null

For . All the physical states respect (in agreement with (1.10)) :
Lin|ph) =0, m >0, (Ly—a)|ph) =0, (mass-shell) (1.11)
{lph)} =H, (1.12)
All states in H{;Tz have non-negative norm.

l.a. & Among {\pNh)} there are still zero-norm states called null states which should be removed

by some farther constraints i.e. by n - £ = 0 for some n — below.!!!! &

1.b. For some a (a < 1) and ¢ (¢ < 26) Virasoro constraints cut out all unphysical, negative

norm states from the unconstraint Hilbert space.

1.c. For the critical case a = 1,c = 26 the spectrum consists of the same states as for the 1-c
gauge. This is the CRITICAL STRING.

derive a=1 from l-c quantization. It is important fo the fermionic string too [].

1.d. No consistent interaction has been found for the non critical case.



1l.e. There also are physical (?) operators corresponding to closed strings -HOW TO SEE IT
777

©
(Lo — Lo)lph) =0, (Lo + Lo — 2a)|ph) = (Lo — a)|ph) =0 (1.13)

1.3.1 SPURIOUS AND NULL STATES : |spur) = [[. L_p,

any)s

l.a. Forall {|];ﬁ) }: (spurﬁ)\ﬁ) = 0 There are no other states with the above property.

Lb. null states {|null)} = {|spur)} N {|y;ﬁ)} All {|null)} are orthogonal to each other, be-

cause they are spurious and physical.
lany) D |ph) D |null)

Iph) — |ph)’ = |ph) + |null) is a — gauge transformation; [Pol.I p.123]. It does not change any

sclar product with other physical states — it is also property of the interaction.

1.4 Physical states Py

& Here it is defined to be free from negative norm states. One gets physical Hilbert H space (of

positive norm states) after eliminating all the |null) states from Py, &
e [ are mass shell relations
e [, gives perpendicularity of polarization tensors.
e |null) gives gauge-like freedom
(Lo —a) T], @10, p) = (a3/2 + >, m; — a) [, &,..|0, p) respect constraints iff

(a3/2 + Z m; —a) =0 mass-shell (1.14)

1.4.1 TECHNICAL TOOL
e Level eigenstates N|state) = N|state)
e (Ly=0aj/2+ N), > N=> _ a_,u,
° NHZ ali

Emil0:p) = (22 ma) [T %, 10, )

o Nlany) = slany), — N[, Lom,Jany) = (3, m; + 8) I1; L-m,lany)
NHZ L |any) = [N> [I; L-m]lany)s+11; L—miN|a”y>s = (s+22;mi) [[; L-m,

any)
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o At the given level there are only finite number of the non-trivial constraints. Some con-
straints are trivial: we use ([Ly,, ®_n] = moy_p, n > 0)then L, [[, ", 0,p) =
[Ln, [ 0", 010,0) = 0, iff n > supq,(mi, m;) The state at level N is a linear

combinaton of the above that in general

L,|N) =0 trivially forn > N (1.15)
1.4.2 N=0 |p) — /2 = a, — tachyon for a=1.

1.4.3 N=1

ag/2=a—1 (1.16)
ngﬂaﬁly()»p) :pﬂfum’p% - pugﬂ(p) =0 (L.17)

Null state: L_1|0,p) = p,a’,]0,p). This state has £, = p,, thus is physiacal for p* = 0 —

gauge symmetry only for a = 1.

1.44 N=2 ¢, [Lo".10,p) + have the same momentum as [[, o/ |0,p) — gauge

—m; —m;

symmetry



1.5 Effective fields

mass shell condition (p? + m?)|p) = 0. Is equivalent to free field (0> — m?)¢(z) = 0 which has

decomposition
a3 ) )
o) :/ S o)™ + ! (D)™, (1.18)
p
thus
lp) = a(p)|0) (1.19)
(02 = m*)P(x) =0 = L ~ ¢(2)(0* — m*)6(x) (1.20)

We see that there is a correspondence between string quanta and states of a QFT.

N=1

&,0"110,p) < A, (x) massless vector particle

3

A(w) = / Y €W P + b, po = |7 (1.21)

i=1
in the gauge J,4, = 0 (p"¢;, = 0), &,0",]0,p) = a’(p)|0) Null states — residual gauge sym-
metry: at massless level only

6A,(z) = 0,((x), 0*C(x)=0 (1.22)

The state is physical if p?> = 0 i.e. 9*C(x) = 0.

Effective action: U(1) gauge theory with the gague choice J,4, = 0 we get exactly free
Lagrangian.

L=—1(Fu)’ = =5 0uA)" + 3 0uA) (0,A) = =5 (0A)° + 3 (B,A,)° (1.23)

Residual gauge symm. is 0A,, = 0,(, 0L = —0,A,0,0,( — integrating by parts J, we get invari-
ance. This gauge choice has residual gauge symmetry as in (1.22). The residual gauge symmetry
gauges away the p,a part. In field theory one farther fixes the gauge choice by choosing a vector

n*, n-p=—1,n%=0and imposing n - &(p) = 0.

Counting of the degrees of freedom (D): D-2 polarizations of gauge bosons.



1.6 ©

Level 1. ¢,,0",a7,]0,p). Ly, L, — P = PP = 0 one of these 2d equations is not inde-

pendent p*&,,p” = 0; null= &, = puG, + Gupy iff PG = "Gy = 0; ¢ = (u = py gives the
same null state. Counting: d* — (2d — 1) — (2(d — 1) — 1) = d* — 4d + 4. GOOD. Easier: take
p = (p,p,0,...) i.e. p© = pall other =0; then p™¢,, = pT¢,. = 0 (eq. for &, is the same)
— (2d-1) constraints; null: p*(, = p+g:+ =01ie (4 = §~+ = 0 — (2d-2) null but one p_p_ is

comimon.

Effective theory

N=1:masssless states: graviton h,,,, B,,,, dilaton ¢.

The action:

2kK2 12

Exapnsion around flat background: ¢,, = 7. + kohu,. The linearized part of the graviton

L / V=G (R — 1 (09)* — im) (1.24)

interaction is given by the following Lagrangian
1 1 1 1
L= —éﬁxh/’)@“h’; + ic%hﬁé)yh”“ — ZﬁAhW(?)‘h“” + Zamgakhg (1.25)

For hf; = 0,0"h,, = 0 we get
1
L= —Zaxhwakhw (1.26)

(i is becuase the metric tensor is symmetric) with the gauge gauge invariance
h/u/ B h,w/ + au€u + ayglr (127)

Antisymmetric tensors We have —%H 2 where H is a field strenght for B fields. In general:

1
A, = HAM_..ukdx“l...dx“’“ (1.28)
df 1 1 1 1 n
Fn = d(A(n_l)) = m@un/lulmu(nil)dl’#" Adx? ... dxt - = ameundwu .dx?

Thus: F,. . = 103, Aps.. ]
Fo 1) = 00 A1 (n-1) + D eyeres SigN(cycle) Oy, Ay, i, (altogether d-terms)
e.g. Fig = 014y — 02 A1, Hioz = 01Baz + 02B31 + 03 Bia. So

1 1 1 1
——H? = —E(auBup+cycl.)2 = —Z(auByp)Q—§8MBZ,,,8,,BW—§8MB,,,,8[,BW+0ne more

[ay....an) u L Zperm sign(permutation) a....ay,.



[ x| Analize null states for the massive modes []

The spectrum is ghost free for a=1 and d=26 ora < 1 and d < 25
GSWL85.

1.7 Spectra

Closed oriented - CO, Closed unoriented - CUQO, Open oriented - OO, Open unoriented - OUO.

closed CcCO | CUO open 00 | OUO
m? = 42 m? = —42
10, p) T r 10, p) T T
m? =2 - 42 m2:%_d4;82 (1.29)
Oz(“la )1|0,p> G | Guw a0, p) A,
o 1(a—1)u|0,p> ¢ ¢
a[ul@ ]1‘Oap> Bm/




1.8 Appendices

A. Quantum symmetries

Classically 0, J* = 0 — 0,Q = 0 so in Hamilton formalism Q) = Q(p,q) and 0,Q) = 0, —
{Q,H}pp = 0. Thus Q is generator of symmetry (see below). In quantum theory [Q, H| =
0. Transformation laws under the symmetry for fields are generated by the charge because the
commutator is a differentiation i.e. for H = A¢pB we have [Q, H] = [Q, A¢pB] = [Q, Al¢pB +
AlQ, 9| B + A¢|Q, B]. We set:

¢ = e Cpe™C = 5.0 = i€[Q, P (1.30)

In our case from (??) we get €Q = 3= [e(T)T(1) = Y €mLy. For the scalar field 64 X =

pzs

e;,tbeim‘r+ 04+ X thus [Ly,, o] = —(m + n)aupyp gives normalization of Ly,.

A) L-C QUANTIZATION We solve constraints, thus we should work only with physical states,
thus there should not be ghosts.

La. solution for XT = xl + 4p*7 is conformally equivalent to the most general solution
(p* > 0). Thus we can farther fix the gauge choosing X .

Lb. Weanalize T, =0=2p"0, X~ = (0, X1)2 Its zero mode

2pt2p” = (2p1)* + Z Qi (1.31)

must be normaled ordered and it gives mass condition. The nonzero modes give relation
between X~ and X+ oscilations — not interesting.

Normal ordering influences the CR for generators of the Loventy group (??) (which looks
like broken here) so there might be anomaly. The vanishing of the anomaly leads to the
critical string (above).

Lc. the Hilbert space is Hy—. = Dy, ,, (11, o)

i m,

p+7pL>7 my; <0

1.d. the masses of states we read from the zeroth component of (??). Normal ordering is impor-
tant. We denote
o0 o0 1
N — L 1 = —— = 2 1.32
; a0, ; n 127 Qo p ( )
_ d—2) 1 (d—2)
optop — 2N 4+ (b2 — =2 a1y 1.
© . As above

la. X =x§ + 2p*7 is conformally equivalent to the most general solution (p™ > 0).

L.b. The above choice determine X ~ by solving T,y =T__ = 0to givept 0, X~ = (0, X )2,
(X

pto_ X~ =



1.c. there is two constraints left over because the above constraint have the same l.h.s for the

zeroth Fourier component: N = N and mass shell M? = 2N — %. The Hilbert space
is
Hi_ .= @ (H dfz Haf,{jﬂpﬂpﬂ, m; < 0 (1.34)
{igp} 1 J

1.d. fora=1,c =26 we have Hocq = H,—..

10



B) NORMAL ORDERING CONSTANTS (I Contribution from a single field to —a is

—Aa=+5 Y (m+a)==£5((-1a) = ()@’ —a+})/4 {“"”"”s (135)

2 .
0 — fermions

where o > 0 depends on b.c..

For SST v’s follow the pattern of X (mod 1/2) due to superconformal symmetry (s-conf. parame-
ter € can be periodic (R sector) or anti-per. (NS sector). CLARIFY.«—(?) which 2 directions do
not enter a ?

e 1 in R sector has the same « as bosons, thus total a = 0, number of massless states
depends on number of 1y’s. In extreme case there can be no 1y’s and only |0) g massless,
which moreover can be projectd out by GSO.

e ¢ in NS sector has « shifterd by %
For D-D, N-N b.c.

. 1
— bosons have oo = 0 — —Aa = —i,fermlons have o« = 5 — —Aa = —%

_ 1
— sum=—Aa = — 6
For N-D b.c.

1 . .
- bosons have o = § — —Aa = ﬁfermzons have o = 0 — —Aa = 2—14. In this case

— sum=—Aa = E

o In the case # of N-D=4 (preserving Susy) one has (we removed 2 D-D directions from a,
why (7))
_aR:_aNS:() (1.36)

cancels that from 4 ND (in NS sector).

m=0

e Fortwo D-branes rotated by 0 in X*, Xt (7 = X' +i X ) we got —Aa = 2(:&)% S
a)witha =0/ 72l For one complex boson and fermion in NS (as above)

—Aa = Z m+a)—Y (m+at+i)=C(-l,a)—C(-l,a+3)=—% +50 (137

- 1 - 1
3o =50 =55 3D (r+3) =532 D=5 (139

n=1 r=0

see arXiv:hep-th/9606139v2 and 0606001 for more detailed presentation
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> orolr + %)75 =223 0,2 +1)70 = 220, (r + )7 = 05 (2r)70) =

Yo o(r+a)™® = ((s,«) is so-called Generalized Riemann function or Hutwitz function.
((-1,a) = —(a® —a+g)/2

C) UNORIENTED STRINGS We can get unoriented strings requiring that states are invariant
under () (below). This reduces number of states.

©:0—=2r—0, =0 a, — a,

ro—m—o, = Q:a, — (—1)"a, Also the only consistent (with the scattering amplitudes)
choice is invariance of tachyon under the reflection Q|0,p) = 0. For unorineted strings one
needs: Q)0,p) = |0, p)
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