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1 Superstrings

As we shall see the SUPERSTRING is quite complex object consisting of several sectors (Hilbert

spaces) of the following supersymmetric action.

1

T 4

S (%f%xuaaxu + D" Y 0,") (L.1)

1.1 Classical theory

1.1.1 ANTI-COMMUTING ¥’S 2d Minkowski (—1, 1) Spinors

{7%,4"} = -2 = —diag(—1,1)® (1.2)
vy = C(HY")Tyr, cCt=1 (1.3)
Uy 0y = 0 = CTy*C = £y (1.4)

2d: Y0 =02, Al=iol, C=-4" (0 =T

P N P S ( M) (L5)
ba
] _ ]
S = E/dQU Yy 0 = %/dgg i(Y-041p- +1pr0-1py) (1.6)

The above has (also for arbitry backgroud) Z, x Z, symmetry with generators which we shall
call (—1)¥ (for the left Z5).

vy — =y, Yo — =Y (L.7)

1.1.2 FINAL ACTION

S =5 [(0;X0_X +ith_ 040 + i 0_1py) (1.8)

Because 1’s do not have any direct physical meaning (contrary to X which has clear meaning for some limiting
cases) we could have ¢* (o + 27) = t**1)" (o). But t must commute with target Lorentz generators and be symmery

of S thus in this case it must be &1 for all x.



1.2 Eq.m. and b.c.
8+87X - O, 8+¢, — 0, 87w+ — 0 (19)

(© : We can consider the folowing R: (Ramond), NS (Neveu-Schwarz) boundary conditions

(we suppress here £)

(R) Y(c+2m) = (o) — rel (1.10)
(NS) ¥(o+21) = —(o) > reZ+3 (1.11)

& NS sector can be called twisted sector: (o + 2m) = g1(o) for any g in global symmetry group of the

action. &

Thus eq.m. 0_v¢ 4 = 0, 0,1_ = 0 has solutions
Y=Y e gt =N gre™ e Z(R), reZ+ 3 (NS) (1.12)
Derivation of the eq.m. from (??) gives the following boundary contributions
[dr [y dod,(—1p401py + p_d1p_) yielding
V0, — 0y =0forx =0, (1.13)
Possible b.c.

l.a. 0 = 0, we set 610, = d1_ what is always possible by the Z, symmetry (??). This gives
¢+(77 0) = w— (7-7 0)
Mode expansion (22) 3° e = 3" e~ sets {r} = {r'} and ), = 1),. Thus ther

is only one fermion 1) so that 1. (0%) = ¢(0*) and
1b. 0 =m, 0, = +6Y_ie.

Y(r+m) = P(r—7) R) = reZz

, (1.14)
Y(r+m) = —Y(r—m) (NS) = reZ+;

Reality ¢t =1 _,, r # 0 and CCR dictate creation-anihilation splitting. There is problem

with )y which is real — see — .



1.3 NS/R in general
e One chooses NS/R b.c. the same for all of the space components.

e R: ¢'s follow the mode expansion of X fields. It always gives anti-commuting fields.
NS: ¢/'s have 1/2 shift.

e ap = 0 but ayg varies for different situations.
e GSO changes (how ?77?)

Spectra of intersecting branes/instantons. []

1.4 Symmetries

1.4.1 CONFORMAL SYMMETRY

X — X(f(07),07), s = (0:)20u(f(07),07), o — ¢ (f(0¥),07) (115

Current from terms linear in 0_ f (0%, 07) from 0_ = 0_ f0, + 0

Tyy = 5(04 X0, X +ithy 041y (1.16)

1.4.2 SUPERCONFORMAL SYMMETRY Global (1,1) SUSY is part of it
06X =iet (oM )y, 0y = —€et(07)0, X (1.17)

Current from terms linear in 0_e* (0", 0~) from 0_X and 0_1, gives

| Gy =i 0.X | (1.18)

For[~] e = £¢™ i.e. on the boundary ¢ = 0.?72?

1.5 Quantization of "

Ty = ﬁ% are constraints, thus we introduce

1
4r
we calculate {F, F'} = 1/ onl2] (2nd class constraints (see e.g. Lust-Theisen)) thus we need
Dirac bracket to define CCR

{0.7}p = (9,7} — (9, FHE F) (R} = (1.19)

(o

F:7T+—

This anti-commutator here would be classically Poisson bracket. {a,b},—pp & 040 0xb + 04b0ra thus
{F,F}a_pB = —i/(27T).
It gives {¢), F}p = {F,n}p =0



what gives

{(r,0), 0" (1,0")} = 216(0 — o) (1.20)

La. {QF %} = Oppson™, ¥ = ¢_,. For r # 0 this defines creation-anihilation operators:
¥:10) =0, r > 0.

1.b. Forr = 0,

{6, g} =" (1.21)

we get Dirac algebra — for the construction of the relevant Fock space: out of 2n real (for

simplicity, Euclidean) ¢y’s we form n complex b’ = — (¢ +i5™"), = 7 Wh—i™)
They respect {b,b7} = §7. We define a state |2 >, b;|Q >= 0. Fock space S =
&ty b

,L'l...

b; |Q >, its dimension dimc(S) = 2™ = dim. of Dirac spinor rep. We then

split into eigenspace of (—1)F of dimg = 2™, S = S, & S_ where are .

S, = @2 b;1b5n|Q > S = @in:ll_cl)dd b;

n=0 even

b [0 > (1.22)

1
In other words (1.21) has the following reps
V2Pl =TH, (1.23)

Notice that (as always) I'* : (S;,8-) — (S_,84). DO carefully the Dirac algebra:

change notation to {I", I'} = 27 and then write down the I"’s expicitely.

D=10. In (1,9) Minkowski space these Weyl spinors can be real (Majorana) so dimg(S+) =
16. More notation:
S+ > S+ = §a|06>, S_ 55 = £a|06> (124)

We shall see that all these states has the same level i.e. the same mass shall condition.

1.6 Constrains

(RyreZ, (NS)reZ+3.
Lo = 53t 40 S 2 m) st
m 2m-05m—n [0 77 4T T m) . Vm—r .

Gr = ) ¥ (1.25)

The other reps = T#T T#* TH+ are equivalent (which« (?)[] ) or related by outer automorphism of the Lie

algebra (which is charge conjugation).



Correspondingly, the Virasoro algebra is enlarged, with the non—zero (anti) commutators being

[Lins Ln] = (m —n) Ly + %A(m)émﬁ-n
{Gr7 Gs} = 2Lr+s + 1C_2B(T)5T+s
Lo G] = %(m )G (1.26)

where Ays = (m® —m), Bys = (4r* — 1), Ag = m?3, Br = 4r%. For the free strings in d-dim
Minkowski ¢ = d + d/2. Shifting in R sector Ly — Lg + 5; we get the same algebra as for NS:
N=1 SCA.

1.6.1 VIRASORO CONSTRAINTS

(NS) (L, — angdmo)|phys) =0,  Gulphys) =0 m >0 (1.27)
(R) (L, — ardm)|phys) = 0, Gmlphys) =0 m >0 (1.28)
and tilde for closed strings

anNs = ]_/2, aR = 0 (129)

& Calculate a for arbitrary number of D and N b.c. &

Go = 1o + ... ~ i\/ipNF“ + ... (Generalized Dirac operator) (1.30)

(NS) Lolphys) =0 — (0 + m®)lphys) =0 — (@ —m?)é(x) =0 (131)
(R) Golphys) =0— (v"p, + ...)|[phys) =0, (Generalized Dirac eq.) (1.32)

In (RR) sector we deal with forms

1.7 GSO projection

Zy X Zs for () and Z, for commute with SCA. (Left) Fermion number F'is defined mod 2.

F=> " vk + (Ronly) b +c (1.33)
m>0
[F,X] =0, (=1)"(0)(=1)" = —(0) (1.34)

thus ¢}, = Eiﬁi + ip;. El c Q" — QL gt Q" — QP! thus they represents d, df (Hodge). All
together it leads to (d + d')F,, = 0. We have (d + d) = V according to S-Virasoro. Do it: use gamma identities
— 27777

For closed strings we have Hodge decomposition: 9} Py =0+ ot, 1%’ Du = o +0 T.
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(—=1)F = e = e7"F is well defined 6] . We can take physical states to be its eigenstates
because it leaves invariant the constraits: (—1)F|phys) = +|phys), (—1)F|phys) = +|phys).
We take

(—Dfl)r =la)r € Sy, (=D)F|e)r = —|d)r € S- (1.35)

For the NS vacuum we have
(—=1)*10)ys = —|0) ws (1.36)

(—1) in (NS) comes from ghosts.
& This is reasonable because colliding two massless spinors of the same chirality we get odd forms of
(—=1)¥" = 150 e.g. NS vector and there is such a state for m? = 0 with the above choice. With the opposite

chice one would get (—1)F" = 1 vector at massive level I!! NO SUSY !!! &

One can project the spectrum to states with (—1) = 1 and this is preserved by the

interaction. ’ There is SUSY. ‘ & Show it by counting states. &

1.8
1.8.1 NS masses

(NS=), [0) = 2p° =&, (NS+), &1 ,0) = m?>=0,.. (1.37)

Virasoro constraints: for §, only from G /5. It gives p*{,, = 0.

Null states exists for §,, and provide gauge symmetry.

X(P)G-1/2|0 >~ x(p)pud”, |0 > (1.38)

corresponds to dA4,, = J,x(p).

1.8.2 R
(R+), &ala),  (R-), &ld), p*=0 (1.39)

Virasoro constraints: for &,, &, only from Gy = oy - ¥ + .... By (1.21) we haV

1 )
vhla) = 5T, 18) (1.40

(6] Notice that in (R) (—1)F generalizes the vs. (—1)" [[i_, b"*[0) = (—=1)*[]5_, b**|0). Also [F,¢,,] =
_Sign(m)wm-
This fixes the irrelevant constant c in (R) in (1.33). It is irrelevant because it switches the chirality of spinors.

One can check that T} |a) = —f|a) i.e. it is proportional to |3).



Thus

Golala) =0 = pufaFgaW% = pMFgafa(p) =0, Dirac eq. (1.41)

NO null states.

NS+ | €0 1p|0) | m? = (odd # of fermions)|0)

NS— |0) m? = —1/4| (even # of fermions)|0)

R+ Sy =la) | m?*= (even # of fermions)|c) (1.42)
(odd # of fermions 1,.)| )

R— S_=l]da) | m*=0 (v <> v in above)

The rightmost states are massive.
Take (—1)" = 1 massless states & - ¢_1/2|0), Sy = |&). In vector state there are 10 — 2 = 8
degrees of freedom, in spinor field there are 16 — 8 = 8 d.o.f. (—8 due to Dirac eq.).

1.9 D-branes at angles

for 4 N-D BC the GSO changes sign !!! Polchinski II, p.169.

1.10 (©
Formally we have 42 possible sectors
(NS+,NS+),(NS+, R+), (R+, NS+), (R+, R+) (1.43)

but some must be eliminated by Ly = Ly e.g. NS— can apear only with N S—.

Sectors
e (NS—, NS—) contains tachyon
e (NS+, NS+) contains string gravity

e (NS, R) contains superpartners of gravity U* = |, p, R) ® 9" |0, p) decomposes to x*

and s = (T',)a” W7. For critical string gravitino has null state:
G_172|0 > ®a) ~ pup, [0 > ®|a) (1.44)
corresponds to dx% = d,x. Local SUSY

e (R, R) contains form (gauge fields)



1.10.1 (R,R) We decompose tensor product of spinors S, ® S, — &,|a)®|F) or S;®S_
into irrps of the Lorentz group. We need Clebsch-Gordon coeffs (CGS).

Denote p;...p4, = [k] Notice that (I° = C = CT = —C*) STk § = /T T S and §' TTIK C+9
are irreps and both equivalent < (?)[] (see ...) thus ¥ C*+ are CGC of S ® S = anti — symmetric tensors.

Similarly we can use CGC: TT*FICH = (—)kk+D/2elk] o TIO=K /(10 — K)).

We denote Fjjg_yTHOHCH = (—)kr+D/2 4 By (TTHCH) € AR (forms)

ool @10) =D (Fasla) @ |o) = D (FgTHCH—(—)FE0/2 5 Fo_pTTHCT)

k k<10/2 . .
(— is conventional)

By (—=1)"|a) = Tpa|B) = |a) thus Fjy = — (=) D72 Fyg_y.

Gosla) @ 1oy = ) F(1+D)rHct (1.45)

k<10/2

L] (R+,R+)kls0dd F5:*F5. S+®S+:F1@F3@F;_
Counting: S4 ® S4: lhs =224, rhs = 10 4 1098 4 % 109876 — 10 + 120 + 126 = 256.

o (R+,R—). kiseven. S_ ® S, = Iy ® F, @ Fy.
S_®Sy:lhs =2%-2% =256 = rhs = 1+ 192 4 10887 — 1 4 45 4 210.

1.10.2 CONSTRAINTS By (1.30) we get (picking only terms without I')
0 = Go) Fu=> pI" - Fo=> pAFi—(p,Fiia
0 = God_ Fe=3 pbe-T" =Y (-0 A B+, Fi)ir) [

(we used (1.67)). Thus all coefficients of the k-form must vanish i.e. (p A Fy) — (p, Fri2) =0
and (p A Fy) + (p, Fi42) =0

Pludr ) =0 =" Fy (1.46)




1.10.3 SUMMERY OF THE SPECTRA We suppress momentum p from indexing the states.

sector #
(NS+,NS+) | 4" 4",]0) Guv» Buus ¢
(R+,R+) ‘Oé> ® ’ﬁ> F1 IdCo,Fg :dCQ,F; :dC4
(R+,R—) la) ®|5) Fy =dC,, Fy = dC,
(R+,NS+) | |o) @ ¢*,]0) X chirality —
A chirality +
(NS+,R-) | ¢*,]0)®|3) X chirality +
Ao chirality —
(NS—,NS—) | [0), m* = —1 T

Moreover we need more then one sector to produce modular invariant theory.

1.10.4 CONSISTENT CLOSED SUPERSTRINGS

type GSO sectors

ITA (—)ft (NS+,NS+), (NS+,R—), (R+,NS+), (R+,R—)

IIB | (=) | (NS+,NS+), (NS+, R+), (R+,NS+), (R+, R+) (1.47)
0A ? (NS+,NS+), (NS—,NS—), (R+,R-), (R—, R+)

0B | (—)frtfr | (NS+,NS+), (NS—, NS-), (R+, R+), (R—, R—)
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1.10.5 CLOSED IB =I1IB/$)

o— 2 —0

ay — O,

0 _ (1.48)
e = (=),
@) = o)
Invariant states:
G, ¢ (1.49)
Cs (1.50)
XL, Aa (1.51)

(1.49): one must take into account that NS vacuum carries the fermion number (1.36). (1.50):
only I'*” (M. -l.c. = 8d E) is a-symmetric matrix due to (1) C=1 for M-W E-spinors (2) (I'**)T =

—~

CTY“CT = —I'*. Thus from a-commuting of spinor states |a), |3) we get Q-invatiant state

(T")2B|a) @ |3). (1.51): symmetric combination of IIB (NS+,R+), (R+,NS+).

1.11 Openl

Consists of closed I B = I1B /) and open unoriented superstring

1.11.1 OPEN UNORIENTED

P(om) — o) =T =) (1.52)
It follows that
Q: (R) — (R)
(NS) — (NS) (1.53)

so V(o) = £Y%(07)|g—0, and P*(cT) = (07 )|,—~ thus in order to get to the original

situation we have to make Z, transform in the (NS) sector. Thus

e (R)
_¢T (NS)

The spectrum is modified only in the (NS) sector: only (even # of 1,.)|0) survaive so e.g. the

Q: Y= (1), = { (1.54)

U(1) gauge boson is lost.

1.11.2 CHAN-PATON FACTORS

11



1.12 Appendices
Appendix

M. Canonical quantization of fermions.

Out of 2n real (Euclidean) 1)’s we form n complex

i_i iy gaitn Z_i i oitn

These are independent variables and %E O-1h = ibi O, = 7T£ = ib’

{b,0'} =6", {b", 0} =0, {60} =0= {" "} =n*
We define a state |Q2 >, b;|Q2 >= 0
Then

2m

Ol even 0,05, |2 > rep.of one chirality
@2y i b; | > rep. of another chirality

1

¢“ = %(bl—i-lﬁ),fm#:@: 17m

- %i(bi—lﬁ),foru:m-ﬂ:m"‘lv---?m
{", 0"} = 0w

In this algebra the Dirac matrices are TH = /2.

N. RR sector

(1.55)

(1.56)

(1.57)

(1.58)

o |a,p, RY®|B,p, R) or |a,p, R) ® |B,p, R) plus (undoted < doted) which are equivalent.

o {001} 2 g £ g so (D)1 2 (1) Z (1)

e 41
) F,LL17 He — H permut s(g,/l(//l/l7 ‘.‘//Lk)rul,..ruk

e Lorentz generators: M" = LTH.

e For even dimensions there are 2 Weyl reps Si; 1, € S_, s € Sy thus we can do

projections of I'" on appropriate spaces using

IS, =+5,, {T,l=0, T'=T

(1.59)

o I'“T qalso respect (N.). (?) This is an equivalent rep thus there is a unitary operation C

CT*Ct = 4T

(1.60)

C is a nontrivial metric on St i.e. YTC4 is an Lorentz invartiant due to (M*)T =

—~C M (T,

12



o The charge (Marojana) conjugate spinor
v L0y L o) Ty £ oy (1.61)
transforms the same way as 1. Moreover 1) is an eigenstate of I then also wc
[(Sy)e = sign(-) - (Sy). (1.62)

e 14 is an Lorentz invatiant due to (M")'[I'°] = [T°]M*.

o 1) ") and 1y CT ") are Lorentz vectors
Dirac operator V,I'" : So. — St (V is a vector) due to (1.59)
V,CT* Sy — St

e Majorana-Weyl spinors in M space (GSW vol.I,p.200,288)

— we take (T*)! = —* T, moreover for M-W we can take (IT'*)T = —n#*T'",
- C=-_10°

CTHCT = —TWT | Wy, = U, (1.63)
— RR fields S, CT*# S, foroddk, S_CTH S, foreven k (dutto (1.59))

is anitsymmetric tensor of the rank k (we can change (+ — —) above)

— Due to (1.59) and the Hodge duality TT*-# ~ etk gL PR the above
tensors are linearly independent only for k < [d/2]. For k = d/2 the tensor is (a-)
self-dual for for S, (S_).

O. Some identities
A) CONVENTIONS we take for M-W according to (1.63)
(O)F = =g, TY(I)T = -1, (1.64)
CTHCT = -1, O = -T° W, =3, (1.65)
B) DIRAC ALGEBRA IDENTITIES
e 4t 1

= sgn(o)T7r) o) (1.66)

oESE

H

The following holds [[?] what convention ??(N.)]

THL BTV — THLHRY [ F[#lmﬂkqguk]l/ — (_1)k(rl’#l~~-#k +k gV[mF#z..#k}) (1.67)
DVTHL e — TVl _ gV[M1FM2~~~Mk] (1.68)

d-dim of the space,
ths =TC(I°)"(T")*(S4) = TO(I) T (S4) = =TCT" (K)7(S4) = —(=1)%4~ /2 (sign(1.60)) (S ).

For E space the overal sign is changed.

13



C) FoORrMS

la A, =LA dxtr...dxt*

B

1.b. F, at d(Am-1)) = ﬁ@un/lmmmnfl)dx“” A dxtr ... dxH =1 (as forms)

and F,, = %Fm“#ndx“l...dx“". Thus: F,, ., = 10, Aps..pin)s
Fo...(n-1) = OoA1..(n—1) + chcles sign(cycle)0,, A,, ..., (altogether d-terms)
e.g. Fio = 01As — 0, A1, Flas = 01 A3 + 02 A3 + 03419

l.c. Hodge star 2]

f

1d. [a;....a,] = %(all sign permutations of a;....a,)
wde A dee 2 : dV ’g]l)'em'-'ﬂk,,l,,_,,“ Az A ...dz" @ (1.69)
«*ap, = sign(det(g)) (—)" 4 May (1.70)

1 1
aNxb = (=)"R) wqnD = EV \glap, . bRV = y(a -0)1.71)

1.e. kinetic terms

LFn -F, = % Z [(Fy..)* — (space indices)] (1.72)

Ez—%Fn/\*Fn:—
diff..

[a....an) a1 Zperm sign(permutation) aj....ay,.

n!

eul.__ukd:fsign(,ul...uk), etk = sign(det(g))+/|det(g)]  for even perm.
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