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1 Classical free string

1.0

Path

Y4 variational principle []

1a.

1d.

Nambu-Goto action and its interpretation: Sec. 1.1.

. 1 mass
_ 2 in _ _ ; _
Sne = —T/d o/ —det(gind), T = S [tension = length] (1.1)
e N-G action is classically equivalent to the Polyakov action.
T 2 2 ab m : .
S = —3 d*o*\/—det(9)g* 0, Xm0 X™, inmetric (—1,1...) (1.2)
b
gap are Lagrange multiplyers: §/dg,, — constraints.
Introduce energy momentum tensor 7,;, which = 0 by g,; e.0.m.
A7 55 1 eom
Ty = ———— =27T(0, XX — 5 gupg™0.X0;,X) “Z" 0 (1.3)
\/__g 5gab ( 2 )
= gab = AN0)0. XWX = A(o) gl (1.4)

. local symmetries: Sec.1.2. erep., eglobal(=local) Weyl symmetry — without

eq.m.

gauge fixing g.;, = 74

. Classical eqs of motion Sec.1.3

e Iy=0—="T__=1T,, =0(lc. coords)

o for X:
B 65 oL

0=5x = ?Ga.x

= = X =40,0_X 1.
— ) = 0,0°X = 40,0 (1.5)
B.C.:
- ©X(o+2m,7)=X(0,7)
- [~]o € (0, ). For any compondnt of X:
0, X"'=0 (0 =0,0 =7) Neumann

§X'=0 = X'=d(0) (0=0,0=mn) Dirichlet: break transl.
e solutions to free e.o.m.

conf.symmetry, charges and constraints (?)— Sec.1.4: L,,, L.,



1.1 String action
1.1.1 NON-RELATIVISTIC STRING
1
L~ §T(:cf — )

world surface coordinates z'(7,0) (here 7 =

2° = t), “transverse” string coordinates &; =
85?, z, = %. Center of mass: x;(7,0) =

Fig.11: small transverse oscillations [SER lT Ldriz+. . = AL R +
o 5 it =3 s

1.1.2 RELATIVISTIC STRING Basic principles:
e Relativistic space-time invariance (Poincaré group) =/ = A*,z" + a*

e No internal structure, i.e. no longitudinal oscillations — 2-d reparametrization invariance

<= relativistic generalization: z* — x#

Nambu-Goto action
S = —T/dr/da\/(m'x’)2 — 32g? (1.7)

Motion in space-time: {z*(7,0)}, (7, 0) — world-surface coordinates

ta’ = ita"n,,, i? = a2, (1.8)

1.1.3 MEANING OF THE ACTION : area of world surface

z#(r,0)

Fig.12: Embedding of (7,0)-plane into space-time
Induced metric on world surface (a,b =0, 1)
ds® = n,detdz” = hp(€)dE*de® (1.9)

hap = 0" Op"' 1,10 (1.10)



T €T

hap = ( ?2 i > ; dethg, = i’z — (i2)?
Thus Nambu action reads
S=-T / FPEV=h,  h=dethg
Euclidean signature (1), — d,,,)
T —iTE, ds® = —d7* + do* — drp + do?

Sg = —iSy = T/dTE/dU\/:ic?x’2 — (&a)?

Element of the area:

d(Area) = |z||2| sin adodrg

-

Tx . 5
cosoy = ——— sinaw = vV1 — cos? «

]|

1'“(71:.': U)

~
-
T

dtg E

Fig.13: Element of area

(#2')

(Area)E:/dTEda\/]j:P]x’P

Static gauge:

=71, =0, z'(1,0) = transverse coordinates, =1,...

hap = Oax" 0" Ny = Napy + 0,0

Expand action assuming |0,z’| < 1 (small oscillations):

5 =1 [ d¢y/~detln + 0,50,
detnab =—1
det (e + 0,2 0px") = detngpdet (05 + Ogx'Opr'n®)

~ —(1 4 0" O’ n™ +...)

4

1— —|:'c|2]:c’|2 = /dﬂ;da\/fv?yg’2 — (&2')?

D —2

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)



S = —T/d2£(1 + %G“xi&lwi) + O((0x)")

1 L : 4
~ —m/d7'+ §T/d7'/ do (") — (2)%] + O((0z)*)
0
Equation for small oscillations:

Z; — xf = 0 — wave equation in 1-d: transverse waves on the string

1.1.4 RELATION TO PARTICLE ACTION Nambu action describes string as collection of par-
ticles moving in direction transverse to the string.

Indeed, use static gauge for 7 only (z° = 7) and start with:

S = —T/df/dzm—vf, (1.18)

dl = do+/|2'|?, Via™ =0 (1.19)

and x = (2"(1,0)), n=1,..., D — 1. Solution of V"z! =0 :

where

L L L Pyt — () (1.20)

VE=VIVE = Prrprimit = i - (1.21)

$/2
S = —T/df/dz,h V2= —T/dT/da\/x’2 F@Er)2— %% (1.22)

This action (in 2° = 7 gauge) is invariant under ¢ — f(o).

This coincides with the Nambu action in the “incomplete” static gauge 2° = 7:

—detha = (i) (2"2)) + (2))* = (23,)% = (£} (m)? + (02}’

n

The Nambu action thus describes a collection of particles “coupled” by the constraint that they

should move transversely to the profile of the string (i.e. there should be no longitudinal motions).

1.2 Local symmetries and gauge fixing
e reparam. 7' = f(7,0), o' =g(r,0)

Diff(¥) : X'(0) =X(0' =0+€(0)),
gop(0) = 040" 0y0" gealo”) (1.23)

2-d world-volume (local) — reparametrizations of world-surface

5



e Weyl
Weyl : g'(0) = Mo )ga(o) (1.24)
Reps and Weyl scales the volume element: /—g — /—g¢ |det(do’/dc)|, or — /—g A(o) but
Weyl makes the volume of X unphysical.
e Counting degrees of freedom 1]

e Gauge fixing, I-c. coordinates.

— in N-G where one fixes gfﬁﬁ = ¢"? = (. One can solve the constraints going to the

unitary gauge (e.g. light-cone)

In Polyakov we use local symmetries to fix g
— geometry of the space Met(3) e.g. Met(S?) = Weyl(S?) x Dif f(S?)

— “perfect” gauge fixing is hard: usually there is either a residual (global) remnant of
the g.symmetry or gauge fixing is too rigid. One can go to “physical” (unitary) gauges

but these break Lorentz invariance (not nice).

— , unlike gauge choice can not give singular volume form: conformal gauge: g, =
A(0)6ap- Then:

T
Sp = o) / d*a[(0.X)? — (0,X)?] (1.25)
s
but we have to remamber about eq.m. for the metric 7, = 0. There are only two of
them.
g = 0, gy =0, g1 =3 (1.26)
1
S = — / d’0c0,.X0_X (1.27)
2m
T, =0, Tyy=30,X0.X, T__=350_X0_X (1.28)
THE EQ.M. T__ =T}, = 0 PUTS CONSTRAINTS ON SOLUTIONS.

Polyakov: metric — 3, x — d. Local symmetries: reps — -2, constraints from gravity eq.m. — -2, Weyl— -1.

Altogethere = d — 2. Nambu-Goto: x — d. Local symmetries: reps — -2. Altogethere = d — 2.

6



1.3

Free fields - classical solutions

T L Tr/L T
S:/O dT/O dot (9.X)?, :/O dT/O dot (9.X)? (1.29)

0,0°X =40,0. X =0 =X = f(r+0)+g(t —0) (1.30)

Minkowski solutions depends on bc.

l.a.

©:0;X =0, f(0")and 0_X = 0_g(o ™) are periodic because X is.
flet)y=c+pot + Z e gloT) = +po + Z Ame ™7 (1.31)
meZ—{0} meZ—{0}
Periodicity of X enforces p = P, (ap = p) thus:
1

X(o*,07)=a+ 2007 +i Y. — (ame—im”+ + ame—m‘) (1.32)
meZ—{0}

. NN o € (0,7) i.e. Neumann bc at 0 = 0, 7. In addition we renormalize the momentum

p — 2p due to half the interation region: pypys = f dollx. We want p,pys = p. 0 = 0, X —
fi(r) =4¢ (1) = f =g+ const fromo = 0and f'(1+7) = f'(r —m) thus f'(1) =
2p+ > mez (o) Om e~ thus (oyy = 2p)

1 . L
X(oT,0)=x+20m+i Y —ap(e™ +em) (1.33)
meZ—{0}

. DD[~]: wetake X(1,0 =0) =0, X(r,0 =7) =d. Atoc =0, f'(1) = —¢'(7) = f =

—g + const, at 0 = 7 as above (no momentum), thus

do 1 N o
+ — — . —1mao _ —1mao .
X(o",07) x+—7T +1 E —ay, (e e ) (1.34)
meZ—{0}

ND[~]: Nforoc = 0andDforoc = 7. Atoc =0 f =g+ constbutato = 7

f'(t+m) = —f'(r — ) (antiperiodic - expansion in half integers).
, 1 o .
X + — — _ —1mao —1mao .
(7,0 )=z+1i Z mam(e +e ) (1.35)
m=2Z+1/2

reality of X gives



1.4 Conserved charges

1.4.1 CONFORMAL SYMMETRY Conformal symmetry is a property of some 2d action re-
gardless of applicaition to string theory (no constraints are involved). It is a kind of global sym-

metry — conserved charges.
X(c",07) = X'(0",07)=X(c"(c7),0" (c7)) (1.36)

We need to assure that ¥ is unchanged: o'*(0%) = o* + ¢(07).

For © €*(0®) must be 2 periodic (see App).

For[~]e (z) = € (z) = ¢(x) and €(z) = e(z + 27):

Proof:2d0 = d0’'" — 60’ = € — e~ = 0 for boundaries: = o = 0: ¢ (7) = € (7) (i.e. €7(7) = 0);
o=m — e (t+m) =€ (r—m).O

so there is half of the symmetries compare to the closed string case.

e it is a remnant of the reparameterization invariance

e conserved charges — used in quantization below.
& the conserved charges are basically the same as constraints: this property holds because
the gravity sets constraints while charges follow from remants of the reparameterization

invariance. &
e we can use it to further fixing — light — cone gauge.
1.4.2 CHARGES Derive chares by Noether procedure. 9,7% = 0. By direct inspection we
also find 7, = 0. In the conforaml gauge by direct inspection
T, =0=T,_ =0, 0.T,,=0,0,T__=0 (1.37)

The first equality hold as a tauthology and it is a consecquance of the (global)Weyl invariance;
the second and the thirs equality follows from conformal symmetries of the action.

For (©) we define charges
1 _— - 1 [ N
L,=— [ doe" T,,, L,=— doe™” T__ (1.38)
2T 2m Jo

which are time-independent 0, L,, = 9. L, = 0.

For

In the presence of boundary 0¥ we get conservation of J only if there is no flow of J through

For properties of f, g see below



0. We shall require n®J?|sx = 0 where n is a vector L to the boundary. by direct inspection
Ty (0%) =T__(07)|przeg €. for o = 0: T (1) = T__(7) — only one independent e-m tensor;
foroc =m: T, (T +m) =T__(r — 7) i.e. e-m tensor is 2w—periodc.

1 q2m

L, = P doe™ T, (o) «(?) : normaliz
T Jo

are 7-independent i.e. L, = o= [" doe™ T, (o) = & [*" doe™ T__ (o) We have only one set

of charges.

One can express those charges by modes «, av.

1.5 [light — cone gauge

as total gauge fixing
OPEN: X = zf + 4p*7 CLOSED: X = z§ + 2p™ 7 is conformally equivalent to the most
general solution (p™ > 0). Thus we can farther fix the gauge choosing X . The above choice

determine X ~ by solving T}, = 0 (see below).

1.6 Summery

String functional Sy_¢ ~ Area. It is classically equivalent to Sp if one solves eq.m. of 2d

gravity.
Am S
0= Tp— -1 (1.39)
V=g 06g*
Only 2 of the above eqations are non-trivial 7 =7, ; = 0.

Sp has enought gauge symmetries (reps.+ Weyl) to gauge away the 2d gravity g., = 7. In this

case classically string theory is defined by the action
S =2T / d*c0, X0_X (1.40)

and the constraints 7___ = 7., = 0. The above action as conformal symmetry which is a remant

of the reps.inv. The corresponding conserved currents and charges:

©
a_T++ — O, 8+T__ — O (141)
1 . -
L, = — / doe™ T, L, (1.42)
2
S =2T [ 00, X0_X, L,=L,=0 (1.43)




b.c. gives Ty =T _|,—0.» (see App.)

0T, +0,.T _= 0,T" =0 (1.44)
O (Tt €™ ) + 0, (T__e™ ) =0 (1.45)
1 & ) )
Lyp==— [ do (e Tii(0)+e T __(—0))
2w Jo
I 1 & ) -
T e o) - [T (o)
™ Jo 0
27 period 1 2m ; -
=t — | T (0)e™ . L, =Ln (1.46)
2 Jo

1.7 Appendices

A. Global symmetries and charges for strings

G group of global continuous symmetries of a theory : g = ei“ATA. the symmetry means that

S= / doL(X'(0), 0, X' (o)) “2* / doL( X(0),0, X(0)) (1.47)

To EACH T CORRESPONDS A CONSERVED CURRENT 0,J% = 0. THIS IMPLIES

EXISTENCE OF TIME INDEPENDENT CHARGES Q4 = [, J4(0).

A) BOUNDARY 0%. Inthe presence of boundary 0% we get conservation of Ji* only if there is
no flow of J¢ throught 0%.. We shall require n®J?|9x, = 0 where n® is a vector L to the boundary
(see (??)). & Do more boundary as in the section ??. &

B) APPLICATION TO STRINGS introduce light — cone coordinates (n,_ = —%)
1 2 2 a 1 2 2
S=—— [ d°0°0,X,0°X" = — | d°0"0, X"0_X,, (1.48)
8T Js 21 s

l.a. Target space shift: X — X + € defines target momentum p (equals canonical momentum
(??) at this case).

Jl=-T9X, = Q" =T / dod, X" & (1.49)
and rotations § X" = i€®?(t,5)", X" defines the target Lorentz generators.
(Jag = —iTO X, (tas)" X" =
Qo = iT / dod, X (tap)", X" £ Mg (1.50)

It is not true that | g—f(dX = 0 vanishes for arbitrary 6 X on eq.m. One needs §X = 0 on time boundaries

which can not be imposed with global symmetries (charge flow).

10



Lb. © world-sheet shift 6;0%" = w® = gives currents

oL
=1 < - “Top = .
s 21 < Nl a(aaX)abXRe and 0T, =0 (1.51)

together with 0,7 = 0 leads to 0_T,, = 0 = 0,.T__ (see below). For free string
Top = 5[0, X0 X — 3(9.X)?].

as above but b = 0 only: = 9,T° = 0. But T% =T, +T°_ = 0, (T_y +T__) +
O Ty +T,-)=0,duetoT_. =0= 0,T-_ + 0_T,, = 0. & For open string the b.c.
breaks half of it. &

C) CONFORMAL SYMMETRY is the remnant of the reparameterization invariance, follows
from T = 0 (above) and in 2d leads to infinite number of conserved charges. All reparam. must
preserve X..

The action (??) has big group of symmetries:— conformal symmetries
ot =0T =f(0"), 0" =0 =g(o) (1.52)

5 [ 00, X(fl04),9 N0 X (1) ale ) = [ T0rX(1,9)0,X(£9) = 5

We need to assure that 3. is unchanged: let (f* = f, f~ = g) ff(cF) = o* + €5(o7).

con

© € (0F) must be 21 periodic. Proof: (a) o'(o + 27, 7) = o'(0,7) + 27, (b)7'(0 + 27, 7) =
7'(0,7). (a)= €t (ot +2m)—e (07 —2m) =€ (o) —€ (07), ()= e (6T +2m)+€ (07 —
21) =€t (ot)+€e (07). O

e_(z) =ei(z) = €(x) and €(x) = €(x + 27): Proof: 260 = 60’ —d0'~ = €™ — e =0 for
o=0,m:toc=0:e_(1) =€4(7) (i.e. €°(7) =0); o =7, = ex(7+7) =€ (7 —7). O

so there is half of the symmetries compare to the closed string case.

Infinite number of global symmetries generated by Fourier comopnents of c=: ¢*(o%) =

+ ino™T
n€n € .

D) CHARGES

—ino 1 no T
Tpo=>» ™ML, Ly =5 | doe Ty, 8,L,=0,L,=L_, (1.53)
. ~ 1 L
T =Y e L, Ly=o [ doe™ T__ (1.54)

© . Derivation: using f = o + €t (o, 07) we calculate 6S

S+6S = /8+X(f, o )0_X(f,07)

NO Scale symmetry in Minkowski variables: §;0%* = wo®
This is tha same as X (o, 0~) — X'(0+, ) = X (f(o), g(0)).

11



Then 0. X (f,07) = 0. f0; X (f,07), 0-X(f,07) =0_f0;X(f,07)+0-X, also df Ndo™ =
O, fdot N do~ thus

5S = / 0_f0; X0, X = / O_e*0, X0, X + O(e?)

Thus the conserved current is: I’y . (on eq.m.).

For (© and We are looking for (0_e*, O,€7)
0=468= /8+X<0'+ +et, 0 +e )0 X0 +etom+e )-8
— /(8+6_8_X8_X + 0, X(0_€" 0, X)) (1.55)

Using et =S et (o7 )™ e = e (07)e™

© e__:()) o (T++eima+) =0 (156)
© €+_=9 8+(T__€im07) — 0 (1.57)
637 a_ <T++62m0'+) + a—‘,— (T__eimo—i) — O (158)

We got the above is boudary terms (of the integration by parts) vanishes. These are ¢(0_X0_X —
0+ X0, X)|§ =0 This we require T__ =T, |50 1.

The above follows also from tanslational invariance in 7: 0,T°" = 0and Ty~ = 0.Maybe
this is the best.

We define

1 [7 , N
LN (d’WT++ + eime T,,> (1.59)
2 J,
Also Tyr|p—0.0=n = 0 (see (2?)), ie. Thy = T__|y—00=r. For free string T, (o), T__(c7),
thus argueing as above we get T’y (x) =T__(z) and T (x) = Ty, (z + 27) so (we can choose

T=01in(1.59)). Time independence@

1 i ) )
L, = — [ do (e T (o) +e " T__(—0))

2 Jo

= 1 g . -

m [ ety - [T (o)
T Jo 0

27 period 1 2m ; -

=t — T (e)e™. L, =Ly, (1.60)

2m J,

E) MOMENTUM AND SHIFT SYMMETRY X' = X + (o)
65 ~ / (0,t0°X) (1.61)

thus the conserved current is 0,X thus p = f 0, X is the consedrved charge.

@ 87_(159) = % foﬂ do <8a_(ei7n0+T++ — eimaiT__)) = 0 due to T++(.’L‘) = T__(.T/') and T++<.%') =
Ty 4 (x+2m).
€(T)T'(T) generates repar. of 0X|,—o. We have e(7)T'(7) = > -, €m Ly, from the above.
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