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The Principle of Equivalence and the Principle of General Covariance

O

The equations of motion for a system of moving with non-relativistic velocities under
the influence of forces F(Z, — ¥,,) and an external gravitational field g reads
d*7,,

dt?

Perform the following non-Galilean space-time coordinate transformation

=/

F=r—2gt> t =t (1)

DO | —

Then g will be canceled by an inertial "force” so that the equation of motion in the
new reference frame become

d2f,n (= —/
mnﬁ = ZF(fEn — Tp,)
m

Remarks:
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e The observer O who uses the coordinates ¢, Z and his freely falling colleague O’
with coordinates ¢/, ' are going to detect the same laws of mechanics but O’ will
conclude that there is no gravitational interactions while O will say that there is
one.

e The gravitational field was homogeneous and static. Had g depended on T or ¢,
we would not have been able to eliminate it through (1).

The equivalence principle (strong):

At every space-time point in an arbitrary gravitational field it is possible to choose a
"locally inertial coordinate system” such that, within a sufficiently small region of
the point in question, the laws of nature take the same form as in unaccelerated

coordinate system, consistent with the special relativity and in the absence of gravity.

Comments:

e "locally inertial coordinate system” means that the gravitational field in the vicinity
of the point in question could be considered as static and homogeneous.
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Consider a particle moving freely under the influence of purely gravitational forces.
From the Principle of Equivalence (PE) we conclude that there is a freely falling
system of coordinates £ such that the equations of motion (em) read

d2 o
di =0 for dr? =1n,pdE¥dP  with  ng = diag(l, -1, -1, —1)
T

d2£0¢
dr2

Note that the special relativity em are: f* =m . In any other coordinate system

xh (¥ = £¥(x*)) the em would look as follows:

B d%z? L dzt dx”

0 bt
dr? MY odr dr

ax/\ ana
f 2 =
o8 twr = gea gprdpy

where I'? is the affine connection. The proper time could also be expressed in the

Uv
new frame: o 9P
(84
2 I 7 [T B %
dr nag—awudaz 8:16de O O 0138
a geb | .
where g, = naﬁ%% Is the metric tensor.
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From the definition of the metric one can derive the relation between g,, and Fi‘w:

a _ {agw/_l_agAV QC]M}

—g ox»  Oxt  OxV

2
where ¢”? is defined through
gl/O'gK/V — 6’(::'
(G

Consider a particle moving slowly in a weak static gravitational field. Then the
general em

0— d? L @ dzt dx¥
dr? W dr dr
will be simplified by neglecting dz/dr with respect to dt/dr and by erasing dg,,, /dt:

d?a? dt
0= P
dr? i (dT)

Expanding to the first order in h,,

Guv =Ny + by with || <1
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one gets ,
d“x 1
—— __vh
dt2 g 00

to be compared with the Newtonian result

d%

az - VY

Finally, we get goo = 1 + 2¢.
&

A physical equation holds in a general gravitational field if

e The equation holds in the absence of gravitation; i.e., it agrees with the laws of
special relativity when g,,, = n,, and P/‘j‘y = 0.

e The equation is generally covariant; i.e. it preserves its form under a general
coordinate transformation z — z’.

4

It is useful to adopt quantities which have well defined transformation properties, i.e.
tensors
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Tensors

Contravariant vector V* transforms under a coordinate transformation z* — 2/* as

ox'H
V/,u — Vl/
ox?
Covariant vector U, transforms as
oxY
r_
U= (%cWUV
O
The connection
axA (925@

I

A
HY - 0Ex QxHOxY

IS not a tensor
A _ Ox'* 0x7 0z _ N oz'*  O%xP
BV QP Oz mOx'v T? T OxP Ox' hOx'V
A derivative of a tensor,
ox'#

ox?

V//,L:‘/l/
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in general, does not yield another tensor

ov'H  Ox'H OzP OV N 0%z’ OxP
ox'>  Oxv Ox'* OxP  OxVOxr Oz’ A

V" (3)

Combining (2) and (3) we can define the covariant derivative of a contravariant vector
which is a tensor:

Oa' 1 D
+TEVE  with VA =y

ovH
| — —
4 o ; ox? Oz’ A

SA O\

Similarly for the covariant derivative of a covariant vector

_au, N , OxP 0x°
U,LL;I/ — @ — F,LLI/UA Wlth U/M;V — 83’;/:“837/’/ p;o
o)
Properties:
For a scalar
g _ 0S
wo @
oU oU,
Upsw = Upip = ”

Qv Ok
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VH, = f 8x“ {vgV"} and / d*z\/gV*, =0

where g = —det(g,,).

1 0

TH TH} + T%, T4
aﬂ \/7833” {\/7 } _I_
For A#¥Y = — AYH one gets:
o
AHY AHY
,,LL \/7833“, {f }
’ 9A,, 0A,, O0A
A . Ay ' A e 137 VA AL
TP + AL + ALL; 8$>‘ == 037# + 8337/
O
The Maxwell equations:
9, 0 9, 9,
—_FoB = B d —Fs +—F,,+—F,5=0
Ox® o 0xq By Oxg | " 0kt 7

(6)
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To make (6) covariant we replace ordinary derivatives by covariant derivatives and the
Minkowski metric 71, by a general metric g, (note raising and lowering indices):

F'LW;MIJV and FMV;A%—F,/)\;M—I—F)\MV:O

Using identities (4) and (5) we get

0 0 0 0
—JgF P = B d —F,, +—F —F,,=0
gz V7 V9t A oxy " i oz, i Ox,, A
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Curvature

Define the local curvature of two-dimensional surface as

k = §lim —27Tl — ¢
T 1—0 l3

where ¢ is the circumference of a circle of a radius [ on the surface.

a sinA

Figure 1: A circle on the surface of a sphere.
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Figure 4 — FParcaiiel Transgrors

Figure 2: The parallel transport on the surface of a sphere.

o e '-L'.-.-

ZERO CURVATURE  POSITIVE CURVATURE  NEGATIVE CURVATURE

Figure 3: Clurved spaces.
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Figure 4: Positive and negative curvatures: the sum of angles in a triangle.

»
The simplest tensor made out of g,,, and its first and second derivatives:
ory, or,
AN T Yk n A 11 A
Ry = P B + L len — Lael oy
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O
VM;V;F& - Vu;%;v = —Vo R UK
Similar formulas for other tensors:

A A __ o DA A Do
T WiViK T WKy T uR ovk T O'R UVK

Conclusion: covariant derivatives of tensors commute if the metric is equivalent to
Nuv -

R)\ :1 829>\V . aZQ,Lw . 029>\m 4 029#/@
VR 9 1 00zt Ox<0x>  OxvOxt  OxvOx

for Rapwr = gaoR7 10k

+ 9no [FZXFZ/{ o FZ)\F/O-LV}

o Symmetry: Ry, = Ruwap
o Antisymmetry: Ry,vx = —Ruxve = —BRxpry = +Ruxee

o Cyclicity: Rypvk + Roavey + Rakpy =0
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e The Bianchi identities: Ry vk + Bapsny + Bapnue =0
Contracting A and v one gets (using g,,,.x = 0)
G =0 f G“”:RW—1 MY R
o ot = 59
- R, = gA”RMW is the Ricci tensor (R, = R.,)
— R = g™ g"" Rk is the Ricci scalar

Def. A metric is equivalent to the Minkowski metric if there is a set of Minkowskian
coordinates £“(x) that everywhere satisfy the conditions

0E* () 0 (x)
oxt  OxV¥

N = g (x)

Theorem:
The necessary and sufficient conditions for a metric g,,(z) to be equivalent to the
Minkowski metric 7, are:

® Rkw/ﬁ: =0

e At some point X, the matrix g,,(X) has three negative and one positive
eigenvalues.
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Hydrodynamics

A perfect fluid is defined as having at each point a velocity v, such that an observer
moving with this velocity sees the fluid around him as isotropic.

Suppose that we are in a frame of reference in which the fluid is at rest at some
particular position and time. Then at this point the isotropy implies

Tii — pgid PO —0i g 00 —

where p and p are the pressure and energy density, respectively. After a Lorentz
transformation to the lab frame we get the general form of the energy-momentum
tensor for the perfect fluid

T%F = —pn** + (p + p)UU”

where U is the velocity four-vector

a7 !
(V2

0 d
U'=—=~, U=—=~v for
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Note that U, U = 1.
The "energy-momentum conservation” implies

Op 0

— 9.TP> — arrb
0= 0g O + 928 [(p—|—p)U ]
The particle number conservation
ON“ 0 o
0= ore 8x0‘(nU )

where n is the particle density. Consider a fluid composed of point particles

x, M g5 1/2
IM: _Zmn/ dp [g/u/(ajn(p))d n (p)d n (p)

dp dp

The energy momentum tensor is defined by

1 1%
ST — —§/d4xgl/2T” 59uv

Cosmology: 2. A Brief "Course” of the General Relativity, Winter Semester 2009/10
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So for the action Iy, we get
ToB _ 2%53@_ Z,)
n En '

e For non relativistic gas p >~ nm + %P

e For highly relativistic gas p ~ 3p

In the presence of gravity the energy-momentum tensor reads
TP = —pg* + (p+ p)UU”

The energy-momentum conservation implies:

Op 0
0= TCKB — af —1/2 1/2 UozUﬁ < UBU)\
8= 5,0 T9 T oum Y (0 +p) + TG +p)
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The Einstein’s Field Equations

The energy-momentum tensor for a system described by the action I = [ d*xg'/2L:

1 174
ST — —§/d4a:g1/2T“ 5gw

for the variation of the metric ¢, (x) = g, (z) + dg,.(x) such that dg,, (x) — 0O for
|z*| — oo. For instance for electrodynamics:

1

L= _Zg'uyg)\pF,uAFl/p
Then T = 2g ¢ F, F# — F AFH
The Einstein’s Field Equations:
1
s §9WR = =Gy,
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Contracting 1 and v one gets: R = 87TGT>‘>\, hence

1
R,, = —81G (TW _ §gWT>‘>\)

-~
The weak field approximation: g, = 1, + hy, for |h,,| < 1. First we calculate the

connection expanding in powers of fv,,:

=3\ G )
Then the Ricci tensor:
orv orv
= Gt = G+ T~ T,
Finally we get
i % (8 0 Ny — OOy hr, — O\O, hAM =4 (‘3“8,,}1%\) + O(h?)
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Coordinate transformations of the form

o — o'* =z + et (x)

is reflected in transformations of h,, (it is assumed that giﬁ ~ hy):
ox'*ox'v

Ipy _
g ox™ OxP g

= hu(x) = k() = hu(z) — 0., — Oiey

(Note that g"¥ = n** — h*Y + O(h?).)
It is convenient to adopt the harmonic coordinate conditions

M=g"T), =0 <= 0.¢"%¢*) =0

Up to the first order in h: J,,h¥, = %@h“u. Then the equations of motion in vacuum
(R, = 0) simplify
0%hy, =0

(Together with the gauge condition.)
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Plane wave solutions:
. Y ) b
1k * —ikyx
hu(x) = €™ + €7 e

with k,k* = 0 and k eV, = %k,,e“u and e, = e,,,. Using the residual gauge freedom
(€ — €., = €uw + kue, + kye,) one concludes that there are only two degrees
of freedom (as it should be), e.g. €11 and ej2 (e22 = —eq1), then the solution

(gravitational plane waves) is

0 O 0 0 0 O 0 0
— O 611 612 O ik)\$>\ O 61(1 63{2 O —ik)\a:)‘
hlw/(llf) o 0 €12 —€11 0 ¢ = 0 67{2 —e{l 0 ¢
0 O 0 0 0 O 0 0
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The action for a charged material particles in the electromagnetic field and gravitational
background

* di, " (p) da” (p) ] "7
1 5 >~ dz M
_Z/d4gjgl/2(x)Fw/<Z’)F'“ (w)+;en /_OO dp ap w(2n(p))
The gravitational action
Ior = : /91/2(37)3(@61437
16wG
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The Friedmann-Lemattre-Robertson-Walker Metric and the Friedmann Equations

The Friedmann-Lemaftre-Robertson-Walker (FLRW) metric describes a homogeneous,
isotropic expanding or contracting universe.

If the space-time is homogeneous and isotropic, then it is possible to choose
coordinates such that the length element reads:

dr?

2R v o__ 2 2
dr° = gluydﬁl?'udﬂf =dt* — R (t) {1——]{”]“2

+ r2d6? + r? sin”? 9dgp2}

where R(t) is the scale factor and £ = +1,0.
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Figure 5: The two sphere.

T2 4 x5 + 15 = R? dede%+dx§+dx§

Eliminate the fictitious coordinate x3:
2 2 2 _ p2 _
r]+ 25+ x5 = R° = x1dr] + x2d29 + 23d23 = 0

4
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xldazl + xgdflfg o ZEldxl -+ ZEQdCE‘Q

déBg = — —
X3 (R% — x93 — x3)1/2
4
a2 — da? + do? 4 (F1021+ 22dra)”
= dx x
! 2 R2 — 2% — a3
Introduce new coordinates (7', 6): x1 =1'cosf, x5 =1r"siné.

Then

dr? +dxs = dr'? +1'%d0?  xidxi + xodze = 7'dr’ 27 + x5 =12

In terms of (77, 6) we get

. 2d /2
dl2:}§ L+ '2d6?
—7r
Define r = %, then
- dr?
2 _ p2 2 192
dl“ =R [1_T2+rd0]

Note similarity between that and the FLRW metric for k = 1.
Another convenient coordinate system is (6, ¢):

x1 = Rsinflcosypy x9= Rsinflsiny x3= Rcos0

Cosmology: 2. A Brief "Course” of the General Relativity, Winter Semester 2009/10
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Then
dl? = R*(d6? +sin®0dy®) = gi;=R° ( (1) Sir?Q 9 )
The volume: V = [ d?xg'/? = [T d6 [Z™ dpg'/? = R? [T dfsind [ " dp = 4m R?

e Cosmological Principle = R = R(t) (homogeneity)

e As the sphere expands or contracts, the coordinates (7, 6) remain unchanged (the
comoving coordinates)

e The physical distance scales with R(t)

e For the negative curvature: R — iR

dr?

+ 12

di? = R’ [ =t r2d92]

o —

($1d$1 -+ xgdaﬁg + $3d£€3)2

2 2

72 g2 2 2
dl © = dx{ + dz5 + dx5 + R2— o — 22— a2
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/] . ] . . /
x1=rsinfcosy x9=r'sinfsiny x3=1" cosb

After rescaling ' (r = %) one gets

dr?

— 2

dl 2 = R?

+ r2df? + r? sin? 6’d902

In the spherical 4-d coordinates (see class)

xr1 = Rsinysinfcosp
ro = Rsinysinfsinp
r3 = HRsinycos6

ry = Rcosy

dl’? = R?[dx? + sin? x(d6? + sin® 0dp?)] = g;; = R? diag(1,sin®x, sin” y sin® 0)
The volume
V= / d’rg'/? = 2n° R
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Introducing time we get the FLRW metric

dr?

2 __ v o__ 2 2
dr* = glwdx”dx =dt* — R (t) {1——k"]"2

+ r2d6? + r? sin* 0dg02}
where R(t) is the scale factor and k = +1,0. Note that r is dimensionless.

Comments:

e The spatial coordinates r, 8, ¢ form a comoving system in the sense that typical
galaxies have constant spatial coordinates r, 0, .

e Since T}, = 0 for the FLRW metric, it is easy to show (see class) that the
trajectories ¥ = const. are geodesics. Thus the statement that a galaxy has

constant r, 6, © is perfectly consistent with the the supposition that galaxies are
in free fall.
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O
The proper (physical) distance to the object located at the coordinate r (defined

along the surface of constant time dt = 0) at the moment ¢:

D) = RW) |

The recession velocity is related (by definition) to the change of D(t) caused by the
evolution of R(t) for a constant comoving coordinate r, therefore

VUree(t) = R(t) /OT (1— Z::2)1/2

So we get the Hubble law as

Vrec(t) = R(2) /OT (1— Z::2)1/2 - <g§g) <R(t) /OT (1— Z::2)1/2) = H(t)D(t)

The recession velocity could be calculated (see class) as a function the time at which
we would like to know the velocity, the time of emission (femitt) and detection (¢opserv)
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of the observed object (galaxy)

) U dr’ . tobserv dt’
rec(t) = R(t = R(t
)= B0 | G = 0 [ i

emitt

and then assuming that the observation is performed now (z = 0) the velocity could
be expressed (see class) as a function the redshift (z <> temitt) of the observed object

z dz/
o H(Z)

Vrec(t) = R(t)

where H(2") is a known function parameterized by 2's of universe constituents. For
(Qn, Qa) = (0.3,0.7) object with z > 1.46 have v, > 1.

For farther reading see

Tamara M. Davis, Charles H. Lineweaver, (New South Wales U.), "Expanding
confusion: common misconceptions of cosmological horizons and the superluminal
expansion of the universe”, e-Print: astro-ph/0310808
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e The Hubble sphere

The Hubble sphere is defined as the surface that separates the region of the Universe
beyond which the recession velocity exceeds the speed of light. So we have the
following condition for the proper (physical) distance D(t):

. . 7 H (1) dfr/ R THs(t) dr/
e =1=D(t) =R = | = R = H(t)Dy
v (t) /o (1 — kr'2)1/2 (R) < /0 (1 — kr'2)1/2 (t)Dn

where rgs(t) are Dp(t) are the coordinate and the distance to the sphere,
respectively. So we get

Dys(t) = H (1)

e [he particle horizon

The fundamental question in cosmology: what fraction of the Universe is in causal
contact?

More precisely:

For comoving observer with coordinates (rg, 6, o) for what values of (7,6, ¢) would
a light signal emitted at ¢ = 0 reach the observer at, or before, time t? The particle
horizon is a surface of the region from which a light signal emitted at £ = 0 may reach
an observer at rg = 0.
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e homogeneity = we can choose ry = 0, while 8y and ¢ are irrelevant constants

o for the light signal dm? = 0

dr? dt’ dr
1 — kr2 — =+

() V1 — kr?

Emission at (0, r,n, 0o, o), detection at (t, 0,80, ¢p), hence

dr? = dt* — R*(t)

Y

= Tpn = Tpn(t) (7)

/t dt’ /% dr

o Rt  Jo V1—kr?
c . . d'l"

Note that the signal is moving toward us, so -+ < 0.

The distance to the horizon at time ¢:

Tph(t) dfr-

0 \/1—]67”2

7aph(t)
don(t) = / g1/%dr = R(t)
0

Adopting (7) one gets

) = RO) [
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o If d,,(t) is finite, then our past light cone is limited by the particle horizon
(boundary between the visible part of the Universe and the remaining from where
the light has not reached us yet).

e the finiteness is determined by R(¢) around ¢t = 0, in the standard cosmology
dpp(t) is finite since lim; o [t/R(t)] = 0 (R — 0O slower than ¢ as ¢t — 0).

e The event horizon
The event horizon is a surface of the region from which a light signal emitted at
t = t1 may reach an observer at ro = 0 if the observer waits long enough.

/Tl d?“’ B /OO dt/
o (L—Fkr2)1/2 J, R(t)
The above allows to determine events (¢1,71) that are observable if we waited infinitely
long (this is applicable for universes which expands forever). If the integral on the

rhs diverges then the whole universe is observable if we wait long enough (r; — 00).
Then the distance at a given time ¢ to the horizon reads

Deh(t,tl) — R(t) [)?1 — 22:2)1/2 — R(t) /too };Z/)

1
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Usually the case with £ = ¢ is discussed, so in other words how far at the time ¢ is
the region beyond which we will never see signals emitted at the same time ¢, e.g. ¢
could correspond to the present moment.
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We will show that
)\emit >\obs

R(temit) B R(tobs)
Emission at t = t; and » = rq, detection at t = t5 and r =0

o qr " dr
| = [ == s 8)
11 R(t ) 0 1 — kr
where the rhs is fixed (independent of time) as the comoving coordinate of the source
remains unchanged. Consider two subsequent emissions at ¢t = ¢1 and ¢ = t1 + 0t

(corresponding to two successive wave-crests), which were detected at t = ¢y and
t = to + dtg. Then the rhs of (8) does not change, so we get

0 qy fototo gy o dif ot gy D g

ELRw:[Mhmw5LRw‘A mwfé R(t)
4

t1+0t1 dt’ to+9to dt!

A; mw:L R(#)
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Assume that dt; = \; (¢ = 1), i = 1,2, are small enough such that R(¢) >~ const. in
the integrand, so

0tq B dto
R(t1)  R(to)
4
emission — Alt1) = Alto) — detection
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We will solve the Einstein's equations
1 A

for
7% = —pg®® + (p+ p)U°U”

for Ut = 1 and U* = 0 (this is a consequence of the cosmological principle). Using
the FLRW metric

dr?
1 — kr?

dr?* = g, datdr” = dt* — R*(t) { + r2d6?* + r? sin” 9dgp2}

The metric g,
git — 17 git = 07 gzg — —R2(t)§m($)

with G, = (1 — kr®) 7L, Geg = 72, Gpp = r?sin®6 and §;; = 0 for i # ;.
The inverse metric g"* (g™ g = 02):

gt=1, g¢g"=0, ¢gY=-R2t)j"(x)
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with ™" = (1 — kr?), g% = r=2, §¥¥ = r~2sin 20 and G = 0 for i # j. Then we
calculate the affine connection from the metric

o 1 vo {89MV T 8g>\V L 89/1)\}

M99 Y ory T dar Oav

Non-zero entries (see class) are

Ffj — RR@;J’
; R
s _ Ly 3§kz+5’§jl_3§jk =
ik = 99 Bz T oxk Bxt [ IF
Then the Ricci tensor
ory, orh.
BE T 90k Ot + Loy = Ll

The non-vanishing elements (see class) are:

P L
Rtt = BE, Rij = Rij — gq;j(RR + 2R2)
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It is easy to show that R;; = —2kg;; (see class), hence
Rij = —gi;(RR + 2R? + 2k)
We also need the components of the rhs of the Einstein equations:

1

1
S/u/ = T,zu/ — §g,uuT>\ — (:0 +p)U,uUI/ T i(p o p)g,tu/

for TH" = —pg"” + (p + p)U*UY (T, = p — 3p, as g""gva = % and U*U, = 1).
So for Ut =1 and U* = 0 we have

Ry = 3% ) ‘ St = %(P +3p), Si=0
Rij = —gi(RR +2R? + 2k)  S;; = 5(p — p)R*§y;
Substituting g,,,, into the Einstein’s equations
1 A
Ity = =G || Wy — §gWT y | = —871GS,

One gets the celebtated Friedmann's equations.
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Ro=3f 8=
Rz'j = —§z~j (RR + 2R2 + 2]{3) Sz'j =
Substituting g, into the Einstein’s equations

1
R,, = —8rG (TW — §gWT>‘>\) = —81GS,,

One gets the Friedmann's equations

e (0,0) component:

3R =—-4nG(p+ 3p)R (9)

e (i,7) component: ) .
RR 4 2R? 4+ 2k = 47G(p — p)R? (10)

Eliminating R one gets the Friedmann equation which determines the evolution of the
Hubble parameter H (t)

: 87 87GG k
R2 k _ R2 — H2 T = ——7) —

for H(t) = (11)

5| =
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Using (11) one can eliminate p from the second equation to obtain the acceleration

equation
. o\ 2
R R k
2— — — = —
7 + (R) + 2 8TGp

To investigate the consequences of the energy-momentum conservation let'’s recall the

following identity
1 9
i gT+} + T\ T

For the energy-momentum tensor TW = —pg"” + (p + p)U*U" one gets for the

" energy-momentum conservation” (T** , = 0):

0
|90+ P)UVP| + Tos(p + p)UPU*  (12)

dp
0="7T%%
) ox

YV ap —1/2
Are the " energy-momentum conservation” (12) and the Friedmann equations independent’
Hint: the Bianchi identities.

It is easy to find (see class) that the time component of 7", , = 0 implies

d

. RS
P dt

R*(p+p)]
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Then

d d d : d
3 3 3 3 2 3, L 3\ _ _ 2
pR® = RdR (R°p)+ - (R’p) = RdR (R’p)+3R’Rp+R’p = — (pR’) = —3pR
(13)
The above equation could be rewritten in a more familiar way
d(pR’) = —pd(R°) (14)

that comprise the first law of thermodynamics and has a simple interpretation: the
rate of change of the total energy in a volume element of size V' = R? is equal minus
the pressure times the change of volume, —pdV', which is the work responsible for the
energy change.Note however, that in the case of cosmology that kind of reasoning
is hardly applicable, since a change of energy d(pR?) is not equivalent to work done
against a piston as such does not exist. Therefore in cosmology, although we can
calculate change of energy using (14) but we can not say where is the energy coming
from or going to. We must conclude that the energy of the fluid is not conserved.
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If p = p(p) (the equation of state) is known then using (13) one can determine
p = p(R). For instance:

o |f p < p then
d

dR

Then the total energy contained in a volume V(t) oc R3(t) scales as

(RS)—O — px R

E(t) o< R3(t) - p(t) o< R3(t) - R™>(t) = const.
So for the dust its energy is conserved.

e For ultra-relativistic fluid p = %,0, then

d 3 _dp 3 2 2 __ L
Tz (pR) dRR + p3R° = —3pR° = 33,0R
U

d d
—p——4§R —  px R
0
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Then the total energy contained in a volume V(t) oc R(t) scales as
E(t) oc R*(t) - p(t) o< R*(t) - R™*(t) oc R™(¢)

So for the radiation its energy is not conserved.
The fundamental equations are:

e The Friedmann equation

REP+k= %,{)R2 —  H*(t) =

87TG_ k
3

e The acceleration equation:

. N\ 2
R R k
D— — — = —
7 -+ (R) + 72 8tGp

e The "energy-momentum conservation” (the first law of thermodynamics):

d
dt

R(p+p)] = ! (pR’) = —3pR”

o R3
p dR
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However, only two of the above three equations are independent!
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The Schwarzschild Solution

We are looking for a solution of the Einstein equations which are static and isotropic.
So the metric does not depend on t but only on |Z| while d7? may contain Z - d:

dr? = F(r)dt* — 2E(r)dt & - d& — D(r)(& - d&)* — C(r)dz”
for » = |Z]. In the spherical coordinates
z! =rsinfcosp z?=rsinfsiny x> =rcosb

we get

dr* = F(r)dt* — 2rE(r)dtdr — r*D(r)dr® — C(r) [dr? 4+ r*d6” + r° sin® 0dp°]

42
Define new time: t' =t + ¢(r), so that
dt = dt’ — @dr and dt° =dt'? — Q@dt 'dr + d(b
dr dr dr
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Then

dr* = F(r)dt'? —2 [Z—fF(r) + rE(r)] dt’ dr-+
do\’ dp _ :
+ %) F(r)+ QTE(T)% —r“D(r)| dr+4

—C(r)[dr?* + r?d6? + r? sin® 0dp?]

Choose ¢(r) such that: %F(r) +rE(r) =0, so % = —rZ0) then

F(r)
do\” dp ’ E2(r)
bt °r — 2D — _
(dr) F(r)+ 2TE(r)dr r“D(r) r (r) + Fr) G(r)
Finally we can redefine the radius: 2 = C(r)r?, hence
4r2C(7) dC'(r)
2 — /2 f / =
i 2rC(r) + TQC’(T)]QdT o GF) dr

Then we obtain the standard form of the length element

dr® = B(r')dt'* — A(r')dr'® — r'*(d6” + sin® 0d?])

Cosmology: 2. A Brief "Course” of the General Relativity, Winter Semester 2009/10 48



for

B(r')=F(r) and A(r) = [1 * gg:;] [1 i 20( ) v )] _2

We drop primes from now on, so the metric and its inverse read:

gie = B(r), g =—A(), geg=—-7>  gppo=—T"sin’0

1 1 1 1
tt _ e 99:__ oo _
J B(r)’ J Alry’ g 2 Y r2sin” f
Then we calculate the affine connection from the metric
09,, O0gr, O
; _ Lo v\ 09 _ Ogun
2 ox oxH oxY

Non-zero entries (see class) are:

I, =T, =3BB™

Iy, =1iB'A"1 I, =14471 [he=—-rA""t Il =-rA-'sin’f
Iy =Th.=—r"t TY = —sinfcosd
e, sy = [0y = cot
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Then the Ricci tensor

ory, orv, o
WI="er s o + Loy = Ll

The non-vanishing elements (see class) are:

B" 1B (B" A 1B’

P = —xtqa\BTa) A
R B B// 1B/ B/_|_A/ lél
" 2B 4B\B A) rA
Ry — 14T B A +i
o 2A\B A) A
RWP = Sin29R99

R, = 0 for v#upu

Now we are ready to look for solutions of the Einstein’s equations in the empty space

R, =0
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It is sufficient to require R,, = Rgpp = R = 0. Note also that

Rrr Rtt_ 11 E/+£/
B A

A T BT A

Therefore R,,,, = 0 implies that % - %/ — 0, so
A - B = const.
The constant is determined by the boundary conditions: g, — 7,,,. Since
r—00
dr? = B(r)dt® — A(r)dr? — r*(d6* + sin® 0dp?)

that implies

B(r) —s +1, A(r) — +1, —  A(r) = —

T—00 r—00 B(r)
Now it is sufficient to impose

RTT =0 and R@g =0
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Eliminate A(r) through A = B! (A’ = —Q/), then

r (B A 1
R + 5 (B A) + +7rB +

B// 1 B/ B/ A/ 1 A/ B// 1 B/ /
Rrr:—___ — p— || = = = + —— = 00
2B 4B \ B A rA 2B rB 2rB

Therefore it is sufficient to require

Ropp = 0

4

d t.
rB+B=1 = —(rB)=1 = B(r) =1+ ——
r r
Again the boundary behavior determines the constant, since at large r the (0,0)

component of the metric should be related to the Newton's gravitational potential:

GM
g ~ 1+29=1-2

T—> 00 r
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Therefore the constant = —2G' M, hence

-
- —1- for r,=20M
B(r) A0 — for v G

So, finally the solution for a space-time outside of a static massive body of mass M:

1

— rs/rdTQ — 7%(d0? + sin® 0 dp?)

dr? = (1-22) de? -

r

where r, = 2G M is the Schwarzschild radius.
Comments:

e A test particle which orbits around a central mass on an elliptical orbit will undergo
" perihelion motion”, which means a rotation of the long axis of the ellipse with

respect to distant stars. (Measured e.g. for Mercury is one the earliest triumphs
of GR.)

e A passing light-ray which travels at the closest distance b from the central body
will be deflected by an angle A@ = 4GM/b. (Measured for a starlight near the
obscured Sun during the eclipse.)
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e Look at a photon (dr? = 0), traveling radially in the Schwarzschild metric, then
cdt = 1_65];/T, so that the time to leave from r = r, to an outside point becomes
infinite. Thus, if an object is so dense that its radius is inside the Schwarzschild

radius, the object does not emit any light - it is a black hole.

e In deriving the Schwarzschild metric, it was assumed that the metric was in
the vacuum, spherically symmetric and static. In fact, the static assumption is
stronger than required, as Birkhoff's theorem states that any spherically symmetric
vacuum solution of Einstein’s field equations is stationary; then one obtains the
Schwarzschild solution. Birkhoff's theorem has the consequence that any pulsating
star which remains spherically symmetric cannot generate gravity waves (as the
region exterior to the star must remain static).
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