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Problems of the Standard Big-Bang Model

♠ The horizon problem

• 1991 COBE (Cosmic Background Explorer) satellite shows that the Universe is
extremely isotropic on large scales (∼ 103 Mpc), the temperature fluctuations are

∆T

T
∼ 2 · 10−5

• However not whole Universe is causally connected, so why is it so isotropic?

As we have shown the distance to the particle horizon is given by

dph(t) = R(t)

∫ t

0

dt′

R(t′)

In order to find dph(z) we can adopt the relation obtained earlier

dt

dz
= H−1

0

−1

1 + z

1

[Ω0
rad(1 + z)4 + Ω0

m(1 + z)3 + Ω0
k(1 + z)2 + Ω0

Λ]1/2
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Then

dph(t) = R(t)

∫ t

0

dt′

R(t′)
= R(t)

∫ z

∞
R−1

0

R0

R(t′)

dt′

dz′
dz′

Inserting dt
dz we obtain

dph(z) =
R(t)

R0

∫ z

∞
(1+z′)H−1

0

−1

1 + z′
dz′

[Ω0
rad(1 + z′)4 + Ω0

m(1 + z′)3 + Ω0
k(1 + z′)2 + Ω0

Λ]1/2

Using 1 + z = R0
R(t) we have

dph(z) =
1

H0(1 + z)

∫ ∞
z

dz′

[Ω0
rad(1 + z′)4 + Ω0

m(1 + z′)3 + Ω0
k(1 + z′)2 + Ω0

Λ]1/2

For a single component Universe and neglected curvature (even if k 6= 1, for early
Universe Ωk could be neglected) we had for the scale factor:

R(t) ∝ t
2

3(1+w) for p = wρ
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Let’s consider simple cases of MD and RD Universes:

R(t) ∝
{
t2/3 for w = 0 (MD)
t1/2 for w = 1

3 (RD)

Then integrating we obtain

dph(t) = R(t)

∫ t

0

dt′

R(t′)
=

{
3t for w = 0 (MD)
2t for w = 1

3 (RD)

Thus we can see that fraction of the visible Universe is varying with time

dph(t)

R(t)
=

∫ t

0

dt′

R(t′)
∝
{
t1/3 for w = 0 (MD)
t1/2 for w = 1

3 (RD)

So, we conclude that in the early times a much smaller fraction of the Universe was
causally connected (in other words visible). The CMB photons were emitted at the
time trec ∼ 1.4 · 105 h−1 yr, since that time we can see more and more and still all that
is so isotropic? How is that possible?

Let’s estimate how many causally connected regions there were at the time of
recombination that are now within the observable Universe. Assume MD at the

Cosmology: 7. Inflation, Winter Semester 2009/10 4



moment of recombination (reasonable as Teq ' 0.37 eV while Trec ' 0.26 eV). We
want to know how many horizon volumes at the time trec has expanded to fill the
presently observed Universe. Let V0(t0) be the volume of the presently observed
Universe and Vrec(trec) be the horizon volume at the recombination. Then, since
RT = const. (because of the conservation of entropy) therefore

1

Vrec(trec)
V0(trec) =

1

Vrec(trec)
V0(t0)

[
R(trec)

R(t0)

]3

=
V0(t0)

Vrec(trec)

[
T0

Trec

]3

Assume now that at t = trec and t = t0 the Universe is MD (so dph(t) ∝ t), then

V0(t0)

Vrec(trec)
=

(
dph(t0)

dph(trec)

)3

=

(
t0
trec

)3

So

V0(trec)

Vrec(trec)
=

(
t0
trec

)3(
T0

Trec

)3

Now let’s eliminate time. Since R(t) ∝ t2/3 for MD (from recombination till now)
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therefore from the Friedmann equation

H =
2

3

t−1/3

t2/3
=

2

3

1

t
∝ T 3/2

MPl

for (MD)

so t ∝ T−3/2, thus

V0(trec)

Vrec(trec)
=

(
t0
trec

)3(
T0

Trec

)3

=

(
T0

Trec

)−9/2(
T0

Trec

)3

=

(
Trec

T0

)3/2

' 3.6 · 104

for Trec ' 3.0 · 103 K and T0 ' 2.73. This is the number of horizon regions which
expanded from the recombination time to presently observable Universe.

Let’s now find entropy within causally connected regions of the Universe. First recall
the approximate (valid for (1 + z)� (Ω0

i )
−1) relations between the Universe age and

the redshift for the two cases:

t '
{

2
3(1 + z)−3/2H−1

0 (Ω0
m)−1/2 for w = 0 (MD)

1
2(1 + z)−2H−1

0 (Ω0
r)
−1/2 for w = 1

3 (RD)

• (MD):
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From the entropy conservation we have

s = s0

(
R0

R

)3

= s0(1 + z)3

where the present entropy density is known (see class): s0 = 2π2

45 g? ST
3|today '

2970 cm−3 (g? S|today = 3.91). So we obtain for the entropy contained within a
causally connected region

s(MD)
HOR =

4πd3
ph

3
s =

4π

3

3 ·

t︷ ︸︸ ︷
2

3
(1 + z)−3/2H−1

0 (Ω0
m)−1/2


3

s0(1 + z)3

' 7.9 · 1088(h2Ω0
m)−3/2(1 + z)−3/2

where I have used H−1
0 = 9.2503 · 1027h−1 cm.

• (RD):
The entropy density reads

s =
2π2

45
g? ST

3
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Hence we get for the entropy in the causally connected region

s(RD)
HOR =

4πd3
ph

3
s =

4π

3

2 ·

t︷ ︸︸ ︷
0.30

MPl

g
1/2
? T 2


3

2π2

45
g? ST

3

' 0.4
g? S

g
3/2
?

(
MPl

T

)3

=
0.4

g
1/2
?

(
MPl

T

)3

Thus at the recombination (T ' 3500 K ∼ 0.3 eV, z ' 1300) the entropy within
the horizon was about 1.7 · 1085, while the entropy within the presently observable
Universe is ∼ 8.2 ·1090, a factor of (1+zrec)

3/2 ∼ 105 larger (the (MD) approximation
was adopted in both cases, note that zeq ∼ 3500). So, roughly there were 105 causally
disconnected regions at the moment of recombination that are seen now with a very
small non-isotropy ∼ 10−5! This is the horizon problem.

Let’s estimate the maximal angle ∆θ on the sky today that would correspond to the
causally connected region at the moment of recombination:
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• Assume (for simplicity, and also since it is experimentally favored) k = 0, Ω0
rad = 0

and ΩΛ = 0 (crude approximation), so Ω0
m = 1.

• Calculate dph(trec) ' 3trec (MD was assumed as zrec ' 1300� zeq ' 3400). As we

have found earlier trec ' 2
3(1 + zrec)

−3/2H−1
0 Ω

0−1/2
m (valid for (1 + z)� (Ω0

m)−1 -
well satisfied for zrec).

• Calculate the distance ∆l that light traveled from the last scattering till now
assuming MD (as zrec ' 1300 � zeq ' 3400). From our general formula for MD
we have for Ω0 = 1

t
(MD)
0 =

2

3
H−1

0

Since trec ' 2
3(1 + zrec)

−3/2H−1
0 � t

(MD)
0 , so the time CMB photons traveled is

∆t ≡ t
(MD)
0 − trec ' t

(MD)
0 . Therefore the distance the photons traveled could be

approximated by the present distance to the horizon:

∆l ' dph(0) = 3t
(MD)
0 = 3

2

3
H−1

0

• Note that while the CMB photons were traveling the space expanded by a factor of
(1 + zrec) and that must be taken into account while comparing with the distance
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to the last scattering surface. Therefore (assuming Euclidean geometry) the angle
reads

∆θ =
dph(trec)(1 + zrec)

∆l
=

3trec(1 + zrec)

3t
(MD)
0

=
32

3(1 + zrec)
−3

2+1H−1
0

32
3H
−1
0

= (1 + zrec)
−1/2 '

' 2.8 · 10−2rad = 1.6 0

♠ The flatness problem
As we have shown the Friedmann equation could be written as follows:

Ωrad + Ωm + Ωk + ΩΛ = 1

where

Ωi ≡ ρi/ρcrit for ρcrit ≡
3H2

8πG
and Ωk ≡

−k
(RH)2

Note that Ωi’s are functions of time. The above equation could be rewritten as

Ωrad + Ωm + ΩΛ︸ ︷︷ ︸
Ω

−1 = −Ωk =
k

(RH)2
(1)
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So, at present we have

Ω0
rad + Ω0

m + Ω0
Λ︸ ︷︷ ︸

Ω0

−1 = −Ω0
k =

k

(R0H0)2

From observations we know that Ω0 ' 1.
Assuming that the Universe is dominated by just one component we have

R(t) = R0 ·


(
t
t0

)2/3

for w = 0 (MD)(
t
t0

)1/2

for w = 1
3 (RD)

Therefore we can estimate the rhs of (1) as a function of time:

−Ωk =
k

(RH)2
=

k

(Ṙ)2
∝ k

{
t2/3 ∝ R for t >∼ tEQ (MD)
t ∝ R2 for t <∼ tEQ (RD)

The above equation has dramatic consequences. It shows that k
(RH)2 → 0 as t → 0.

Since Ω is close to 1 at present therefore it must be very close to 1 at early times.
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For instance

Ω(t) =

{
1± 10−16 for t = 1 s (BBN)
1± 10−60 for t = 10−43 s (Planck time)

The flatness problem is to explain why the Universe was so flat at the beginning? In
other words one can say that flatness problem is caused by the instability of the initial
value Ω ' 1. Note what is the variation of Ω− 1 as a function of time

Ω− 1 ∝
{
t2/3 ∝ R for t >∼ tEQ (MD)
t ∝ R2 for t <∼ tEQ (RD)

Therefore Ω − 1 is an increasing function of time, this is why such a high precision
for the initial value of Ω is necessary.
♠ The monopole problem
At early times the evolution of the Universe was dominated by the presence of radiation
for which the energy density decreases very fast (faster than for other components)

ρrad ∝
1

R4

Therefore if in the (RD) Universe there was some amount of non-relativistic matter
(ρm ∝ R−3) it will soon dominate. If matter particles are not very heavy (as it happens
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in the SM) then they thermalize easily and contribute as a radiation. However GUT
predicts at T ∼ 1015 GeV production of some very heavy particles, monopoles. They
would be non-relativistic for the most of the expansion time and should dominate
also today, when we don’t observe them. So their density must be somehow diluted.
This is the monopole problem. That reasoning applies also to other possible heavy
particles that could be produced in the early epochs, like heavy gravitinos or modulus
fields.

♠ The small-scale inhomogeneities problem
Even though the Universe is very homogeneous at large scales, there is a lot of
structures at scales ranging from 1 to 100 Mpc. The problem is that we don’t know
where do the inhomogeneities necessary for the structure formation come from.

♠ The cosmological constant problem

Rµν −
1

2
gµνR+ Λgµν = −8πGTµν

The Λ term could be written as a part of the energy-momentum tensor:

TΛ
µν =

Λ

8πG
gµν = ρΛgµν for ρΛ ≡

Λ

8πG
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Then the Einstein’s Field Equations

Rµν −
1

2
gµνR = −8πG

(
Tµν + TΛ

µν

)
Let’s return to the Friedmann equation

H2 = − k

R2
+

8πG

3
(ρm + ρrad + ρΛ) = − k

R2
+

8πG

3
(ρm + ρrad) +

Λ

3

The ratio of the two last terms is know from observations to be at present

rΛ ≡
Λ

8πG(ρm + ρrad)
<∼ 1

That implies that at the Planck time rΛ <∼ 10−122, impressively small number! The
difficulty to explain that constitutes the cosmological constant problem.
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The Basic Mechanism of Inflation

There was an epoch (the de Sitter phase) when the vacuum energy (the cosmological
constant) was the dominant component of the energy density of the Universe, then
the expansion was exponential.
The Einstein’s Field Equations with the cosmological constant are as follows

Rµν −
1

2
gµνR = −8πG

(
Tµν + TΛ

µν

)
Then the Friedmann equation reads

H2 = − k

R2
+

8πG

3
(ρm + ρrad + ρΛ) = − k

R2
+

8πG

3
(ρm + ρrad) +

Λ

3
' Λ

3

So that

H2(t) ≡

(
Ṙ

R

)2

=
Λ

3
=⇒ R(t) = R(t0)eH·(t−t0) for H2 =

Λ

3
= const.

This is the exponential inflation: exponential growth of the scale factor.
During this epoch a small, smooth, and causally connected patch of the size less then
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H−1 grows to such a size that at present it contains the whole observable Universe.
It is usually assumed that a scalar field is responsible for inflation: it provides the
necessary equation of state p = −ρ.
Basic steps in the evolution of the scalar field responsible for inflation:

• Transition from φ = 0 to φ = φin (spatially uniform) through a possible barrier
(denoted as (a) in the figure 3).

• Classical evolution (the ”slow-roll”) toward the minimum (b) of the potential
according to (see class)

φ̈+ 3Hφ̇+ V ′(φ) = 0

It is just the equation for sliding down hill with a friction (3H). If the potential
is flat enough one can have the time of ”slow-rolling” ∆t large comparing to the
Hubble time: H∆t� 1.
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Figure 1: The slow-roll potential (from Kolb & Turner).

Is that possible ? Note that often the universe age tU ∼ H−1.
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For the de Sitter phase H = const., so

t− tPl =

∫ R(t)

RPl

dR′

Ṙ′
= H−1

∫ R(t)

RPl

dR′

R′
= H−1 ln

(
R(t)

RPl

)

Therefore as long as R(t) � RPl we obtain t − tPl � H−1. In other words it is
possible that H∆t� 1. Note that if V (φ = 0) ≡M4 then during inflation period
we have roughly

R(t) ∝ eHt for H2 ' 8πG

3
V (φ = 0) ' M4

M2
Pl

So for H∆t� 1 one needs M large enough.

Assume:

• φ is spatially uniform

• The size of the initial patch Rin = 10−23 cm (exact number is not very relevant)

• M = 1014 GeV
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• ∆t = 100H−1 =⇒ R(tfin) = R(tin)× e100 ' R(tin)× 3 · 1043

• During inflation

H−1 ' MPl

M2
=

1.22 · 1019 GeV

1028 GeV2 ' 8.02 · 10−34 s and ∆t = 8.02 · 10−32 s

for GeV−1 = 6.5822 · 10−25 s.

• When φ reaches σ (the minimum) it starts oscillate (c) coherently as a uniform field
around φ = σ. The oscillations are dumped by interactions between φ and the SM:
the energy of oscillations is transfered (through production of SM particles) from
φ to the SM. That results in an increase of the SM temperature (the reheating):

ρSM ∼ V (φ = 0) = M4 =⇒ TRH ∼M

Note that the energy density remains the same during inflation (since V (φ =
0) ∼ M4). The expanding Universe is being filled with the constant field - the
cosmological constant. During the reheating the whole energy is transfered quickly
(with a small change of the scale factor) to SM particles, therefore TRH ∼M .
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– The entropy at the beginning of inflation (with temperature Tin) reads:

Sin ∼ (TinRin)
3 = (1014 GeV× 10−23 cm)3 '

(
5.07× 1014−23+14

)3
' 1.25× 1014 � S0 ' 1088

where S0 is the entropy in the presently observed Universe and 1 GeV× 1 cm =
5.07 ·1013 was used. During inflation the entropy is conserved. Since R(t) ∝ eHt
therefore T ∝ e−Ht, the patch ”supercools”.

– Massive entropy production happens during the reheating (after inflation ended).
The temperature returns to it’s value at the beginning of inflation i.e. T ∼
1014 GeV and the final entropy is

Sfin ∼
(
TRHe

H∆tRin

)3 ∼ 2.53 · 10144 � S0 ' 1088

So the reheating process increases the entropy by a factor 10130.
– The final size of the Universe after inflation is eH∆tRin ∼ 2.7 · 1020 cm

How does the inflation cures the problems of the standard cosmology?

• The horizon problem
The presently observable Universe contains (1088) much less entropy than the
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entropy contained in initial patch after inflation (10144), so the whole content of
the presently observable Universe could have easily been in a causal contact at the
moment of the recombination. So, no wonder it is so smooth.

The presently observed Universe contains (without inflation) about 105 regions
which were causally disconnected at the moment of recombination. The distance
to the horizon is given by

dph(t) = R(t)

∫ t

0

dt′

R(t′)

Assuming R(t) ∝ eHt and neglecting the period preceding inflation we obtain

dph(t) = H−1(eHt − 1)

The meaning of that is that when the Universe reheated after inflation to the
temperature T ∼ M typical for the period prior to inflation, the distance to the
horizon was by the factor eH∆t ' 3 · 1043 larger than at the moment before
inflation (when the temperature was the same as after inflation). Inflation breaks
the standard relation between temperature and distance to the horizon. The reason
is the massive entropy non-conservation. Therefore it is easy for the horizon at the
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recombination to contain many times over the volume which will expand to the
presently seeable Universe.

• The flatness problem

Ωrad + Ωm + ΩΛ︸ ︷︷ ︸
Ω

−1 = −Ωk =
k

(RH)2
(2)

During inflation H2 ∼ M4

M2
Pl

= const. while R2 → e200R2, therefore

Ω− 1 ∼ k

R2

M2
Pl

M4
→ 1

e200
× k

R2

M2
Pl

M4

In other words whatever was the initial value of Ω − 1 it is very close to 0 after
inflation.

• The monopole problem
The concentration of any relic produced before inflation is reduced by the factor
e−300, so the concentration of monopoles would be negligible after inflation.
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• The small-scale inhomogeneity problem
The post inflationary patch is exactly homogeneous as a consequence of homogeneity
of the scalar field φ, however some inhomogeneities are needed a seeds to build
large scale structures. Those will be provided by the ”quantum” fluctuations of
the φ.

• The cosmological constant problem
No solution is offered here by inflation.
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Figure 2: Evolution of temperature and scale factor in the standard and inflationary cosmologies

(from Kolb & Turner).
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Models of Inflation

Assumptions:

• A single scalar real field φ is responsible for inflation.

•
H2 =

8πG

3
ρφ −

k

R2

where ρφ is the energy density of the scalar filed, so φ dominates the energy density.

• The scalar field is homogeneous with the initial value φini 6= σ for σ being the
global minimum of the potential, i.e. V (σ) = V ′(σ) = 0.

• ”Quantum” fluctuations of the scalar field are ”small” compared to the classical
solution:

φ(t) = φcl + δφ with δφ� φcl

• The scalar field is described by

L =
1

2
∂µφ∂µφ− V (φ)
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The energy-momentum tensor reads (see class)

Tµν = ∂µφ∂νφ− Lgµν

For the perfect fluid we had

Tµν = (p+ ρ)UµUν − pgµν

where Uµ is the 4-velocity. To match the above forms one requires (assuming
spatial homogeneity)

(0, 0) =⇒ p+ ρ− pg00 = φ̇2 − Lg00

(i, i) =⇒ −pgii = −Lgii (3)

that implies p = L = 1
2(φ̇)2 − V (φ) and ρ = 1

2(φ̇)2 + V (φ).
So for spatially homogeneous field we obtain:

ρφ ≡ T 00 = (φ̇)2 − [12(φ̇)2 − V (φ)]g00 = 1
2(φ̇)2 + V (φ)

pφ ≡ T ii = −[12(φ̇)2 − V (φ)]gii = 1
2(φ̇)2 − V (φ)
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• The classical equation of motion for φ could be obtained from variation of the
action S =

∫
d4x
√
−gL (see class) or just from the appropriate replacement in the

Klein-Gordon equation:

φ,µ;µ = −V ′(φ)

From that we get (see class)

φ̈+ 3Hφ̇+ V (φ)′ = 0 (4)

♠ The ”slow-roll”
We will look for the ”slow-roll” solutions of (4), i.e. such that φ̈ could be neglected,
so

φ̇ = −V
′(φ)

3H
for

∣∣∣∣∣ φ̈

3Hφ̇

∣∣∣∣∣� 1 and

∣∣∣∣∣ φ̈

V ′(φ)

∣∣∣∣∣� 1 (5)

φ̈ could be estimated from (5):

φ̈ = − 1

3H
V ′′(φ)φ̇+

1

3

Ḣ

H2
V ′(φ)
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We can also estimate H2:

H2 =
8πG

3
ρφ ∼

8πG

3
V (φ) =⇒ 2HḢ ∼ 8πG

3
V ′(φ)φ̇ (6)

where I neglected the kinetic term in

ρφ =
1

2
(φ̇)2 + V (φ) ∼ V (φ)

As we will see in the slow-roll region the above approximation is justified. Now, using
(6) we can rewrite the first condition that allows us to neglect φ̈:∣∣∣∣∣ φ̈

3Hφ̇

∣∣∣∣∣ =

∣∣∣∣− 1

9H2
V ′′(φ) +

8πG

54H4
[V ′(φ)]2

∣∣∣∣� 1

To ensure the above inequality we must require

|V ′′(φ)|
9H2

� 1 and
8π

54M2
PlH

4
[V ′(φ)]2 � 1
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Using (6) we can obtain the slow-roll conditions (should be satisfied during inflation)

η(φ) ≡ M2
Pl

8π

|V ′′(φ)|
V (φ)

� 3 and ε(φ) ≡ M2
Pl

16π

(
V ′(φ)

V (φ)

)2

� 3

The second condition that allows us to neglect φ̈ reads∣∣∣∣∣ φ̈

V ′(φ)

∣∣∣∣∣� 1

Using the same arguments as for the first condition one can show that∣∣∣∣∣ φ̈

V ′(φ)

∣∣∣∣∣ =

∣∣∣∣η(φ)

3
− 2ε(φ)

3

∣∣∣∣� 1

Therefore it is also satisfied when the slow-roll conditions η(φ)� 3 and ε(φ)� 3 are
imposed.

Now we can show that indeed if the slow-roll conditions are satisfied then the
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energy density is dominated by the potential energy. Form (5) we obtain

1

2
(φ̇)2 =

[V ′(φ)]2

18H2

Let’s denote

κ ≡
1
2(φ̇)2

V (φ)

Then we can write the Fiedmann equation as

H2 =
8πG

3
V (φ)(κ+ 1)

So, we obtain

1
2(φ̇)2

V (φ)
≡ κ =

[V ′(φ)]2

18H2

1

V (φ)
=
M2

Pl

16π

(
V ′(φ)

V (φ)

)2

︸ ︷︷ ︸
ε

1

3(κ+ 1)
=

ε(φ)

3(κ+ 1)
� 1

(κ+ 1)

which could be written as
κ(κ+ 1)� 1
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So indeed, the energy density is dominated by the potential energy.
Now we can calculate how many e-folds of inflation happened when the scalar field
slow-rolled from φin to φfin:

Ne ≡ ln
Rfin

Rin

Since

∫ tfin

tin

Hdt =

∫ tfin

tin

Ṙ(t)

R(t)
dt =

∫ Rfin

Rin

dR′

R′
= ln

Rfin

Rin

=⇒ Ne =

∫ tfin

tin

Hdt

Thus since φ̇ = −V
′(φ)
3H we have

Ne = ln
Rfin

Rin

=

∫ φfin

φin

H
dφ

φ̇
= −3

∫ φfin

φin

H2 dφ

V ′(φ)
= − 8π

M2
Pl

∫ φfin

φin

V (φ)

V ′(φ)
dφ (7)

Now we approximate the derivative of the potential

V ′(φ) ' V ′(φin) + V ′′(φin)(φ− φin) with V ′(φin) ' 0
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and use it to estimate variation of φ = φ(t)

φ̇ = −V
′(φ)

3H
= −V

′′(φin)

3H
(φ− φin) =⇒ φ̇

φ− φin

= −V
′′(φin)

3H

Neglecting small variation of H we obtain

φ− φin ∼ exp

[
−V

′′(φin)

3H
(t− tin)

]
To retain the slow motion of the field we must limit the rolling to the period that is
not larger than

∆t ∼ 3H

|V ′′(φin)|
Then

Ne = ln
Rfin

Rin

=

∫ tfin

tin

Hdt ∼ H∆t ∼ 3H2

|V ′′(φin)|
Since H2 ∼ 8πG

3 V (φ) we have

Ne ∼
8πV (φ)

M2
Pl|V ′′(φin)|

� 1

3
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so it is possible to obtain many e-folds of inflation. The above relation is a crude
approximation, to get more precise estimate one would need to adopt (7).
♠ The reheating - coherent oscillations
The slow-roll ends when φ reaches the region of steeper potential that is closed to its
absolute minimum. Then the period of coherent (spatially uniform field) oscillations
starts. We assume that φ couples to the SM, so the oscillations are dumped through
production of SM particles: inflaton energy is converted into energy of SM particles.
Hereafter we assume that the decay rate Γφ of inflaton satisfies: Γφ <∼ Hosc where
Hosc is the Hubble parameter when the oscillations start.

In order to take into account the damping we modify the equation of motion for φ

φ̈+ 3Hφ̇+ Γφφ̇+ V ′(φ) = 0

For small oscillations around φ = σ, when the friction terms (∝ φ̇) are neglected we
obtain just harmonic oscillations with frequency ω2 = V ′′(σ).

Since ρφ = 1
2(φ̇)2 + V (φ) we can rewrite the above equation (first multiplying by φ̇)

ρ̇φ + (3H + Γφ)φ̇2 = 0 (8)

For simple harmonic oscillations, the average of the kinetic energy over an oscillation
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period equals the average of the potential energy over a period

1

2
〈φ̇2〉 = 〈V (φ)〉 =

1

2
〈ρφ〉

Therefore we replace in (8): φ̇2 → 〈φ̇2〉 = 〈ρφ〉, i.e.

ρ̇φ + (3H + Γφ)ρφ = 0 (9)

where from now on ρφ denotes the averaged energy density. The equation we have
obtained is a Boltzmann-like equation which describes the evolution of energy density
of massive particles that can decay (and therefore disappear). Its solution (see class)
reads

ρφ = M4

(
Rosc

R

)3

e−Γφ(t−tosc)

where osc refers to the moment when the oscillations start while M4 denotes the
energy density at that time.
We assume that φ is so heavy that its decay products are highly relativistic, then we
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have in addition the following relevant equations:

ρ̇rel + 4Hρrel = Γφρφ (10)

H2 =
8π

3M2
Pl

(ρφ + ρrel) (11)

where ρrel is the energy density of the relativistic decay products of φ. The equations
(9-11) describe the reheating. Let’s summarize the important aspects of the reheating

• From t ' tosc till t ' tosc + Γ−1
φ , inflatons (NR by assumption) dominate the energy

density (the coherent φ oscillations), so the Universe behaves like in the MD phase:
R ∝ t2/3.

• During the de Sitter phase the Universe goes through supercooling, so at the
beginning of oscillations we have ρrad ' 0

• During the φ-dominated epoch one can find (see class) the following approximate
solution of (10)

ρrad ' M2
PlΓφ

10π

1−
(
tosc
t

)5/3
t

'
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' 61/2

π1/210
MPlΓφM

2

(
Rosc

R

)3/2
[

1−
(
Rosc

R

)5/2
]

(12)

where ∝ t−1 is a special solution of (10) with non-zero rhs, while ∝ t−8/3 is the
general solution of the homogeneous equation (as ρrad ∝ R−4). So ρrad first grows
rapidly from zero to MPlΓφM

2 and then it decreases as R−3/2, so the temperature
increases only at the very beginning of oscillation period, then it decreases, see
figure. The maximal temperature achieved is

Tmax ' 0.8g−1/4
? M1/2 (ΓφMPl)

1/4

• For t ' Γ−1
φ , inflatons start to decay efficiently, so that the Universe becomes

radiation dominated, the temperature at the beginning of the standard RD phase
is

TRH ≡ T (t = Γ−1
φ ) ' 0.55g−1/4

? (MPlΓφ)
1/2

Note that the reheat temperature is determined by Γφ, not by the initial vacuum
energy M .
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Figure 3: Evolution during reheating (from Kolb & Turner).

• Soon after or even during the reheating the baryon asymmetry should be generated.
If it happened before inflation it would be exponentially diluted. The basic
mechanisms are

– Through CP-violating decays of X bosons within a GUT.
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– Through the reheating itself, so in the process of CP-violating inflaton decays
that lead to production of SM particles.

♠ How many e-folds is needed to solve the horizon problem?
After inflation the Universe must contain at least 1088 of entropy. Suppose that the
initial size of the region that would grow to our observable Universe is of the size of
H−1 ∼ MPl

M2 . During inflation its size grows by the factor of eNe while during reheating
by

RRH
Rosc

=

(
tRH
tosc

)2/3

Since during the reheating we assumed MD, therefore

H2 =

(
Ṙ

R

)2

=

(
2

3

)2
1

t2
=

8π

3M2
Pl

ρ

At the beginning of reheating ρ ∝M4 while at the end (pure radiation) ρ ∝ T 4
RH, so

we obtain

RRH
Rosc

=

(
t2RH
t2osc

)1/3

'
(
ρosc

ρRH

)1/3

'
(
M4

T 4
RH

)1/3
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So the entropy at the end of reheating is

Sfin ' e3Ne

(
M

TRH

)4 (
H−1TRH

)3 ' e3Ne
M4

T 4
RH

T 3
RH

H3
' e3Ne

M4

T 4
RH

T 3
RH

1

M3
Pl

M6
= e3Ne

M3
Pl

TRHM2

where I used the fact that H−1 ' MPl
M2 . From the condition S ≥ 1088 we obtain

Ne ≥ 53 +
2

3
ln

(
M

1014 GeV

)
+

1

3
ln

(
TRH

1010 GeV

)
Varying M and TRH between 1 GeV and MPl the rhs ranges from 24 to 68.

♠ How many e-folds is needed to solve the flatness problem?
Roughly the same amount of inflation is needed for the flatness problem as for the
horizon problem.
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Dark Energy

Current data shows that the Universe is presently accelerating. For ΩΛ ' 0.7 and
Ω0
m ' 0.3 the deceleration parameter is negative

q0 =
1

2

∑
i

Ω0
i

(
1 + 3

pi
ρi

)
' 1

2
[0.3× 1 + 0.7× (1− 3)] = −0.45

The contribution to the energy density in the form of ΩΛ is called ”dark energy”.
However it could also have its roots in some kind of unknown matter, so called
”quintessence”. The simplest model of the quintessence is a scalar field Q with slowly
rolling potential (as it was for the inflaton). The quintessence is supposed to describe
dynamically variation of Λ which is needed in various epochs:

Ωm
ΩΛ

∣∣∣∣
now

= O(1)

As we know for the scalar field Q the parameter of the equation of state (p = wρ) is
the following

wQ =
1
2Q̇

2 − V (Q)
1
2Q̇

2 + V (Q)
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so for Q̇2 � V (Q), w → −1 as for Λ, in general −1 ≤ w ≤ 1. For the accelerating
universe (so for the one we observe now) one needs w < −1

3 if only one component
dominates.
When the potential is specified (e.g. V (Q) ∝ e−Q or V (Q) ∝ Q−1) the Friedmann
equation, the equation of motion for Q and the energy ”conservation” determine the
dynamics:

H2 =
8πG

3

(
ρ+

1

2
Q̇2 + V (Q)

)
Q̈+ 3HQ̇+ V ′(Q) = 0
ρ̇+ 3(1 + w)Hρ = 0 (13)

where ρ and w refer to the dominant component of the Universe in a given epoch (so
not the quintessence).
Example:
I assume no interaction between ”the single component” and Q. Let’s consider
V (Q) = V0e

−Q/µ adopting the ansatz R(t) ∝ tβ and Q = Q0 ln t and find the time
evolution of the dark energy density ρde.

R ∝ tβ =⇒ H =
Ṙ

R
=
β

t
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From Q = Q0 ln t we obtain

Q̇ =
Q0

t
and Q̈ = −Q0

t2

Inserting into the equation of motion for Q we get

−Q0

t2
+ 3

β

t

Q0

t
− 1

tQ0
= 0

where I have used the fact that V ′(Q) = −e−Q = −t−Q0. Therefore we get Q0 = 2
and β = 1

2. Then

ρQ =
1

2
Q̇2 + V (Q) =

1

2

(
Q0

t

)2

+
1

t2
=

3

t2

Since both for RD (ρ ∝ R−4 and R ∝ t1/2) and MD (ρ ∝ R−3 and R ∝ t2/3) we
have ρ(t) ∝ t−2, we conclude that the exponential potentials are not good as for they

ρm
ρQ

= const. 6= 1

R3
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Other potential may provide different time dependence of ρQ and ρm. However the
existing models must cope with the problem of very small mass for the quintessence
particles mQ ∼ H0 ' 10−33 eV.
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Summary of the Universe evolution

Figure 4: History of the Universe. Form lpnhe-auger.in2p3.fr/slides/vulg/.
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