e Problems of the Standard Big-Bang Model
e [he Basic Mechanism of Inflation
e Models of Inflation

e Dark Energy

Cosmology: 7. Inflation, Winter Semester 2009/10 1



Problems of the Standard Big-Bang Model

& The horizon problem
e 1991 COBE (Cosmic Background Explorer) satellite shows that the Universe is
extremely isotropic on large scales (~ 10° Mpc), the temperature fluctuations are

o 2.107°
T

e However not whole Universe is causally connected, so why is it so isotropic?

As we have shown the distance to the particle horizon is given by

dph(t) — R(t)/() Rd(ttl/)

In order to find d,n (%) we can adopt the relation obtained earlier

dt ~1 1
— — g1
dz 0 142 [Q0 (14 2)4+ Q9 (1 + 2)3 + QU1 + 2)2 + Q§]1/2

rad
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Then

t dt/ z dt/
don(t) = R(t) / — R(t) / g1t At
0

Inserting % we obtain

P Ry o D142 Q0,41+ 24+ Q01+ )3 + Q1 + )2 + Q!

rad

Using 1 4+ 2 = % we have

1 ce dz’
d _
ph(2) H0(1+z)/z [Q0 (14 24+ Q0 (14 2)3 4+ Q2(1 + 2/)2 + Q}]1/2

rad

For a single component Universe and neglected curvature (even if k # 1, for early
Universe . could be neglected) we had for the scale factor:

2
R(t) o< t30+w)  for p=wp
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Let's consider simple cases of MD and RD Universes:

t2/3  for w=0 (MD)
R(t) o { /2 for w=1 (RD)
Then integrating we obtain
Lot 3t for w=0 (MD)
Gon(t) = B(t) /0 R@) { 2% for w=1 (RD)

Thus we can see that fraction of the visible Universe is varying with time

dph(t)_/t dt’ N t1/3  for w=0 (MD)
R(t) ~ Jo R(¥) ~ | tY2 for w=3

So, we conclude that in the early times a much smaller fraction of the Universe was
causally connected (in other words visible). The CMB photons were emitted at the
time t,.. ~ 1.4-10° h=! yr, since that time we can see more and more and still all that
Is so isotropic? How is that possible?

Let's estimate how many causally connected regions there were at the time of
recombination that are now within the observable Universe. Assume MD at the
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moment of recombination (reasonable as T, ~ 0.37 eV while T, >~ 0.26 eV). We
want to know how many horizon volumes at the time t,.. has expanded to fill the
presently observed Universe. Let Vy(ty) be the volume of the presently observed
Universe and V. (t..) be the horizon volume at the recombination. Then, since
RT = const. (because of the conservation of entropy) therefore

1
‘/rec (trec )

Vot — R(trec)r’_ Vo(to) [Tor

Vol(t
‘/;ec(trec) 0( O) [R(t()) ‘/;ec(trec) Cerec

Assume now that at ¢t = ¢, and t = ¢y the Universe is MD (so d,n(t) o t), then
Volto) _ (dph(to))3 _ (t0>3
‘/rec(trec) dph(trec) trec

VO ( t rec ) _ t 0 ’ TO ’
‘/;ec (trec ) trec CZ—Wrec

Now let's eliminate time. Since R(t) ox t?/3 for MD (from recombination till now)

So
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therefore from the Friedmann equation

2¢71/3 21  T3/2

S — for MD
3 t2/3 3t M, ( )

sotoc T73/2 thus

VO (trec)

V;ec (trec)

t() ’ TO ’ o TO 972 TO ’ . ﬂec e ~ 3.6 104
trec CFrec - ﬂec CFrec B TO -

for T.. ~ 3.0 -10% K and Ty ~ 2.73. This is the number of horizon regions which
expanded from the recombination time to presently observable Universe.

Let's now find entropy within causally connected regions of the Universe. First recall
the approximate (valid for (1 + 2) > (29)7!) relations between the Universe age and
the redshift for the two cases:

|

e (MD):

(14 2)73/2H;1(Q0 )~1/2 for

w (MD)
(14 2)72H;1(Q0)~1/2 for w

(RD)

N —o N
1
W= O
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From the entropy conservation we have

3
T @) = so(1+2)°

. . 2
where the present entropy density is known (see class): sy = %9*5T3|today ~

2970 cm ™2 (G 5|woaay = 3.91). So we obtain for the entropy contained within a
causally connected region

— t —
\
’~ N\

Ard3 4 2
sl = s = T3 S0 2) 2 H 00) 2 sl + )

~  7.9-10%8(h2Q0 )73/2(1 4 2)~3/2
where | have used H; ' = 9.2503 - 10274~ cm.

(RD):
The entropy density reads
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Hence we get for the entropy in the causally connected region

. 3

AMP| 27T2 3
—=9xsT
gi/QTZ 45

049*5 M, 3_ 0.4 [ Mp ’
C@PNT ) gP\T

*

N\

Ard3 4 4
ok = Bp’ﬂ‘SZF7T 2.0.30

2

Thus at the recombination (7" ~ 3500 K ~ 0.3 eV, z ~ 1300) the entropy within
the horizon was about 1.7 - 10%°, while the entropy within the presently observable
Universe is ~ 8.2 10, a factor of (1+ z.)3/? ~ 10° larger (the (MD) approximation
was adopted in both cases, note that z,, ~ 3500). So, roughly there were 10° causally
disconnected regions at the moment of recombination that are seen now with a very
small non-isotropy ~ 10~°! This is the horizon problem.

Let's estimate the maximal angle Af on the sky today that would correspond to the
causally connected region at the moment of recombination:
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e Assume (for simplicity, and also since it is experimentally favored) £ =0, Q%, = 0
and Q4 = 0 (crude approximation), so Q9 = 1.

e Calculate dpp,(tiec) = 3t (MD was assumed as 2z, >~ 1300 < 2z, >~ 3400). As we
have found earlier ¢, ~ (1 + 2e) “3/2HIQN T (valid for (14 2) > (90 )71 -
well satisfied for z..).

e Calculate the distance Al that light traveled from the last scattering till now
assuming MD (as 2z, >~ 1300 < 2, =~ 3400). From our general formula for MD
we have for Q% =1

J(MD) _ 2551
0 = 3o
Since t.. ~ 2(1+ Ze) PHT < t(()MD), so the time CMB photons traveled is

At = tMP) ¢~ g IMD)

2
Al =~ dp (0) = 3tMP) = 35H,

(14 2ze)
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_3 _
A) — Aph (Erec) (1 + 2rec) _ Strec(1 + Zrec) _ 3%(1 + Zec) 2+1H0 1
Al (M D) 32

3t —H_l — (1 + Zrec)_l/2 -
0 3770
~ 28-10"%rad=1.6"

& The flatness problem
As we have shown the Friedmann equation could be written as follows:

Qrad+ﬂm+Qk+QA:1

where
3H? —k

Qi = /Oi/pcrit fOI’ Perit = 87TG and Qk = (RH)2

Note that €2;’s are functions of time. The above equation could be rewritten as

k

(RH)? L)

Qrad + Qm + QIL_l — _Qk —
Q
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So, at present we have

k
(RoHo)?

Qo+, + O —1=-0p =
Q0

From observations we know that QY ~ 1.
Assuming that the Universe is dominated by just one component we have

y

A for w=0 (MD)
R(t) = Ro - § (tt0>1/2 1
\ (5) for w=1 (RD)

Therefore we can estimate the rhs of (1) as a function of time:

2/3 >
Q= k k ock{t x R for txtpg (MD)

(RH)? ~ (R)? t x R? for t<tpo (RD)

The above equation has dramatic consequences. It shows that (Ri]ﬁ »0ast — 0.
Since (2 is close to 1 at present therefore it must be very close to 1 at early times.
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For instance

(t) = 14+1071% for t=1s (BBN)
Tl 121079 for t=10"%s (Planck time)

The flatness problem is to explain why the Universe was so flat at the beginning? In
other words one can say that flatness problem is caused by the instability of the initial
value 2 ~ 1. Note what is the variation of {2 — 1 as a function of time

O 1o t?/3 x R for t>tpg (MD)
t oc R? for t<teg (RD)

Therefore 2 — 1 is an increasing function of time, this is why such a high precision
for the initial value of () is necessary.

& The monopole problem

At early times the evolution of the Universe was dominated by the presence of radiation
for which the energy density decreases very fast (faster than for other components)

1
prad X =7

R4

Therefore if in the (RD) Universe there was some amount of non-relativistic matter
(pm o< R73) it will soon dominate. If matter particles are not very heavy (as it happens
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in the SM) then they thermalize easily and contribute as a radiation. However GUT
predicts at 7' ~ 10'° GeV production of some very heavy particles, monopoles. They
would be non-relativistic for the most of the expansion time and should dominate
also today, when we don't observe them. So their density must be somehow diluted.
This is the monopole problem. That reasoning applies also to other possible heavy
particles that could be produced in the early epochs, like heavy gravitinos or modulus
fields.

& The small-scale inhomogeneities problem

Even though the Universe is very homogeneous at large scales, there is a lot of
structures at scales ranging from 1 to 100 Mpc. The problem is that we don't know
where do the inhomogeneities necessary for the structure formation come from.

& The cosmological constant problem

1
IRy — §gWR 4= BTy = =Sy,

The A term could be written as a part of the energy-momentum tensor:

A A
TA - — v b— U f E -
U 87TGg'u PAG L or PA e
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Then the Einstein’s Field Equations

1
R, — 59,“,3 = —87G (Ty + T;}V)

Let's return to the Friedmann equation

k (G k (G A

H2:—— = \Mm ra — T 5o o \Mm ra o
+ (Pm =+ Prad + pa) 2t 3 (pm +p d)‘|'3

The ratio of the two last terms is know from observations to be at present

= A <1
SWG(pm + prad)

TA

That implies that at the Planck time rp < 107122, impressively small number! The
difficulty to explain that constitutes the cosmological constant problem.
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The Basic Mechanism of Inflation

There was an epoch (the de Sitter phase) when the vacuum energy (the cosmological
constant) was the dominant component of the energy density of the Universe, then
the expansion was exponential.

The Einstein’s Field Equations with the cosmological constant are as follows

1
Ry = 59u R = —87G (T + T2,

Then the Friedmann equation reads

HQ__I@+87TG( N + )__I€+87TG( H )+éNé
— R2 3 Pm Prad PA) — R2 3 Pm Prad 3 — 3
So that
2" A A
H*(t) = (R) =3 = R(t) = R(to)e "7t for H?= 3 = const.

This is the exponential inflation: exponential growth of the scale factor.
During this epoch a small, smooth, and causally connected patch of the size less then
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H~1! grows to such a size that at present it contains the whole observable Universe.
It is usually assumed that a scalar field is responsible for inflation: it provides the
necessary equation of state p = —p.

Basic steps in the evolution of the scalar field responsible for inflation:

e Transition from ¢ = 0 to ¢ = ¢, (spatially uniform) through a possible barrier
(denoted as (a) in the figure 3).

e Classical evolution (the "slow-roll”) toward the minimum (b) of the potential
according to (see class)

d+3Ho+V'(¢) =0

It is just the equation for sliding down hill with a friction (3H). If the potential

is flat enough one can have the time of "slow-rolling” At large comparing to the
Hubble time: HAt > 1.
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Fig. 8.1: Schematic illustration of an inflationary potential. Notice the “Hatness”
fithe potential—a feature common to all inflationary models. The three qualitative
hases of inflation are depicted: (a) bartier penetration (if necessary); (b) slow roll; and
I coherent oscillations about the minimum of the potential.

Figure 1. The slow-roll potential (from Kolb & Turner).

Is that possible ? Note that often the universe age tyy ~ H 1.
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For the de Sitter phase H = const., so

R(t) dR/ R(t) dR/ R(t)
t— tp = — =g ! :H—lln( )
’ /RPI R Rp i He

Therefore as long as R(t) > Rp we obtain t — tp > H~ 1. In other words it is
possible that HAt > 1. Note that if V(¢ = 0) = M* then during inflation period

we have roughly

8t M*
H
R(t) oc et for HZZTV(gb:O)’:m

So for HAt > 1 one needs M large enough.
Assume:

e ¢ is spatially uniform

e The size of the initial patch R, = 1072% cm (exact number is not very relevant)

o M = 10% GeV
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e At=100H! =  R(tsm) = R(t,) x e ~ R(¢,) x 3-10%
e During inflation

My 1.22-10%° GeV
M e Vf ~8.02-107%s and At=802-10"5s
€

H—l

for GeV™ ! =6.5822.10"2%%s.

e When ¢ reaches o (the minimum) it starts oscillate (c) coherently as a uniform field
around ¢ = 0. The oscillations are dumped by interactions between ¢ and the SM:
the energy of oscillations is transfered (through production of SM particles) from
¢ to the SM. That results in an increase of the SM temperature (the reheating):

Note that the energy density remains the same during inflation (since V(¢ =
0) ~ M*%). The expanding Universe is being filled with the constant field - the
cosmological constant. During the reheating the whole energy is transfered quickly
(with a small change of the scale factor) to SM particles, therefore Ty ~ M.
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— The entropy at the beginning of inflation (with temperature 7;,) reads:

So ~ (ThRn)® = (10M GeV x 10723 cm)® = (5.07 x 10M4725+14)°
~ 1.25 x 10 <« Sy ~ 10°®

{

where S is the entropy in the presently observed Universe and 1 GeV x 1 cm =
5.07-10'3 was used. During inflation the entropy is conserved. Since R(t) o< eff!
therefore T oc et the patch "supercools”.

— Massive entropy production happens during the reheating (after inflation ended).
The temperature returns to it's value at the beginning of inflation i.e. T ~
10'* GeV and the final entropy is

Sin ~ (True?2R,)% ~ 2,53 - 1014 > 5 ~ 10%8

So the reheating process increases the entropy by a factor 10%3Y.
— The final size of the Universe after inflation is ef2tR. ~ 2.7 -102° cm

How does the inflation cures the problems of the standard cosmology?

e [he horizon problem
The presently observable Universe contains (10%%) much less entropy than the
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entropy contained in initial patch after inflation (10'%*), so the whole content of
the presently observable Universe could have easily been in a causal contact at the
moment of the recombination. So, no wonder it is so smooth.

The presently observed Universe contains (without inflation) about 10° regions
which were causally disconnected at the moment of recombination. The distance
to the horizon is given by

) = RO) [

Assuming R(t) o< et and neglecting the period preceding inflation we obtain
g

don(t) = H (et — 1)

The meaning of that is that when the Universe reheated after inflation to the
temperature 1" ~ M typical for the period prior to inflation, the distance to the
horizon was by the factor e?2t ~ 3.10%3 larger than at the moment before
inflation (when the temperature was the same as after inflation). Inflation breaks
the standard relation between temperature and distance to the horizon. The reason
is the massive entropy non-conservation. Therefore it is easy for the horizon at the
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recombination to contain many times over the volume which will expand to the
presently seeable Universe.

The flatness problem

k
Q.. O+ 020 —1=-Qp = 2
During inflation H? ~ Aj\j—; — const. while R? — e?99R?2 therefore
Pl
k M2 1 k M2
D=1~ T 7 o < prass

In other words whatever was the initial value of {2 — 1 it is very close to 0 after
inflation.

The monopole problem
The concentration of any relic produced before inflation is reduced by the factor
e 3% so the concentration of monopoles would be negligible after inflation.
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e The small-scale inhomogeneity problem
The post inflationary patch is exactly homogeneous as a consequence of homogeneity
of the scalar field ¢, however some inhomogeneities are needed a seeds to build
large scale structures. Those will be provided by the "quantum” fluctuations of

the ¢.

e The cosmological constant problem
No solution is offered here by inflation.
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STANDARD COSMOLOGY

R,T
(ADIABATIC (RT = cons't)
1019 _
GeV 13
R
‘014
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oF 10°!
3K L L -t
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e INFLATIONARY COSMOLOGY
A
1o | A
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OF Blf

ADIABATIC
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Fig. 8.2: Comparison of the evolution of R and T in the standard and inflationary
cosmologies. Note the enormous jump in entropy (S o< R*7T3) at the end of inflation.

Figure 2: Ewvolution of temperature and scale factor in the standard and inflationary cosmologies
(from Kolb € Turner).
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Models of Inflation

Assumptions:

e A single scalar real field ¢ is responsible for inflation.

S1(G k
2 _
H==3r

where py is the energy density of the scalar filed, so ¢ dominates the energy density.

e The scalar field is homogeneous with the initial value ¢, # o for o being the
global minimum of the potential, i.e. V(o) =V'(0) = 0.

e "Quantum” fluctuations of the scalar field are "small’ compared to the classical
solution:

P(t) = ¢ + 09  with ¢ <K ¢

e The scalar field is described by

£ = 50"60,0 — V(9)
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The energy-momentum tensor reads (see class)
= 0"9p0" ¢ — Lg™”
For the perfect fluid we had
™ = (p+ p)U*U" — pg"”

where U* is the 4-velocity. To match the above forms one requires (assuming
spatial homogeneity)

(0,00 = p+p—pg”=¢>—Lg"
(4,1) — —pg"* = —Lg" (3)

that implies p = £ = £(¢)? — V(¢) and p = 1(#)? + V().

So for spatially homogeneous field we obtain:
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e The classical equation of motion for ¢ could be obtained from variation of the
action S = f d*x\/—gL (see class) or just from the appropriate replacement in the
Klein-Gordon equation:

6= V(0

From that we get (see class)

o+ 3Ho+V(p) =0 (4)

® The "slow-roll” )
We will look for the "slow-roll” solutions of (4), i.e. such that ¢ could be neglected,
SO

L _V/(Qb) i gb
¢ = Ve for 3qu <1 and 75 <1 (5)
¢ could be estimated from (5):
j R -
¢=—gzV (9)¢+ 375V (9)

Cosmology: 7. Inflation, Winter Semester 2009/10 27



We can also estimate H?:

87G  87G ~ G '
=", ) = e~ TV (6)

where | neglected the kinetic term in

po = 5(8 + V(9) ~ V(6)

As we will see in the slow-roll region the above approximation is justified. Now, using
(6) we can rewrite the first condition that allows us to neglect ¢:

V'(9)?| <« 1

b B | e
3H ¢ _| omz" (¢)+54H4

To ensure the above inequality we must require

V" (9) 8 N
1 1
V£ < and S0 V()" <
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Using (6) we can obtain the slow-roll conditions (should be satisfied during inflation)

n(¢) = ];{;’"“//Il((qzb))‘ <3 and €(¢) = i\g;' (“///((j))) < 3

The second condition that allows us to neglect gb reads

;

Vi) <

Using the same arguments as for the first condition one can show that

_ ‘n(gcb) B 26é¢)' <1

Therefore it is also satisfied when the slow-roll conditions 1(¢) < 3 and €(¢) < 3 are
imposed.

Now we can show that indeed if the slow-roll conditions are satisfied then the
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energy density is dominated by the potential energy. Form (5) we obtain

1 .o [V(9)
5\ @) = T3
Let's denote ,
@
- V()
Then we can write the Fiedmann equation as
H? = %vw)(ﬁ; +1)
So, we obtain
307 _ VP 1 _ M (V’<¢>>2 S C) N
V(p) —  18H2? V(¢) 16w \V(¢)/) 3(k+1) 3(k+1) ~ (k+1)
which could be written as
kk+1) <1
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So indeed, the energy density is dominated by the potential energy.
Now we can calculate how many e-folds of inflation happened when the scalar field
slow-rolled from ¢, to ¢s,:

Rfin
N, =1
. Rin
Since
Lfin Lin : t Rﬁnd / ] tin
= [T R [ R
Lin tin R(t) R;, R Rin Lin
Thus since ¢ = —V (¢) we have
_ Qbfln d ¢fin d ?bfin
Rin Gin ¢ Gin V (¢) MP' Gin V (¢)

Now we approximate the derivative of the potential

VI(9) = V(@) + V(96— 6u)  with V() =0
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and use it to estimate variation of ¢ = ¢(t)

L Vo) V(o) b
P="3m = ag WM = —

Neglecting small variation of H we obtain

V(@)
3H

Qb o qbin ~ €XP [_ (t T tin)

To retain the slow motion of the field we must limit the rolling to the period that is
not larger than

3H
At ~
V7 ()]

Then , ,

R, fin 3H

N =1n — Hdt ~ HAt ~

Rin G ‘V”(qbin)‘

Since H? ~ 8Z%V (¢) we have
87V () 1
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so it is possible to obtain many e-folds of inflation. The above relation is a crude
approximation, to get more precise estimate one would need to adopt (7).

& The reheating - coherent oscillations

The slow-roll ends when ¢ reaches the region of steeper potential that is closed to its
absolute minimum. Then the period of coherent (spatially uniform field) oscillations
starts. We assume that ¢ couples to the SM, so the oscillations are dumped through
production of SM particles: inflaton energy is converted into energy of SM particles.
Hereafter we assume that the decay rate I'y of inflaton satisfies: I'y < H. where
H,. is the Hubble parameter when the oscillations start.

In order to take into account the damping we modify the equation of motion for ¢
¢+ 3Hp+Typ+V'(¢) =0

For small oscillations around ¢ = o, when the friction terms (o qﬁ) are neglected we
obtain just harmonic oscillations with frequency w? = V" (o).

Since py = 1(4)% + V(¢) we can rewrite the above equation (first multiplying by &)

py+ (BH +Tg4)¢° =0 (8)

For simple harmonic oscillations, the average of the kinetic energy over an oscillation
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period equals the average of the potential energy over a period

1

S%) = (V(6)) = 5(pe)

Therefore we replace in (8): ¢? — () = (pg), i.e.
pp + (3H +T¢)py =0 (9)

where from now on py denotes the averaged energy density. The equation we have
obtained is a Boltzmann-like equation which describes the evolution of energy density
of massive particles that can decay (and therefore disappear). Its solution (see class)

reads
R s
p¢ _ ]‘ 14 ( OSC> €—F¢(t—tosc)

R

where . refers to the moment when the oscillations start while M* denotes the
energy density at that time.
We assume that ¢ is so heavy that its decay products are highly relativistic, then we
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have in addition the following relevant equations:

prel + 4I_I/Orel — F¢p¢ (10)
8T
H? = i 11

where p,, is the energy density of the relativistic decay products of ¢. The equations
(9-11) describe the reheating. Let's summarize the important aspects of the reheating

o Fromt~t, till t ~t,. + F(;l, inflatons (NR by assumption) dominate the energy
density (the coherent ¢ oscillations), so the Universe behaves like in the MD phase:
R o t3/3.

e During the de Sitter phase the Universe goes through supercooling, so at the
beginning of oscillations we have p,,q >~ 0

e During the ¢-dominated epoch one can find (see class) the following approximate
solution of (10)

5/3
L MiT,1- (=)
Prad = —

107 t

Cosmology: 7. Inflation, Winter Semester 2009/10 35



61/2 2 Rosc 32 Rosc 52

where oc t~1 is a special solution of (10) with non-zero rhs, while oc t=8/3 is the
general solution of the homogeneous equation (as p,,q o R_4). SO praq first grows
rapidly from zero to MpT'yM? and then it decreases as R~3/2, so the temperature
increases only at the very beginning of oscillation period, then it decreases, see
figure. The maximal temperature achieved is

Tmax = O°89;1/4M1/2 (P¢MPI)1/4

For t ~ qul, inflatons start to decay efficiently, so that the Universe becomes

radiation dominated, the temperature at the beginning of the standard RD phase
IS

Try =T(t=T35") ~0.55¢7 /4 (MpLy)"?
o

Note that the reheat temperature is determined by I'g, not by the initial vacuum
energy M.
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Fig. 8.3: Summary of the evolution of P¢, Pr, and S during reheating.

Figure 3: Evolution during reheating (from Kolb & Turner).

e Soon after or even during the reheating the baryon asymmetry should be generated.

If it happened before inflation it would be exponentially diluted. The basic
mechanisms are

— Through CP-violating decays of X bosons within a GUT.
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— Through the reheating itself, so in the process of CP-violating inflaton decays
that lead to production of SM particles.

& How many e-folds is needed to solve the horizon problem?

After inflation the Universe must contain at least 10%% of entropy. Suppose that the
initial size of the region that would grow to our observable Universe is of the size of
H- 1~ Y During inflation its size grows by the factor of e’¢ while during reheating

M2
by

Rruy <tRH)2/3

tOSC

ROSC

Since during the reheating we assumed MD, therefore

. 2 9
R 2 1 81
H2 — — o — — =
(R) (3) 2~ 3mz"

At the beginning of reheating p oc M* while at the end (pure radiation) p oc T'a 77, SO

we obtain
Rosc tgsc N IORH B T[%H
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So the entropy at the end of reheating is

4
G~ g3Ne M (H—lTRH)3 ~ 3Ne M* Tiy ~ 3Ne M* Ty My, _
" Tru B Tzﬁle H3 TéH 1 M® TruM?

where | used the fact that H ! ~ % From the condition S > 10%% we obtain

2 M | e
N, > 53+ 21 2]
A (1014 GeV) T3 (1010 GeV)

Varying M and Try between 1 GeV and My, the rhs ranges from 24 to 68.

& How many e-folds is needed to solve the flatness problem?

Roughly the same amount of inflation is needed for the flatness problem as for the
horizon problem.
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Dark Energy

Current data shows that the Universe is presently accelerating. For 2, ~ 0.7 and
QY ~ 0.3 the deceleration parameter is negative

qJo = %;Q? (1+3%) ~ %[0.3 x140.7x (1—-3)] =-0.45
The contribution to the energy density in the form of €2, is called "dark energy”.
However it could also have its roots in some kind of unknown matter, so called
"quintessence”. The simplest model of the quintessence is a scalar field () with slowly
rolling potential (as it was for the inflaton). The quintessence is supposed to describe
dynamically variation of A which is needed in various epochs:

A now

As we know for the scalar field () the parameter of the equation of state (p = wp) is
the following

1Q2-V(Q)
12+ V(Q)

wQ—
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so for Q% < V(Q), w— —1 as for A, in general —1 < w < 1. For the accelerating
universe (so for the one we observe now) one needs w < —z if only one component
dominates.
When the potential is specified (e.g. V(Q) < e=% or V(Q) o< Q') the Friedmann
equation, the equation of motion for () and the energy "conservation” determine the
dynamics:

1

H? = 87;G (p +50% + V(Q))

Q+3HQ+V'(Q)=0
p+3(14+w)Hp=0 (13)

where p and w refer to the dominant component of the Universe in a given epoch (so
not the quintessence).

Example:

| assume no interaction between "the single component” and (). Let's consider
V(Q) = Voe~@/* adopting the ansatz R(t) o< t? and Q = QoInt and find the time

evolution of the dark energy density pge.

R o tP — H = :g

3| =
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From Q = QQpInt we obtain

. Q )
Q:TO and Q=

Inserting into the equation of motion for () we get

where | have used the fact that V/(Q) = —e~% = —t=@0. Therefore we get Qg = 2
and 8 = % Then

1. 1 1 3
PQ:§Q2+V(Q)=§<%) ol

Since both for RD (p oc R=* and R o t'/2) and MD (p o« R™2 and R o t2/3) we
have p(t) < t—2, we conclude that the exponential potentials are not good as for they

Pm 1
— = const. # —
PQ G
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Other potential may provide different time dependence of pg and p,,. However the
existing models must cope with the problem of very small mass for the quintessence
particles mg ~ Hg ~ 1073 eV.
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Summary of the Universe evolution
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Figure 4: History of the Universe. Form lpnhe-auger.in2p3.fr/slides/vulg/.
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