
Thermodynamics of the Early Universe

• Fundamental Interactions

• Interaction Rates Γi

• Rudiments of Equilibrium Thermodynamics

• Entropy
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Fundamental Interactions – the Standard Model

Introduction to the Standard Model: Experimental constraints

♠ Gauge symmetry: SU(3)C × SU(2)L × U(1)Y

L ⊃ −1

4
Fµνa Faµν︸ ︷︷ ︸
SU(3)C

−1

4
Wµν
i Wi µν︸ ︷︷ ︸
SU(2)L

−1

4
BµνBµν︸ ︷︷ ︸
U(1)Y

⇓ ⇓
Gµa|a=1,...8 W±µ , Zµ, Aµ

♠ The Higgs sector:

• The minimal choice H =

(
G+

(h+ iG0)/
√

2

)
necessary for SU(2)L × U(1)Y →

U(1)EM .
L ⊃ (DµH)†DµH − V (H)

for Dµ ≡ ∂µ+ igW i
µT

i+ ig′12Y Bµ and V (H) = µ2|H|2 +λ|H|4 with YH = 1
2

• If µ2 < 0 then 〈0||H|2|0〉 = −1
2
µ2

λ ≡
v2

2 (spontaneous symmetry breaking, the
origin of mass)
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• Boson masses: mh =
√

2λv, mW± = 1
2gv and mZ = mW/cW , for cW ≡ cos θW =

g/(g2 + g′ 2)1/2

♠ Fermions
fermion T T3

1
2Y Q

νi L
1
2 +1

2 −1
2 0

li L
1
2 −1

2 −1
2 −1

ui L
1
2 +1

2
1
6

2
3

di L
1
2 −1

2
1
6 −1

3

li R 0 0 −1 −1

ui R 0 0 2
3

2
3

di R 0 0 −1
3 −1

3

νi R 0 0 0 0

i = 1, . . . , Nf = 3, ψL,R ≡ 1
2(1∓ γ5)ψ (parity violation), Q = T3 + 1

2Y
Neutrino masses:

• Dirac mass: fij L̄i Lνj R H̃ + H.c. for H̃ ≡ iτ2H?

• Majorana mass: 1
2Mij νi R C νj R + H.c.
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Gauge transformations: ψ(x)→ exp
{
−igT iθi(x)− ig′12Y β(x)

}
ψ(x)

Gauge interactions:

L ⊃
∑
ψ

ψ̄iγµDµψ for Dµ ≡ ∂µ + igW i
µT

i + ig′
1

2
Y Bµ

Yukawa interactions:

L ⊃ −
3∑

i,j=1

(
Γ̃ijūi RH̃

†Qj L + Γijd̄i RH
†Qj L + H.c.

)
⇓

if 〈H〉 6= 0 then mq 6= 0

Lq mass = −
3∑

i,j=1

(
ūi RMu

ijuj L + d̄i RMd
ijdj L + H.c.

)
for

Mu
ij =

v√
2

Γ̃ij Md
ij =

v√
2

Γij ⇒ no FCNC for one Higgs boson doublet
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 u1

u2

u3


L,R

= UL,R

 u
c
t


L,R

 d1

d2

d3


L,R

= DL,R

 d
s
b


L,R

U†RM
uUL = diag(mu,mc,mt) D†RM

dDL = diag(md,ms,mb)

⇓
Γ̃,Γ diagonal (gf =

√
2
mf

v
) ⇒ no FCNC

• charged currents:
∑
ūi Lγ

µdi L = (ū, c̄, t̄)LU
†
LDL︸ ︷︷ ︸

UCKM

γµ

 d
s
b


L

• neutral currents:
∑
ūi Lγ

µui L,
∑
d̄i Lγ

µdi L remain unchanged upon UL,R, DL,R

transformations
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UCKM :

• unitary complex N × N matrix, qi L → eiαiqi L ⇒ 1
2(N − 1)(N − 2) phases in

UCKM

• N ≥ 3 ⇒ CP violation in charged currents

♠ Masses in the SM: mV ∝ gv mh ∝ λ1/2v mf ∝ gfv
Leptons:

mνe
<∼ 3 eV mνµ

<∼ 0.2 MeV mντ
<∼ 18 MeV

me = 0.5 MeV mµ = 105.5 MeV mτ = 1.78 GeV

Quarks:
mu ' 2 MeV mc ' 1.2 GeV mt ' 174 GeV
md = 5 MeV ms = 0.1 GeV mb = 4.3 GeV

Bosons:
mW± = 80.4 GeV mZ = 91.2 GeV mh ≥ 115 GeV

⇓
Fine tuning:

mνe

mt

<∼ 0.5 · 10−11 ⇒ gνe
gt

<∼ 0.5 · 10−11
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Introduction to the Standard Model: Experimental constraints

• Perfect agreement with the existing data
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• The scalar sector weakly constrained

– Higgs-boson representation:

ρ ≡ m2
W

m2
Z cos2 θW

, SM ⇒ ρ = 1 +O(α)

for general Higgs multiplets: ρ =
∑
i[Ti(Ti+1)−T 2

i 3]v
2
i∑

i 2T 2
i 3v

2
i

data: ρ = 1.0002

{
+0.0024
−0.0009

⇒ T = 1
2 (doublets are favored)

– Higgs-boson interactions: no direct tests of the scalar potential
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Outstanding problems of the SM

♠ Gauge-Higgs sector:

⇒ m2
h = m

(tree) 2
h − c · Λ2
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• The hierarchy problem

if mh ' 100 GeV and c ' g2
t

4π2 ' 1
40 then

1 =

(
10m

(tree)
h

1 TeV

)2

−
(

1.6Λ

1 TeV

)2

If Λ � 1 TeV then a fine tuned cancellation is needed to obtain mh ' 100 GeV,
e.g. for Λ = MPl = 1019 GeV one has

1 =

(
10m

(tree)
h

1 TeV

)2

−2.5·1030 ⇒ to avoid fine tuning Λ <∼ 5mh <∼ 1 TeV

⇓

The New Physics is expected at E ' 1 TeV
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• Why is there only one Higgs boson?

– The Higgs field was introduced just to make the model renormalizable (unitary)
– There exist many fermions and vector bosons, so why only one scalar? Why, for

instance, not a dedicated scalar for each fermion?

• The strong CP problem:

– symmetries of the SM allow for

tr
(
FµνF̃

µν
)
≡ 1

2
εµναβtr (FµνFαβ)

P−→ −tr
(
FµνF̃

µν
)

– odd under CP

Lθ = θ
g2
s

32π2
F aµνF̃ aµν ⇒ neutron− EDM Dn ' 2.7 · 10−16θ e cm

⇓

data: Dn <∼ 1.1 · 10−25 e cm ⇒ θ <∼ 3 · 10−10

The strong CP problem: why is θ so small?
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♠ The flavor sector:

• parity violation:

W+µ ūiγµ(1−γ5)dj
P−→ W+µ ūiγµ(1+γ5)dj

Maximal parity violation, why?

• Charge quantization, why qu = 2
3, qd = −1

3 and ql = −1?

• Number of generations, why N = 3?

• Why is the top quark so heavy (mt ' 174 GeV while mb ' 4.3 GeV) ?

mt ' v = 〈0|H|0〉 ' 246 GeV

⇓

top quark is very different (possibly sensitive to the spontaneous symmetry
breaking)
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• Mixing angles and fermion masses:

L ⊃ −
3∑

i,j=1

(
Γ̃ijūi RH̃

†Qj L + Γijd̄i RH
†Qj L + H.c.

)
⇓

Lq mass = −
3∑

i,j=1

(
ūi RMu

ijuj L + d̄i RMd
ijdj L + H.c.

)
for Mu

ij =
v√
2

Γ̃ij, Md
ij =

v√
2

Γij u1

u2

u3


L,R

= UL,R

 u
c
t


L,R

 d1

d2

d3


L,R

= DL,R

 d
s
b


L,R

U†RM
uUL = diag(mu,mc,mt) D†RM

dDL = diag(md,ms,mb)

⇓∑
ūi Lγ

µdi L = (ū, c̄, t̄)LU
†
LDL︸ ︷︷ ︸

UCKM

γµ

 d
s
b


L

It is natural to expect that UCKM = UCKM(mq/m
′
q).
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♠ Parameters of the SM:

me mµ mτ mu mc mt

mνe mνµ mντ md ms mb

g , g′︸ ︷︷ ︸
(αQED,sin θW )

, gs︸︷︷︸
(αQCD)

, mh, λ︸ ︷︷ ︸
(µ,λ)

, UCKM︸ ︷︷ ︸
θ1,2,3,δCP

21 parameters !
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♠ Cosmology:

• Dark matter and dark energy

Ωi ≡
ρi
ρc

for ρc =
3H2

0

8πGN
= 11h2mp/m

3 for h ' 0.7

data ⇒ ΩΛ = Λ
3H2

0
' 70%, ΩDM ' 27% and ΩB ' 3%
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• SM has no candidate for dark matter

• ΩΛ = ρΛ
ρc
' 0.7 ⇒ ρΛ ' 10−120M4

Pl = (10−3 eV)4 while typical scale of the

SM is O(100 GeV)! Fine tuning again!

• Inflation: period of fast expansion of the very early Universe, R(t) ' exp
(√

Λ
3 t
)

Again the SM has no means to explain the inflation (no inflaton in the SM). For a
typical inflaton mϕ ∼ 1013 GeV and λ ∼ 10−13, so the SM Higgs boson is not an
inflaton.

• Baryogenesis and SM CP violation η ≡ nb−nb̄
nγ
' nb

nγ
' 6 · 10−10

The Sakharov’s necessary conditions for baryogenesis:

– B number violation
– C and CP violation
– Departure from thermal equilibrium

SM:

– B number violation: OK
– C and CP violation: too weak CP violation ∝ ImQ, for Q ≡ UudUcbU

?
ubU

?
cd

(re-phasing invariant)
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– Departure from thermal equilibrium: no electroweak phase transition for mh >∼
73 GeV

Conclusion: the SM doesn’t explain the baryogenesis

• Why is gravity so weak? Or, why MPl = 1019 GeV� v = 246 GeV?
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Possible extensions of the SM - a subjective view

♠ Extra Higgs bosons

• SM single Higgs doublets quite unnatural, why only one?

• extra sources of CP violation from the scalar sector (needed for baryogenesis)

• hope for an explanation of weak mixing angles through horizontal symmetries

L ⊃ −
NH∑
α=1

3∑
i,j=1

(
Γ̃αijūi RH̃

α †Qj L + Γαijd̄i RH
α †Qj L + H.c.

)

Hα → HαβHβ , ui R → Uji uj R , di R → Djiuj R , Qi L → QjiQj L
⇓

constraints on fermion mass-matrices:

Mu
ij =

NH∑
α=1

Γ̃αij
vα√

2
, Md

ij =

NH∑
α=1

Γαij
vα√

2

U†RM
uUL = diag(mu,mc,mt) D†RM

dDL = diag(md,ms,mb)
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If Mu,d sufficiently constraints, then UCKM ≡ U†LDL = UCKM(mq/mq′)

• Multi-doublet models favored by the ρ measurement

• An example of extra Higgs boson scenario: the 2 Higgs Doublet Model:

V (φ1, φ2) = m2
1|φ1|2 +m2

2|φ2|2 +m2
3(eiδ3φ†1φ2 + e−iδ3φ†2φ1)+

+λ1(φ†1φ1)2 + λ2(φ†2φ2)2 + λ3(φ†1φ1)(φ†2φ2)+

+λ4(φ†1φ2)(φ†2φ1) + λ5

[
eiδ5(φ†1φ2)2 + H.c.

]
+

+λ6(φ†1φ1)
[
eiδ6φ†1φ2 + H.c.

]
+ λ7(φ†2φ2)

[
eiδ7φ†1φ2 + H.c.

]
where m2

i and δi real

under CP: φi(t, ~x)
CP−→ eiαiφ?i (t,−~x) for i = 1, 2

• explicit CP violation: δi 6= 0

φ†1φ2
CP−→ ei(α2−α1)φ†2φ1
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• spontaneous CP violation (δi = 0)

〈φ1〉 =

(
0
v1√

2

)
〈φ2〉 =

(
0

v1e
iθ

√
2

)

cos θ =
2m2

3−λ6v
2
1−λ7v

2
2

4λ5v1v2
⇒ SCPV if θ 6= 0, π

• Difficulties of extra-Higgs-boson scenarios:

– many new parameters (m2
i , λi, δi)

– tree-level FCNC to be suppressed

Mu
ij =

NH∑
α=1

Γ̃αij
vα√

2
, Md

ij =

NH∑
α=1

Γαij
vα√

2

Cosmology: 5. Thermodynamics of the Early Universe, Winter Semester 2009/10 20



♠ Extra gauge symmetries

• GUTs, e.g. SU(5): unification of gauge couplings, . . .

• L−R symmetry, SU(2)L × SU(2)R × U(1): spontaneous parity violation

• SU(2)L × U(1)× U(1)′: just extra Z ′

♠ Extra dimensions (more special dimensions)

Motivations:

• Unification of gravity and gauge interactions in gAB (Kaluza & Klein)

• Quantization of gravity (strings)

• Solution (amelioration) of the hierarchy problem
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The interaction rates Γi

♠ Definition of the Cross-Section:
The transition matrix element wi→f gives the probability for the transition to occur:

Pi→f = |wi→f |2 = |〈f |i〉|2

The translational invariance allows to write the matrix element as

wi→f = δif + i(2π)4δ4(pf − pi)Ti→f

The above formula defines the transition matrix T .
Let’s consider the following scattering process

a+ b→ c1 + c2 + · · ·+ cn

We assume that b is at rest, and the velocity of a is v = |~pa|/Ea. The number
of particles b per target volume is (that defines the normalization of plane waves):
2Eb = 2mb as b is at rest. The incident flux is the velocity of a times their
number density 2Ea, so 2|~pa|. If the reaction volume is V and the reaction takes
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place during the time T , then the cross-section σ is defined such that the transition
probability per unit time and unit volume equals the target density × the incident
flux × the cross-section σ, that is, 2mb × 2|~pa| × σ. On the other hand it is equal to
|wi→f |2/(V T ). Hence summing over all available momenta for the final state we get

σ(a+ b → c1 + c2 + · · ·+ cn) =

=
1

4mb|~pa|

∫ n∏
j=1

d3pj
2Ej(2π)3

(2π)4δ4(pa + pb − p1 − · · · − pn)|T̃ |2

where for unpolarized initial state we have

|T̃ |2 =
1

S

1

(2sa + 1)(2sb + 1)

∑
final spins

|Ti→f |2

The spins of initial states are denoted by sa and sb. The symmetry factor S appears
because in quantum mechanics we can’t distinguish between two final states which
differ only by the exchange of identical particles, in general, if there are k groups of
ni (i = 1, 2, . . . , k) identical particles in the final state, one has S = n1!n2! . . . nk!.
In order to have the cross-section in a Lorentz invariant form one has to replace

mb|~pa| →
[
(pa · pb)2 −m2

am
2
b

]1/2
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For decays

a→ c1 + c2 + · · ·+ cn

we get instead of the cross-section the decay width

Γ(a → c1 + c2 + · · ·+ cn) =

=
1

4ma

∫ n∏
j=1

d3pj
2Ej(2π)3

(2π)4δ4(pa − p1 − · · · − pn)|T̃ |2

for

|T̃ |2 =
1

S

1

(2sa + 1)

∑
final spins

|Ti→f |2

Summing over all final states we get the total width

Γtot =
∑

final states f

Γ(a→ f)

Then the life time is given by

τ =
1

Γtot
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while the branching ratio reads

BR(a→ f) =
Γ(a→ f)

Γtot(a)

♠ Strong and Electroweak Transitions:
Estimates of cross-sections:

•

σem(e+e− → µ+µ−) ∼
(
e2

4π

)2
1

s
for s ≡ (pe+ + pe−)2 � m2

e

where e2

4π ≡ αQED ' 1
128, for

√
s ' 100 GeV.

•

σstrong(qq̄ → qq̄) ∼

(
g2

QCD

4π

)2
1

s
for s� m2

q

where
g2

QCD

4π ≡ αQCD ' 10−1,

•

σweak(νe + e+ → νµ + µ+) ∼
(
g2

weak

4π

)2
s

(s−m2
W )2
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where
g2

weak
4π = e2

4π sin2 θW
=

αQED

0.23

♠ The Interaction Rate:

If interactions between species are fast enough they could be in local equilibrium
(state of maximal entropy). The reaction rate responsible for establishing equilibrium
can be characterized by the collision time:

tc ≡
1

σnv

where σ is the cross-section, n is the number density of the target particles and v is
their relative velocity. In order to maintain the equilibrium this time must be much
shorter than the Universe age tH ∼ H−1:

tc � tH (1)

Then the local equilibrium is reached before the expansion becomes relevant.
Let’s consider T >∼ 500 GeV, then the cross-section for strong and electroweak
interactions could be estimated applying just dimensional analysis for typical energy-
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momentum p ∼ T (masses are irrelevant at that energy)

σ ∼ α2

T 2

where α is the fine structure constant for strong or electroweak interactions α '
10−1 − 10−2. Taking into account that the number density of relativistic species
behaves (see next section for details) as n ∼ R−3 ∼ T 3 we obtain

tc ∼
1

α2T

If the Universe is dominated by relativistic species then we have (see next section for
details)

tH ∼
1

H
∼ 1

(ρrad/M2
Pl)

1/2
∼ MPl

T 2

Hence we can see that the collision (reaction) time tc decreases slower than the
Hubble time tH, so if T is too large then (1) can not be satisfied. Note that since
ρrad ∼ T 4 during the radiation dominated epoch we have H ∼ T 2/MPl (see next
section for details). Therefore at temperatures T ∼ α2MPl ' 1015 − 1017 GeV, we
obtain tc ' tH. So for T <∼ 1015 − 1017 GeV but above few hundred GeV (where
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σ ∼ α2

T 2) the inequality (1) is satisfied and the Universe made of quarks, leptons, gauge
bosons and Higgses remain in equilibrium. Above 1017 GeV the interaction that we
know are too slow too keep the universe in equilibrium. Below 100 GeV, the masses of
gauge bosons W± (mW = 80.403±0.029 GeV) and Z (mZ = 91.1876±0.0021 GeV)
become relevant and the cross-sections scale as α2

weakT
2/m4

W , so

tc ∼
1

α2
weak

(mW

T

)4 1

T

for T <∼ 100 GeV. Therefore the interactions become too slow to maintain the
equilibrium, as a consequence, e.g. neutrinos decouple at T ' 1 MeV (more on that
later).
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Rudiments of Equilibrium Thermodynamics

Assumptions

• The Universe is a dilute and weakly interacting gas.

• If rates of interactions between constituents of the Universe are large enough, then
we assume the Universe is in local equilibrium (so the state of maximal entropy,
see Mukhanov for detailed discussion).

Then the number density ni, the energy density ρi, and the pressure for particles
with gi internal degrees of freedom (massless gauge boson has g=2, massive gauge
boson has g=3, massless fermion has g = 1, massive fermion has g = 2, the same for
anti-fermions) is given by the following integrals of the expected number density of
particles in states with energy Ei (phase space distribution or occupancy functions)
fi(~p, T ):

ni(T ) = gi

∫
fi(~p, T )

d3p

(2π)3
(2)

ρi(T ) = gi

∫
Ei(~p)fi(~p, T )

d3p

(2π)3
for Ei(~p) = (|~p|2 +m2

i )
1/2 (3)
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pi(T ) = gi

∫
|~p|2

3Ei(~p)
fi(~p, T )

d3p

(2π)3
(4)

The phase space distribution (the expected number of particles in an energy state) is
given by the Fermi-Dirac (for fermions, + sign below) or Bose-Einstein (for bosons,
− sign below) distributions

fi(~p, T ) =
1

e[Ei(~p)−µi]/T ± 1

where µi is the chemical potential of the species, for our unit choice kB = 1. It
will be usually assumed that µ can be neglected in the early Universe. Performing
the angular integrations and changing variables from |~p| to E = (|~p|2 + m2)1/2, so
|~p|d|~p| = EdE, so that d3p→ 4π(E2 −m2)1/2EdE and we obtain

n(T ) =
g

2π2

∫ ∞
m

(E2 −m2)1/2

exp [E(~p)− µ]/T ± 1
EdE

ρ(T ) =
g

2π2

∫ ∞
m

(E2 −m2)1/2

exp [E(~p)− µ]/T ± 1
E2dE
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p(T ) =
g

6π2

∫ ∞
m

(E2 −m2)3/2

exp [E(~p)− µ]/T ± 1
dE

In the relativistic limit (T � m) we get

n(T ) =

{
ζ(3)
π2 gT

3 for bosons
3
4
ζ(3)
π2 gT

3 for fermions
ρ(T ) =

{
π2

30gT
4 for bosons

7
8
π2

30gT
4 for fermions

p(T ) =
ρ(T )

3

(5)
where ζ(3) = 1.202 . . . is the Riemann zeta function of 3.
In the non-relativistic limit (T � m) there is no difference between fermions and
bosons

n(T ) = g

(
mT

2π

)3/2

exp(−m/T ) ρ(T ) = mn(T ) p(T ) = n(T )T � ρ(T ) (6)

For non-relativistic species the average energy per particle reads

〈E〉 ≡ ρ

n
=

{
π4

30ζ(3)T ' 2.701 T for bosons
7π4

180ζ(3)T ' 3.151 T for fermions
(7)

For the rhs of Friedmann equations we need the total contribution to the energy
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density and the pressure, that is

ρtot = T 4
∑
i

(
Ti
T

)4
gi

2π2

∫ ∞
xi

(y2 − x2
i )

1/2y2dy

exp(y)± 1
(8)

ptot = T 4
∑
i

(
Ti
T

)4
gi

2π2

∫ ∞
xi

(y2 − x2
i )

3/2y2dy

exp(y)± 1
(9)

where xi ≡ mi/T and y = E/T , and it has been taken into account that some
species may have decoupled (remaining in equilibrium) so that they may have different
temperature Ti.
Note that at a given temperature the ratio of the energy density for non-relativistic
species to relativistic one reads

ρnrel

ρrel
∝
(m
T

)5/2

e−m/T

For the species to be non-relativistic one needs m � T so the e−m/T is a strong
suppression factor, so that we will neglect contributions from non-relativistic species
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while calculating total energy density. In that case we get

ρtot(T ) =
π2

30
g?T

4 and p(T ) =
ρ(T )

3
=
π2

90
g?T

4 (10)

where g? counts only massless (mi � T ) degrees of freedom:

g? =
∑

bosons

gi

(
Ti
T

)4

+
7

8

∑
fermions

gi

(
Ti
T

)4

(11)

Note that g? = g?(T ) is a function of temperature. An exact form of g?(T ) could
be easily obtained from (8) and (9). For T � 100 MeV g? = 1063

4, for T � 1 MeV
g? = 3.36, while for 100 MeV >∼ T >∼ 1 MeV one gets g? = 103

4 (see class).
During the radiation dominated epoch (t <∼ 4 × 1010 s see class for this number),
ρtot = ρrad hence inserting (10) into the Friedmann equation one gets the very
important formula for the physics of early Universe:

H =

[
8πG

3
ρtot(T )

]1/2

=

[
8πG

3

π2

30
g?T

4

]1/2

= 1.66
g

1/2
? T 2

MPl

For the radiation dominated Universe we have obtained earlier the following time
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dependence of the scale factor
R(t) ∝ t1/2

So, for the radiation domination one has

H ≡ Ṙ

R
=

1

2t

Hence the time – temperature relation could be obtained

t = 0.30
MPl

g
1/2
? T 2

∼
(

1 MeV

T

)2

s

The above is a useful formula to memorize as T ' 1 MeV is a very important
temperature in the evolution of the early Universe.
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Entropy

Let’s define the entropy through its differential

TdS(V, T ) ≡ d[ρ(T )V ] + p(T )dV = d [(ρ+ p)V ]− V dp (12)

In general we have

dS(V, T ) =
∂S(V, T )

∂V
dV +

∂S(V, T )

∂T
dT

So, we get

∂S(V, T )

∂V
=

1

T
[ρ(T ) + p(T )] and

∂S(V, T )

∂T
=
V

T

dρ(T )

dT

The integrability condition tells us that

∂2S(V, T )

∂T∂V
=
∂2S(V, T )

∂V ∂T
=⇒ ∂

∂T

[
1

T
[ρ(T ) + p(T )]

]
=

∂

∂V

[
V

T

dρ(T )

dT

]
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⇓

dp(T )

dT
=

1

T
[ρ(T ) + p(T )] ⇐⇒ dp(T ) =

ρ(T ) + p(T )

T
dT (13)

The above equation could be derived (see class) from

ρ(T ) =
gi

2π2

∫ ∞
m

(E2 −m2)1/2

exp [E(~p)− µ]/T ± 1
E2dE, p(T ) =

g

6π2

∫ ∞
m

(E2 −m2)3/2

exp [E(~p)− µ]/T ± 1
dE

Inserting (13) into (12) we get

dS =
1

T
d [(ρ+ p)V ]− V [ρ(T ) + p(T )]

dT

T 2
= d

{
V

T
[ρ(T ) + p(T )] + const.

}
So the entropy, up to an integration constant is given by

S(V, T ) =
V

T
[ρ(T ) + p(T )]

Recall now the ”first law of thermodynamics” (equivalently Tµν;ν = 0)

R3dp(T )

dt
=
d

dt

{
R3[ρ(T ) + p(T )]

}
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Combining with (13) we get

R3 1

T

dT

dt︸ ︷︷ ︸
−T d

dt(
1
T )

[ρ(T ) + p(T )] =
d

dt

{
R3[ρ(T ) + p(T )]

}

Hence
d

dt

{
R3

T
[ρ(T ) + p(T )]

}
= 0

Therefore, identifying volume with R3 we can conclude that the entropy in the volume
V is conserved. It proves useful to define the entropy density

s(T ) ≡ S(T )

V
=
ρ(T ) + p(T )

T

Since for the relativistic particles both ρ(T ) and p(T ) are dominated by relativistic
species, the same happens for the entropy density. Using (5) one gets:

s =
2π2

45
g? ST

3
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where

g? S =
∑

bosons

gi

(
Ti
T

)3

+
7

8

∑
fermions

gi

(
Ti
T

)3

(14)

Since nγ ∝ T 3:

nγ =
2ζ(3)

π2
T 3

therefore one can derive the following relation

s =
π4

45ζ(3)
g? Snγ ' 1.8g? Snγ

Note that the entropy conservation implies that g? ST
3R3 = const. , therefore in

the early Universe (R ∼ 0) the temperature was maximal (roughly T ∝ R−1),
consequently all species can be treated as highly relativistic.
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Let’s now illustrate the possibility of some species having different temperatures by
the decoupling of neutrinos at about T ∼ 1 MeV. For weak interactions we had

σweak(e+ + e− → νi + ν̄i) ∼
(
g2

weak

4π

)2
s

(s−m2
W )2

s�m2
W'
(
g2

weak

4π

)2
s

m4
W

So, since 〈E〉 ∼ 3T therefore at T � mW we get

σweak(e+ + e− → νi + ν̄i) '
(
g2

weak

4π

)2
T 2

m4
W

Since the interaction rate Γint ≡ t−1
c = nσv therefore we get for n ∼ T 3 and v = 1

Γint '
α2

weakT
5

m4
W

' G2
FT

5

where GF = 1.1664 × 10−5 GeV−2 is the Fermi constant. Let’s compare the

interaction rate with the expansion rate H ∼ g1/2
? T 2/MPl

Γint

H
' G2

FT
5

g
1/2
? T 2/MPl

' G2
FT

5

T 2/MPl
'
(

T

0.7 MeV

)3
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So, at T <∼ 1 MeV the interactions are too slow to provide an equilibrium between
leptons and neutrinos. Neutrinos decouple (”the freeze-out”) from the SM and evolve
separately, so the possibility for neutrinos to have different temperature appears. So,
their energy (temperature) is being redshifted the same way as for photons

Tν = Tdec
Rdec

R
∼ 1

R

The entropy is separately conserved for each decoupled species, so

g? S(RT )3 = const. =⇒ T ∼ (g? S)−1/3 1

R

Hence we can see that neutrino distribution will be the same as if it was still
in thermal equilibrium with photons as long as (g? S) does not change. However
around the same temperature electrons become non-relativistic me ' 0.5 MeV so they
annihilate e+e− → γγ (the inverse process is being suppressed as the averaged energy
decreases roughly below 2me). So, the number of relativistic degrees of freedom (rdf)
drops down:
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• for T >∼ 2me ' 1 MeV:

g? S =
∑

bosons

gi

(
Ti
T

)3

+
7

8

∑
fermions

gi

(
Ti
T

)3

= 2 +
7

8
× 4 =

11

2

• for T � 2me:
g? S = 2

From continuity of the entropy we get the following condition[
g? S(RT )3

]
before

=
[
g? S(RT )3

]
after

which implies

11

2
(RT )3

before = 2(RT )3
after =⇒ Tbefore =

(
4

11

)1/3

Tafter

For the temperature ”before”, the neutrinos even though they decoupled a bit earlier,
have the same temperature at photons, however at T ∼ 2me photons are heated
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up by e+e− → γγ as the entropy is transfered (since it is continues function of
T ) from e+e− to photons. The already decoupled neutrinos do not benefit from
that reheating, since for them (RTν)

3
before = (RTν)

3
after (in other words the entropy

of neutrinos is conserved separately after the decoupling). Consequently there is a
difference in temperatures for neutrinos and photons after e+e− freeze-out:

Tν =

(
4

11

)1/3

Tγ

Strictly speaking the photon temperature does not jump at T = 2me, but rather start
to decrease slower already at temperatures slightly above T = 2me (in reality the
freeze-out process is smooth and starts already before T = 2me).
For CMB photons Tγ = 2.73 K, so there should be also cosmic neutrino background
with the temperature Tν = 1.95 K.
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Let’s now determine the present energy density, number density and entropy density
for CMB photons and neutrinos assuming T0 = 2.75 K.

γ ν

g? =
∑
b gi

(
Ti
T

)4

+ 7
8

∑
f gi

(
Ti
T

)4

2 7
8 · 2 · 3 ·

(
4
11

)4/3
= 1.36

g? S =
∑
b gi

(
Ti
T

)3

+ 7
8

∑
f gi

(
Ti
T

)3

2 7
8 · 2 · 3 ·

4
11 = 1.91

ρ = π2

30g?T
4 4.64 · 10−34 g cm−3 3.16 · 10−34 g cm−3

n = 2ζ(3)
π2 T 3 410 cm−3 149 cm−3

s = 2π2

45 g? ST
3 1478 cm−3 1412 cm−3

Ωh2 = ρ 8πG
3(H0/h)2 2.47 · 10−5 1.68 · 10−5

Where I used the following conversion factors: 1 K = 4.3668 cm−1 = 8.6170 ·
10−14 GeV = 1.5361 · 10−37 g, 1 Mpc = 1.5637 · 1038 GeV−1, G = 6.7065 ·
10−39 GeV−2 and H0 = h 2.1317 · 10−42 GeV.
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(plot from Kolb&Turner)
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There exists also a possibility for another kind of radiation present as a relic of the
early Universe, this is the graviton, the massless quantum excitation of a fluctuation of
the gravitational field. The reaction responsible for maintaining the equilibrium would
be e.g. ψ̄ψ ↔ hh, where h is the graviton. Gravitons hµν interact with ordinary
matter through the standard Lagrangian ∝ 1/MPlhµνT

µν, where Tµν is the energy
momentum tensor, therefore the reaction width (the inverse of the reaction rate) is

Γgrav ∼
T 5

M4
Pl

Since at the early Universe H ∼ g1/2
? T 2/MPl therefore we get (g

1/2
? ∼ 10 for the SM

at T >∼ 100 GeV)

Γgrav

H
∼ 1

10

(
T

MPl

)3

So the gravitons freeze-out roughly at the Planck temperature T ∼ 2MPl ∼ 1019 GeV.
Using the continuity of entropy at the moment of graviton freeze-out and all the SM
thresholds we get the relation between graviton temperature and the CMB photon
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temperature at the present moment (see class for the discussion):

Tgrav =

(
gnow
? S

gPlanck
? S

)1/3

· T0 ' 1 K

where we have approximated gPlanck
? S by its SM value for T >∼ 100 GeV, i.e. ∼ 100.

Their contribution to the present energy density is ρgrav ∼ T 4 ∼ 0.018ργ.
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