
Thermal Relics from the Big Bang

• The Freeze-Out, the Boltzmann Transport Equation and the Dark Matter

• Big-Bang Nucleosynthesis

• Photon Recombination

• Brief Thermal History of the Universe
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The Freeze-Out and the Boltzmann Transport Equation

”Freeze-out” examples:

• 1 sec - few minutes after the Big Bang: synthesis of light elements (nucleosynthesis)

• ∼ 1 sec after the Big Bang: neutrino decoupling

• ∼ 105 years after the Big Bang: decoupling of photons from the matter
(recombination)

Consider a particle χ that could be a candidate for dark matter. Assume that χ
interacts with some other particle X (it could be quark, lepton, Higgs boson etc.) so
that the following process can take place in both directions: χ̄χ ←→ X̄X. Assume
that X has negligible chemical potential µX = 0 and that they are kept in thermal
equilibrium with photons and other light SM in the early Universe. Our goal is to
determine the evolution of the number density nχ = nχ(t). In the case of exact
thermal equilibrium (reaction rates in both directions the same) the density is given
by its equilibrium value

nEQχ (T ) =
gχ

(2π)3

∫
fχ(~p)d3p
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where fχ(~p) and gχ is the distribution function and the number of degrees of freedom
for χ, respectively. When it happens that nχ > nEQχ then the reaction would go faster
to the right, so χ̄χ pairs will annihilate faster than they are created. The depletion
rate should be proportional to σ(χ̄χ→ X̄X)|~v|n2

χ (quadratic in density, as it should
be proportional to the product of nχ and nχ̄, while these are equal). At the same time
χ̄χ are also produced in the process X̄X → χ̄χ with a rate proportional to (nEQχ )2.
So we get

dnχ
dt

+ 3Hnχ = −〈σ(χ̄χ→ X̄X)|~v|〉[n2
χ − (nEQχ )2]

where the lhs comes from 1
R3

d
dt(nχR

3). The term 3H takes care of the dilution that
comes from the Hubble expansion. The expression 〈σ(χ̄χ → X̄X)|~v|〉 denotes a
thermal average of the cross-section times velocity:

〈σ(χ̄χ→ X̄X)|~v|〉 ≡
(
nEQχ

)−2
(gχ)2(gX)2×∫

dΦχdΦχ̄dΦXdΦX̄(2π)4δ4(pχ + pχ̄ − pX − pχ̄)|M|2e−(Eχ+Eχ̄)/T

where dΦi ≡ d3pi
(2π)32Ei

is the phase space differential. In general after summing over
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all possible final states (all annihilation channels) one gets the Boltzamann equation

dnχ
dt

+ 3Hnχ = −〈σA|~v|〉[n2
χ − (nEQχ )2] (1)

where σA is the total (inclusive) annihilation channel.
In order to scale out the effect of the Universe expansion let’s define a new variable
Yχ ≡ nχ/s where s is the total entropy density and hence sR3 is constant as the
entropy in the comoving volume R3, therefore

Ẏχ =
ṅχ
s
− nχ

ṡ

s2
=

1

s
(ṅχ − nχ

ṡ

s
)

Since sR3 = const. therefore

d

dt
(sR3) = ṡR3 + 3R2Ṙs = 0 =⇒ 3

Ṙ

R
s = −ṡ =⇒ ṡ

s
= −3H

Hence

Ẏχ =
1

s

(
ṅχ − nχ

ṡ

s

)
=

1

s
(ṅχ + 3Hnχ)
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Therefore the Boltzmann equation could be written as

sẎχ = −〈σA|~v|〉[n2
χ − (nEQχ )2] = −〈σA|~v|〉

[(
Yχ

YχEQ

)2

− 1

]
Y 2
χEQs

2

Hence

Ẏχ
YχEQ

= −〈σA|~v|〉

[(
Yχ

YχEQ

)2

− 1

]
YχEQ s = −nχEQ〈σA|~v|〉

[(
Yχ

YχEQ

)2

− 1

]

Defining the interaction rate Γ ≡ nχEQ〈σA|~v|〉 we ca write the Boltzmann equation
in the following form

Ẏχ
YχEQ

= −Γ

[(
Yχ

YχEQ

)2

− 1

]
Recall the relation between temperature and time obtained for the domination of
radiation

t = 0.30
MPl

T 2g
1/2
?

(2)

Let’s define x ≡ m
T and rewrite dt in terms of dx in order to change variables in the
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Boltzmann equation

dt = −0.30
MPl

g
1/2
?

2

T 3
dT = 2× 0.30

MPl

g
1/2
? m2

xdx

Note that (2) follows from the Friedmann equation with the energy density replaced

by ρ = π2

30g?T
4:

H = 1.66
g

1/2
? T 2

MPl

Hence we can write dt as

dt = 2× 0.30
MPl

g
1/2
? m2

xdx =
1

1.66

MPl

g
1/2
?

( x
m

)2 dx

x
=

[
1

1.66

MPl

g
1/2
?

1

T 2

]
dx

x
=

1

H

dx

x

Therefore the equation (1) could be written as

x

YχEQ

dYχ
dx

= − Γ

H

[(
Yχ

YχEQ

)2

− 1

]
(3)
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In the non-relativistic (x ≡ m
T � 3) and ultra-relativistic (x� 3) cases YEQ has the

following limiting forms

YχEQ =

{
45
2π4

(
π
8

)1/2 gχ
g? S

x
3/2
χ e−xχ = 0.145× gχ

g? S
x

3/2
χ e−xχ for xχ � 3 (non-rel)

bχ
ζ(3)45

2π4
gχ
g? S

= 0.278× bχ gχ
g? S

for xχ � 3 (rel)

where bχ = 1 or 3
4 for bosons and fermions, respectively.

Comments:

• The destruction rate of χ̄χ per comoving volume is proportional to the annihilation
rate Γ.

• The destruction rate is balanced by inverse processes when nχ = nχEQ as expected.

• The creation (the inverse) process is suppressed for T � m , since only a small
portion of X̄X pairs can have an energy sufficient to create χ̄χ pairs.

• The change of χ number density is controlled by Γ
H as we have argued before.

If Γ
H � 1 then, since ∆Yχ/Yχ ∝ Γ/H, we obtain for the relative change of Yχ:

∆Yχ/Yχ ∝ Γ/H � 1, so the annihilations ”freeze-out” while the number χ’s
”freezes in”.
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• Γ = nEQ〈σv〉, so in the

– relativistic regime Γ ∼ T 3T−2 ∼ T , while
– in the non-relativistic regime Γ ∼ (mT )3/2e−m/T × T k

In bot cases Γ decreases as T decreases, so usually eventually the interaction rate
becomes too small to maintain the equilibrium, roughly at Γ ' H for x ≡ xf , thus
for x <∼ xf we expect Y (x) ' YEQ(x) while for x >∼ xf the abundance ”freezes
in”: Y (x >∼ xf) = YEQ(xf).

♠ Hot relics: xf <∼ 3
The freeze-out occurs when the species are still relativistic and YEQ does not change
with time (or temperature). Note that YχEQ(x) ∝ gχ

g? S(x), so we consider a range of

T , such that no threshold is being passed (all the species are relativistic) such that
g? S(x) = const.. Then the Boltzmann equation

x

YχEQ

dYχ
dx

= − Γ

H

[(
Yχ

YχEQ

)2

− 1

]
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has a fixed point at x→∞ such that:[(
Yχ

YχEQ

)2

− 1

]
= 0

Note that

dYχ
dx

< 0 for Y χ > YχEQ and
dYχ
dx

> 0 for Y χ < YχEQ

Therefore no matter what the initial value of Yχ(x0) is, at large x we get

Yχ(x)→ Y∞ = YχEQ(xf) = 0.278 · bχ
gχ

g? S(xf)
for xf <∼ 3

So, in the range where g? S(xf) = const. the resulting asymptotic (now) abundance is
independent of the freeze-out temperature. Hence the present number density reads

nχ 0 = s0Y∞ = 2970 Y∞ cm−3 = 825 bχ ·
gχ

g? S(xf)
cm−3
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where s0 = 2979 cm−3 was used (see class). Today the motion of a particle such
that mχ > T0 = 2.73 K = 2.4 · 10−4 eV is non-relativistic, so its contribution to the
energy density is saturated by its mass:

ρχ 0 ' nχ 0m = 2.97 · 103 Y∞

( m

1 eV

)
eV cm−3

That leads to

Ω0
χ =

8πG

3H2
0

ρχ 0 = h−2 7.8 · 10−2bχ ·
gχ

g? S(xf)

( m

1 eV

)

Let’s consider a contribution to Ω that comes from neutrinos for which bν = 3/4 and
gν = 2. As we already know neutrinos decouple at T ' 1 MeV, the total entropy
is conserved so we can calculate the entropy just above 1 MeV where the relativistic
species are γ, e± and (ν, ν̄):

g? S(xf) = 2 +
7

8
(4 + 3 ∗ 2) = 10

3

4
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Hence we obtain for νν̄ pairs

Ωνν̄h
2 = 0, 011

∑
imνi

1 eV
=⇒

∑
i

mνi = (Ωνν̄h
2) · 91.9 eV

If we require that neutrinos do not overclose the Universe, so Ωνν̄h
2 < 1 then we get

the celebrated cosmological bound on the mass of stable neutrinos of single chirality

∑
i

mνi < 91.9 eV

♠ Cold relics: xf >∼ 3
Let’s consider the case where the freeze-out occurs when the species is non-relativistic
(xf >∼ 3), then while T is decreasing, Y (x) is decreasing exponentially:

YEQ(x) =
45

2π4

(π
8

)1/2 gχ
g? S

x3/2
χ e−xχ = 0.145× gχ

g? S
x3/2
χ e−xχ

There is no fixed point in this case. Assume that the following parameterization could
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be adopted

〈σA|v|〉 = σ0

(
T

m

)n
= σ0x

−n for x >∼ 3 and n ≥ 0

Then the Boltzmann equation

x

YχEQ

dYχ
dx

= − Γ

H

[(
Yχ

YχEQ

)2

− 1

]

could be written as (note that Γ ≡ nχEQ〈σA|v|〉)

dYχ
dx

= − Γ

xH

Y 2
χEQ

YχEQ

[(
Yχ

YχEQ

)2

− 1

]
= −〈σA|v|〉 s

xH

[
Y 2
χ − Y 2

χEQ

]
where we have used the fact that nχEQ = sYχEQ. Next let’s recall that if the
non-relativistic contribution to the energy and entropy densities could be neglected,
then

s =
2π2

45
g? ST

3 and H =

(
8πG

3

)1/2

g1/2
? T 2

what could be written as
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s =
2π2

45
g? S

m3

x3
and H =

(
8πG

3

)1/2

g1/2
?

m2

x2

Let me rewrite the coefficient 〈σA|v|〉 sxH as a function of x

〈σA|v|〉 s
xH

=
σ0x
−n2π2

45 g? S
m3

x3

x
(

8πG
3

)1/2
g

1/2
?

m2

x2

= m
2π2

45

(
3

8πG

)−1/2
g? S

g
1/2
?

σ0︸ ︷︷ ︸
λ

x−(n+2) ≡ λx−(n+2)

So, the Boltzmann equation in this case reads

dYχ
dx

= −λx−(n+2)
[
Y 2
χ − Y 2

χEQ

]
where

λ = m
2π2

45

(
3

8πG

)−1/2
g? S

g
1/2
?

σ0 = 0.264 MPl mσ0
g? S

g
1/2
?

YχEQ = 0.145× gχ
g? S

x3/2e−x
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Let’s define a departure form equilibrium

∆ = Y − YEQ

then the Boltzmann equation for ∆ reads

∆′ = −Y ′EQ − λx−n−2∆(2YEQ + ∆)

At early times (1 < x� xf), Y follows closely YEQ so both ∆ and ∆′ are small, so
that approximately one gets

∆ ' −λ−1xn+2
Y ′EQ

2YEQ + ∆
' xn+2

2λ
(4)

At late times (x � xf) ∆ is large, so ∆ ' Y � YEQ, so the terms containing YEQ
and Y ′EQ cold be dropped, so the Boltzmann equation reads

∆′ ' −λx−n−2∆2
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Then integrating we get ∫ ∞
xf

∆′

∆2
dx ' −λ

∫ ∞
xf

dx

xn+2

so then ∫ ∆∞

∆f

d∆

∆2
' − λ

(n+ 1)xn+1
f

where ∆∞ ≡ limx→∞∆(x) and ∆f ≡ ∆(xf). Finally we obtain

1

∆∞
=

1

∆f
+

λ

(n+ 1)xn+1
f

Defining the freeze-out criterion by ∆(xf) = cYEQ(xf) (with c ∼ O(1)) we get from
the early time solution (4)

∆f '
xn+2
f

λ(2 + c)

therefore
1

∆∞
' λ(2 + c)

xn+2
f

+
λ

(n+ 1)xn+1
f

Cosmology: 5. Thermal Relics from the Big Bang, Winter Semester 2009/10 15



Since by assumption xf >∼ 3 and n ≥ 0 we may try to neglect the first term above.
Then, since ∆∞ ' Y∞ (late time) we obtain

Y∞ '
(n+ 1)xn+1

f

λ

The above allows to determine the asymptotic (present) number density. The explicite
form for the freeze-out condition is the following

cax
3/2
f e−xf =

xn+2
f

λ(2 + c)

for a ≡ 0.145(g/g? S). Choosing c(c+ 2) = n+ 1 provides the best approximation to
the exact solution, so we get

xf ' ln

(n+ 1)λa

x
n+1

2
f

 (5)

Let’s adopt for notation
A ≡ (n+ 1)λa
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Then keeping two first terms one can write down the solution of (5) as follws

xf = lnA− (n+
1

2
) lnxf ' lnA− (n+

1

2
) ln(lnA) + · · ·

Having xf and Y∞ determined one can calculate the present number and mass
densities:

nψ 0 = s0Y∞ = 2979Y∞ cm−3 = 1.1× 104
(n+ 1)xn+1

f

(g? S/g
1/2
? )MPlmσ0

cm−3

Ωψh
2 = 1.1× 109

(n+ 1)xn+1
f GeV−1

(g? S/g
1/2
? )MPlσ0
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An illustration for the freeze-out for cold relic is taken from Bergström & Goobar.
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An example of cold relics is a hypothetical heavy Dirac stable neutrino with
m � 1 MeV. The large mass implies that such a neutrino would decouple as non-
relativistic, though not necessarily at the same temperature T ∼ 1 MeV as ordinary
light neutrinos. The annihilation through the Z boson exchange leads to various final
states ν̄iνi, l̄l, q̄iqi etc.. Then for T <∼ m <∼ MZ (assuming, as verified below, that
the neutrino is non-relativistic)

σ0 '
5

2π
G2
Fm

2 with n = 0

Taking g = 2 and g? ' 60 one gets (see class perhaps)

xf ' 15 + 3 ln
( m

1 GeV

)
and Y∞ ' 6 · 10−9

( m

1 GeV

)−3
[
1 +

3

15
ln
( m

1 GeV

)]
then

Ων̄νh
2 ' 3

( m

1 GeV

)−2
[
1 +

3

15
ln
( m

1 GeV

)]
Note that the freeze-out takes place at

TF '
m

15
' 70 MeV

( m

1 GeV

)
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Requiring Ων̄νh
2 <∼ 1 we get the famous Lee-Weinberg bound

m >∼ 2 GeV
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Big-Bang Nucleosynthesis

♠ The Baryon number of the Universe
The baryon number density is nB ≡ nb − nb̄ where nb and nb̄ are the baryon
and anti-baryon number densities, respectively. From ρc = 1.0540h2 eV cm−3 and
mN ' 940 MeV (the nucleon mass) we get (justified since nb ' 0)

ΩB =
mNnB
ρc

=
mNnB

3H2
0

8πG

=⇒ nB = ΩBh
2 × 1.11× 10−6 cm−3

Since s ∝ R−3 (s = S/R3), B ≡ nB/s ∝ nBR
3 = const. is the net baryon number

of the Universe (V = R3). In the absence of baryon number violating interactions, it
is conserved.
It is useful to relate s and photon number density nγ:

s = 2π2

45 g? ST
3

nγ = ζ(3)
π2 gγT

3

}
=⇒ s

nγ
=

2π4

45ζ(3)

g? S
gγ

=⇒ s =
π4

45ζ(3)
g? Snγ ' 1.80g? Snγ

If g? S = const. then one can use s and nγ interchangeable, for instance since e+e−

annihilation till today s ' 7.04× nγ.
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For the Universe baryon number we get

B =
nB
s

∣∣∣
today

=
ΩBh

2 × 1.11× 10−6 cm−3

2970 cm−3
' 3.74× 10−10ΩBh

2

where we have used the fact (see class) that s = 2π2

45 g? ST
3|today ' 2970 cm−3

(g? S|today = 3.91).
Since the epoch of e± annihilation, s and nγ were related by s ' 7.04 × nγ, so we
get for the η parameter

η ≡ nB
nγ

∣∣∣∣
today

' 7.04×B ' 2.63× 10−9 × ΩBh
2

♠ The nuclear statistical equilibrium
Now we are in position to discuss consequences of the nuclear statistical equilibrium:

• kinetic (thermal, local) equilibrium for non-relativistic species

⇓

nA = gA

(
mAT

2π

)3/2

e(µA−mA)/T

• chemical equilibrium AZ ↔ Zp+ (A− Z)n (the same speed)
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⇓

µA = Zµp + (A− Z)µn

Let’s find the number density for the nuclear species AZ. First we calculate eµA/T

using the above relation and

ni = gi

(
miT

2π

)3/2

e(µi−mi)/T for i = n, p

Then

eµA/T = e(Zµp+(A−Z)µn)/T =
(
eµp/T

)Z (
eµn/T

)A−Z
=

=

(
np
gp

)Z (
2π

mpT

)3Z/2 (
emp/T

)Z
×
(
nn
gn

)A−Z (
2π

mnT

)3(A−Z)/2 (
emn/T

)A−Z
= nZp n

A−Z
n 2−A

(
2π

mNT

)3A/2

e[Zmp+(A−Z)mn]/T (6)

where mN ' mp ' mn.
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AZ BA gA
2H 2.22 MeV 3
3H 6.92 MeV 2

3He 7.72 MeV 2
4He 28.3 MeV 1
12C 92.2 MeV 1

Table 1: The binding energies of some light nuclei.

Using the expression for the binding energy

BA ≡ Zmp + (A− Z)mn −mA

we get

nA = gA

(
mAT

2π

)3/2

e−mA/T × nZp nA−Zn 2−A
(

2π

mNT

)3A/2

e[Zmp+(A−Z)mn]/T

= gAA
3/22−A

(
2π

mNT

)3(A−1)/2

nZp n
A−Z
n eBA/T

For all species ni ∝ R−3 therefore it is useful to factor out and cancel the change
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related exclusively to the expansion. The following variable proves to be convenient:

XA ≡
AnA
nN

with
∑
A

XA = 1

where nN ≡ nn + np +
∑
i(AnA)i is the total nucleon density (that is also equal to

the total baryon density). Let’s first find AnA in terms of T , Xp and Xn:

AnA = gAA
5/22−A

(
2π

mNT

)3(A−1)/2

nZp n
A−Z
n︸ ︷︷ ︸

XZ
p X

A−Z
n nA

B

eBA/T

From the definition of η we obtain

nN = nB = ηnγ = ηζ(3)
2

π2
T 3 (7)

Hence

XA = gAA
5/22−A

(
2π

mNT

)3(A−1)/2

XZ
p X

A−Z
n nA−1

B eBA/T
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Then inserting nN from (7) we have

XA = gAζ(3)A−12−(3A+5)/2π(1−A)/2A5/2ηA−1XZ
p X

A−Z
n

(
T

mN

)3(A−1)/2

eBA/T

♠ p←→ n transitions : T � 1 MeV (t� 1 s)
The following reactions are responsible for the balance between protons and neutrons:

n ←→ p+ e− + ν̄e
n+ νe ←→ p+ e−

n+ e+ ←→ p+ ν̄e

For chemical equilibrium one obtains

µn + µνe = µp + µe

Then we can calculate nn/np which is of fundamental importance for the formation
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of light nuclei

n

p
≡ nn
np

=
gn
(
mnT
2π

)3/2
e(µn−mn)/T

gp

(
mpT
2π

)3/2

e(µp−mp)/T

= e−(mn−mp)/T−(µp−µn)/T = e−Q/T+(µe−µνe)/T

(8)
where Q ≡ mn −mp = 1.293 MeV.
In order to estimate the relevance of the chemical potential term lets find a net fermion
number for a given fermionic species. Assume that there are rapid transitions of the
form: ff̄ ←→ γ + γ (here we will consider temperatures 100 MeV > T > 1 MeV, so
the transition e+e− ←→ γ + γ takes place). Then µf + µf̄ = 2µγ, since µγ = 0 we
get µf = −µf̄ . In general we have

nf(T ) =
gf

2π2

∫ ∞
mf

(E2 −m2
f)1/2

exp [(E − µf)/T ] + 1
EdE

Hence assuming gf = gf̄ we get for the net fermionic number density (in fact this
applies to any additive U(1) quantum number) corresponding to the species f

nf − nf̄ =
gf

2π2

∫ ∞
mf

dEE(E2 −m2
f)1/2

[
1

exp [(E − µf)/T ] + 1
− 1

exp [(E + µf)/T ] + 1

]
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=


gfT

3

6π2

[
π2
(µf
T

)
+
(µf
T

)3]
for T � mf

2gf

(
mfT

2π

)3/2

sinh
(µf
T

)
exp

(
−mf

T

)
for T � mf

(9)

Let’s focus on the relativistic case T � mf and introduce for the notation ∆nf ≡
nf − nf̄ , then

∆nf =
gfT

3

6

(µf
T

)[
1 +

1

π2

(µf
T

)2
]

Since

s =
2π2

45
g? ST

3

therefore we have
∆nf

s
=

gf45

g? S12π2

(µf
T

)[
1 +

1

π2

(µf
T

)2
]

Let’s specify now to f = e. If, in addition we assume that µe/T � 1 (later we will
see that this is indeed the case) then we obtain

µe
T
' ∆ne

s
(10)
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From electric neutrality of the Universe we have

µe
T
' ∆ne

s
=

∆np

s
(11)

where only contributions for e− and p to the total charge of the Universe was
taken into account (heavier leptons and baryons are negligible at the temperature of
interest): Q = (∆np −∆ne)/s = 0. The baryon number of the Universe is given by

B =
nB
s

=
∆np + ∆nn

s
' 3.74× 10−10ΩBh

2

Therefore (assuming ∆np ∼ ∆nn)

∆np

s
∼ 10−10ΩBh

2

and we get from (11)
µe
T
∼ 10−10ΩBh

2

Note that the above result allows to skip the electron chemical potential contribution
to n/p as a consequence of experimental data. On the other hand, to estimate the
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contribution from the neutrino chemical potential we assume that lepton numbers

Li ≡
∆ni + ∆νi

s

are small (as the baryon number B does), then we have from (10) (assuming no
cancellations)

µνe
T
� 1

so that we can approximate (8) by

n

p

∣∣∣∣
EQ

≡ nn
np

= e−Q/T+(µe−µνe)/T ' e−Q/T

Therefore if T � Q = mn − mp = 1.293 MeV then the number of protons and
neutrons are very much the same. As we know for certain temperature the interaction
between p and n are expected to be too slow to maintain equilibrium between them.
For the interaction rate for n+ νe ←→ p+ e− one gets (see e.g. Kolb & Turner for
details)

Γ =

{
1
τn

(
T
me

)3

exp
(
−QT
)

for T � Q,me

7π
60(1 + 3g2

A)G2
FT

5 ' G2
FT

5 for T � Q,me
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where τn = 885.7 ± 0.8 s is the neutron life time and gA ' 1.26 is the axial vector
coupling of the nucleon. Recall that

H =

[
8πG

3
ρtot(T )

]1/2

=

[
8πG

3

π2

30
g?T

4

]1/2

= 1.66
g

1/2
? T 2

MPl
' 5.4

T 2

MPl

where g? = 2 + 7
8(3 · 2 + 4) = 103

4 was adopted. For T >∼ me one gets

Γ

H
∼
(

T

0.8 MeV

)3

So for T >∼ 0.8 MeV one expects the ratio n/p to have its equilibrium value

n

p

∣∣∣∣
EQ

' e−Q/T

what implies Xp ' Xn.
In order to predict abundances of light elements one has to solve (as functions of T )
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the following set of equations

Xn

Xp
= exp

(
−Q
T

)
XA = gAζ(3)A−12−(3A+5)/2π(1−A)/2A5/2ηA−1XZ

p X
A−Z
n

(
T

mN

)3(A−1)/2

eBA/T

1 = Xp +Xn +X2 +X3 +X4 +X12

for A = 2H, 3He, 4He and 12C (in the simplest case).
? t ∼ 10−2 s (T ∼ 10 MeV)

• The energy density dominated by the radiation, relativistic degrees of freedom: e±,
γ, 3 neutrino species, g? = 103

4.

• Weak reaction rates are large: Γ� H, so n/p = (n/p)EQ ' 1.

• Tν = T

• Xn ' Xp ' 0.5, X2 −X12 ∼ 10−12 − 10−126
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? t ∼ 1 s (T ∼ 1 MeV)

• Neutrinos decoupled just before this epoch.

• At T ' 0.2 MeV e± pairs annihilate heating photons relative to neutrinos by the
factor (11/4)1/3.

• Weak interactions that interconvert neutrons and protons freeze-out (so Γ <∼ H),
then (

n

p

)
freeze-out

' e−Q/T ' 1

6

The ratio n
p slowly decreases after the freeze-out because of occasional free neutron

decays, so that eventually we get

Xp '
6

7
, Xn '

1

7
and X2 −X12 ∼ 10−12 − 10−108

? t ∼ 1− 2 min (T ∼ 0.3− 0.1 MeV)

• At that time g? decreases to its present value 3.36.
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• The ratio n
p has decreased (as a consequence of decays with τn = 885.7 ± 0.8 s)

from ∼ 1
6 to ∼ 1

7 (its equilibrium value would be 1
74 for T = 0.3 MeV). Before

having time to decay, most neutrons ends up in helium nuclei through one of the
chains:

p+ n ←→ 2H + γ
2H + 2H ←→ 3He+ n

3He+ 2H ←→ 4He+ p

or

p+ n ←→ 2H + γ
2H + 2H ←→ 3H + p
3H + 2H ←→ 4He+ n

The ratio of the rate for p+ n←→ 2H + γ to the expansion rate

Γpn
H
' 2 · 103

(
T

0.1 MeV

)5
np

np + nn
ΩBh

2

turns out to be large for T � 0.1 MeV. For T >∼ 0.1 MeV the photodisintegration
p+n←→2 H+γ is very efficient and not much helium can be produced. However
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for T <∼ 0.1 MeV 2H abundance rises to ∼ 10−5 − 10−3, which leads to rapid
2H + 2H fusion, that uses most of the available neutrons, so that the estimate of
the helium abundance is

X4 '
4n4He

nN
=

4(nn/2)

nn + np
=

2np
1 + n

p

where for the ratio n/p one should adopt ∼ 1/7 which leads to

X4 '
1

4

X4 ' 0.25 agrees with observations of helium abundance in stars and gas clouds.
Note that the depletion of n

p (due to neutron decays) from ∼ 1/6 to ∼ 1/7 is

essential to fit the data (for n
p = 1

6 one gets X4 ' 2
7 ' 0.29).

• For other species XA are still very small

• Note that the time form the weak interaction freeze-out till formation of 4He is
approximately t ∼ 200 s (roughly the Universe age at T ∼ 0.1 MeV) which is of
the order of the neutron life time τn = 885.7 ± 0.8 s, this is a very spectacular
coincidence since:
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– If the time was longer more neutrons would decay and the formation of the
observed helium abundance would not be possible.

– If the Universe cooled faster (so the time was shorter) fewer neutrons would
have time to decay before being saved into its stable existence inside helium
nuclei, so that helium abundance would have increased.

Since H2 ∝ ρtot and ρtot is dominated by relativistic species therefore an addition
of extra (besides 3 present in the SM) neutrinos would speed up the expansion
increasing the helium abundance beyond the observed value. From that (see class)
one can obtain the limit Nν <∼ 4 (confirmed later by the LEP measurement of the
number of light (<∼ mZ/2) neutrinos Nν = 3.

• The nucleosynthesis restricts the value of the baryon to photon ratio: η =
(5− 6) · 10−10
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Figure 1: Mass fractions relative to hydrogen (from Astronomica.org.)
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Figure 2: The light element abundance predictions from BBN theory plotted against the

baryon-to-photon ratio. From top to bottom are the mass fraction of 4He and the relative mole

fractions D/H, 3He/H and 7Li/H. From trshare.triumf.ca/ cyburt/pn.html .
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Photon Recombination

Now we are going to discuss what happened at the temperature far below T ∼
0.3 − 0.1 MeV (when the nucleosynthesis take place). Here we focus on T ∼ 1 eV,
we assume ne+ = 0, np̄ = 0 and ne = np (as the Universe is electrically neutral).
The electrons and photons are still in thermal equilibrium, the Thomson scattering
γ + e− ←→ γ + e− is responsible for maintaining the equilibrium. In the limit
Eγ � me the cross-section and the interaction rate could be estimated as

σT '
α2

m2
e

=⇒ Γγ ' neσT

It is easy to see that for T ∼ 1 − 10 eV the condition Γγ > H is no longer satisfied
so that photons and electrons decouple. However there appear a new difficulty while
calculating ne, namely electrons may disappear by combining with protons (so forming
hydrogen atoms), thus we should consider the reaction p+ e− ←→ H + γ that would
be responsible for the electron number density, hence (since photons have µγ = 0)

µp + µe = µH

in equilibrium. Let’s introduce the total baryon number (for simplicity we neglect
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here the baryon number carried by 4He, so protons may be either free or bound in
hydrogen)

nB = np + nH
Here we are interested in T <∼ 10 eV (note the hydrogen binding energy in the ground
state B1 = 13.6 eV) therefore e−, p and H are non-relativistic, hence

ni = gi

(
miT

2π

)3/2

exp

(
µi −mi

T

)
for i = e, p,H

Using µp + µe = µH and mH = me +mp − B (definition of the binding energy) we
get

nH = gH

(
mHT

2π

)3/2

exp

(
µH −mH

T

)
=

=
gH
gegp

gegp

(
mHT

2π

)3/2

exp

(
(µe + µp)− (me +mp −B)

T

)
=

=
gH
gegp

[
ge exp

(
µe −me

T

)(
meT

2π

)3/2
][

gp exp

(
µp −mp

T

)(
mpT

2π

)3/2
]
×

exp

(
B

T

)[
(2π)2

mempT 2

]3/2(
mHT

2π

)3/2

=
gH
gegp

ne np exp

(
B

T

)(
2πmH

mempT

)3/2
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Define the ionization fraction as

Xe ≡
np
nB

=
np

np + nH

Then we can express nH in terms of Xe as a function of T

nH =
1−Xe

Xe
np =

gH
gegp

ne np exp

(
B

T

)(
2πmH

mempT

)3/2

Hence, since ne = np and mH ' mp we get

1−Xe

Xe
=

gH
gegp

np exp

(
B

T

)(
2π

meT

)3/2

Expressing np through the baryon to photon ratio η = nB/nγ and Xe we obtain

1−Xe

Xe
=

gH
gegp

[XenB] exp

(
B

T

)(
2π

meT

)3/2

Since

nB = ηnγ = η
ζ(3)

π2
gγT

3
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we finally get (adopting gH = 4, gγ = ge = gp = 2) the so-called Saha equation for
the fractional ionization at equilibrium.

1−Xe

X2
e

= 4

(
2

π

)1/2

ζ(3)η

(
T

me

)3/2

exp

(
B

T

)
As we already know the nucleosynthesis restricts η: η = (5 − 6) · 10−10 (through
the relation η = 2.7 · 10−8ΩBh

2 it corresponds to ΩBh
2 ∼ 0.02). Therefore the

Saha equation could be solved for Xe = Xe(T ), or equivalently as Xe = Xe(z) using
T = 2.73 (1 + z) K.

The Fig.3 (from Kolb & Turner) shows Xe as a function of the redshift z. The
ionization decreases below 10% for z ∼ 1200 − 1300, so at that z(= zrec) electrons
begins to be captured by protons forming neutral hydrogen (the recombination). The
corresponding temperature and time are

Trec = T0(1 + zrec) ∼ 2.7 · 1300 K = 3500 K ∼ 0.3 eV

trec =
2

3
H−1

0 Ω0−1/2
m (1 + zrec)

−3/2 ∼ 1.4 · 105

(Ω0
m)1/2h

yr (12)

where we have assumed that the Universe was matter dominated (see Kolb&Turner)
and we used the relation (obtained earlier assuming (1 + z)� Ω0

m) for the Universe
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age t ' 2
3(1+z)−3/2H−1

0 Ω
0−1/2
m . For radiation domination 1.4 ·105 would be replaced

by 2.9 · 103, the exact value (radiation and matter) is 2.7 · 105.

Figure 3: The ionization fraction (from Kolb & Turner).

Comments:

Cosmology: 5. Thermal Relics from the Big Bang, Winter Semester 2009/10 43



• Note that naively one could expect the recombination to happen at T ' B = 13 eV,
that is not the case because of the long tail of energies larger than T , there are
so many photons relative to baryons (η = nb/nγ = 2.7 · 10−8ΩBh

2) that the
reionization easily may happen even for T < 13 eV.

• So far we have considered the case of equilibrium so p + e− ←→ H + γ with the
rate faster than the expansion rate. It turns out that this is indeed the case for
z >∼ 1100. After that the equilibrium can not be maintained and the ionization
fraction is frozen at its value for z >∼ 1100.

• It could be shown that for z ' 1050 the mean free path of photons are comparable
with the radius of observable Universe, so the region of z ∼ 1100 is sometimes
referred to as the surface of last scattering of the cosmic microwave background.

To determine the freeze-out temperature of the ionization fraction more precisely we
have to consider the Boltzmann equation for p+ e− ←→ H + γ. In a close analogy
with the case considered before we obtain

ṅe + 3Hne = −〈σrec|~v|〉
[
n2
e − (nEQe )2

]
(13)
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where for the thermally averaged cross-section one can get

〈σrec|~v|〉 = 4.7 · 10−24

(
1 eV

T

)1/2

cm2

Solving the equation numerically (13) one finds

Tf ∼ 0.25 eV

and hence the remaining ionization fraction (see class perhaps)

Xe(∞) ∼ 2.7 · 10−5 Ω0
m

ΩBh
∼ 1.4 · 10−3

which means that only one proton per 103 baryons is free!
Comments:

• At the moment of recombination photons temperature was T = Tf ∼ 0.25 eV
to be compared with the present CMB temperature TCMB = 2.35 · 10−4 eV. The
difference (ratio) is due to the redshift.
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Brief thermal history of the Universe

Figure 4: History of the Universe. Form physics.lakeheadu.ca/.../2330/Cosmology/.
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Figure 5: History of the Universe. Form conferences.fnal.gov.
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Figure 6: History of the Universe. Form lpnhe-auger.in2p3.fr/slides/vulg/.
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