
Cosmological Models

• The de Sitter Model

• The Standard Model of Cosmology

• The Acceleration of the Universe.

• The Age of the Universe

• Future of the Universe

• Cosmological Distances

• Non-homogeneous Universe; the Lamâıtre-Tolman cosmological model

Cosmology: 3. Cosmological Models, Winter Semester 2009/10 1



The de Sitter Model

The Einstein’s Field Equations

Rµν −
1

2
gµνR = −8πGTµν

don’t allow for static solutions when applied for homogeneous and isotropic Universe.
The idea of a static universe or ”Einstein’s universe” is one which demands that
space is not expanding nor contracting but rather is dynamically stable. Albert
Einstein proposed such a model as his preferred cosmology by adding a cosmological
constant to his equations of general relativity to counteract the dynamical effects
of gravity which in a universe of matter would cause the universe to collapse. This
motivation evaporated after the discovery by Edwin Hubble that the universe is not
static, but expanding; in particular, Hubble discovered a relationship between redshift
and distance, which forms the basis for the modern expansion paradigm. This led
Einstein to declare this cosmological model, and especially the introduction of the
cosmological constant, his ”biggest blunder”.

Even after Hubble’s observations, Fritz Zwicky proposed that a static universe could
still be viable if there was an alternative explanation of redshift due to a mechanism
that would cause light to lose energy as it traveled through space, a concept that would
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come to be known as ”tired light”. However, subsequent cosmological observations
have shown that this model has not been a viable alternative either, leading most
astrophysicists to conclude that the static universe is not the correct model of our
universe.

The Einstein’s equations now read

Rµν −
1

2
gµνR+ Λgµν = −8πGTµν

The Λ term could be written as a part of the energy-momentum tensor:

TΛ
µν =

Λ

8πG
gµν = ρΛgµν for ρΛ ≡

Λ

8πG

Then the Einstein’s equations

Rµν −
1

2
gµνR = −8πG

(
Tµν + TΛ

µν

)
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Recall that in the rest frame of an element of perfect fluid Tµν has the form:

Tµν =


ρ

p
p

p


while TΛ

µν in a freely falling system reads

TΛ
µν =


ρΛ

−ρΛ

−ρΛ

−ρΛ


So, ρ = ρΛ and p = −ρΛ (negative pressure!).
We assume an empty space (no matter, so Tµν = 0), but Λ 6= 0 and solve the
Einstein’s equations

Rµν −
1

2
gµνR = −Λgµν
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The cosmological principle implies that

dτ2 ≡ gµνdxµdxν = dt2 −R2(t)

{
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

}
Using the results we obtained for the FLRW metric we have

Rtt = 3
R̈

R
Rit = Rti = 0 Rij = −g̃ij(RR̈+ 2Ṙ2 + 2k)

The Einstein’s equations could be written as

Rµν = −8πGSµν

where

Sµν ≡ Tµν −
1

2
gµνT

λ
λ = (ρ+ p)UµUν −

1

2
(ρ− p)gµν

for Tµν = −pgµν + (p+ ρ)UµUν (Tαα = ρ− 3p). So for U t = 1 and U i = 0 we have

Stt =
1

2
(ρ+ 3p) = −ρΛ Sti = Sit = 0 Sij =

1

2
(ρ− p)R2g̃ij = R2ρΛg̃ij

One gets the Friedmann’s equations for this case
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• (0, 0) component:

3
R̈

R
= −8πG(−ρΛ) = Λ

• (i, i) component:

−(RR̈+ 2Ṙ2 + 2k)g̃ij = −8πGρΛR
2g̃ij = −R2Λg̃ij

In other terms

3
R̈

R
= Λ and

R̈

R
+ 2

(
Ṙ

R

)2

+ 2
k

R2
= Λ

Eliminating R̈ we get

3

(
Ṙ

R

)2

+ 3
k

R2
= Λ

For k = 0 and Λ > 0 we get

H2(t) ≡

(
Ṙ

R

)2

=
Λ

3
=⇒ R(t) = R(t0)eH·(t−t0) for H2 =

Λ

3
= const.
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This is the exponential inflation: exponential growth of the scale factor.
It is easy to show (see class) that the necessary and sufficient conditions for the
exponential inflation are:

• k = 0,

• p = −ρ.

3

(
Ṙ

R

)2

+ 3
k

R2
= Λ

Comments:

• In principle, there is also a possibility of H = const. if ρ = 3
8πG

(
H2

0 + k
R2

)
(H0 = const.) that we disregard as unphysical. p ' −ρ could be easily arranged
within a scalar field theory.

• For small R the term ∝ k/R2 dominates. However if R is growing then for R large
enough, the curvature term 3 k

R2 ∼ Λ. Since the Universe is expanding the Λ will
dominate and the expansion will be exponential.
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The Standard Model of Cosmology

The cosmological Principle implies

dτ2 ≡ gµνdxµdxν = dt2 −R2(t)

{
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

}
The Friedmann equations read(

Ṙ

R

)2

+
k

R2
=

8πG

3
ρtot for ρtot ≡

∑
i

ρi = ρm + ρrad + ρΛ (1)

2
R̈

R
+

(
Ṙ

R

)2

+
k

R2
= −8πG

∑
i

pi for ptot ≡
∑
i

pi = prad + pΛ (2)

where the sum runs over all contributions to the energy density and pressure. The
conservation of the energy-momentum tensor (Tµν;ν = 0) implies

ṗR3 =
d

dt

[
R3(ρ+ p)

]
=⇒ d

dt

(
ρR3

)
= −p d

dt
R3 (3)
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Hereafter we will assume the following equation of state

p = wρ

• For the non-relativistic matter (see class): ρ ' nm+ 3
2p, so if p� nm then w = 0,

• For ultra-relativistic matter (e.g. photons): p = 1
3ρ, so w = 1

3.

• For the cosmological constant: p = −ρ, so w = −1.

Let’s solve (3) for p = wρ:

d

dt

(
ρR3

)
= ρ̇R3 + ρ3R2Ṙ = −p d

dt
R3 = −wρ3R2Ṙ

⇓

ρ̇

ρ
= −3(w + 1)

Ṙ

R
=⇒ ρ(t) = ρ0

(
R(t)

R0

)−3(w+1)

∝ R(t)−3(w+1)

• Matter dominated Universe (w = 0), so called dust: ρ ∝ R−3
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• Radiation dominated Universe (w = 1
3): ρ ∝ R−4

We have shown that for photons emitted at t0 and detected at t the following
relation holds

λ(t) = λ(t0)
R(t)

R(t0)
∝ R(t)

Since νλ = c = 1, so we have

ν(t) = ν(t0)
R(t0)

R(t)
∝ R−1(t)

Therefor the photon energy E = hν suffers from another extra suppression because
of the expansion, so

ρ ∝ R−3R−1 = R−4

• Cosmological constant dominated Universe: (w = −1): ρ = const.

Comment: If the Universe is composed of several components then the result
ρi(t) ∝ R(t)−3(wi+1) is valid only if interaction between the components could be
neglected, see (3).
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Now we can try to solve the Friedmann equation (1) assuming p = wρ

(
Ṙ

R

)2

+
k

R2
=

8πG

3
ρtot

First let’s neglect the curvature k, then we have

(
Ṙ

R

)2

=
8πG

3
ρtot =

8πG

3
ρ0R

3(w+1)
0 R−3(w+1)

⇓

Ṙ ∝ R−1
2(3w+1) (4)

We can look for a power-like solution R(t) ∝ tα, then substituting into (4) we can
determine α:

tα−1 = t−
α
2 (3w+1)
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hence α = 2
3(w+1). Therefore

R(t) ∝ t
2

3(w+1) =

 t2/3 matter
t1/2 radiation
eHt cosmological constant
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The Acceleration of the Universe

Subtracting (1) and (2) we get

R̈

R
= −4πG

3
(ρ+ 3p) (5)

Since presently p ∼ 0 and ρ > 0 therefore we would be tempted to conclude that the
Universe is decelerating at present. This is not consistent with observations which
suggest that R̈ > 0. If we add Λ then we get an extra contribution to the rhs:
(ρ+ 3p) = ρΛ + 3(−ρΛ) = −2ρΛ < 0, then we can obtain R̈ > 0.
Let’s expand R(t) around the present time t = t0:

R(t) = R0 +R0
Ṙ

R|t=t0
(t− t0)− 1

2
R0

[
−R̈
R|t=t0

1

H2
0

]
︸ ︷︷ ︸

≡q0

H2
0(t− t0)2 + · · ·

where q0 is the deceleration parameter. Now let’s expand the Hubble parameter H(t)

H(t) ≡ Ṙ(t)

R(t)
= H0 [1− (q0 + 1)H0(t− t0) + · · · ]
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So, in general H(t) is not constant, but a time dependent function.
Questions to test students alertness :

1. What is the condition to obtain H(t) = const. +O[H2
0(t− t0)2] ?

2. What kind of matter in the Universe leads to H(t) = const. at any time?

Answers:

1. In the next to the leading order: q0 = −1.

2.

H(t) =
Ṙ

R
= const. =⇒ R(t) ∝ eHt the cosmological constant

Define the critical density of the Universe as

ρcrit ≡
3H2

8πG

Note that ρcrit is a function of time, at present

ρ0
crit = 1.9× 10−32h2 kg

cm3
for h =

H0

100 km s−1 Mpc−1 for 0.6 <∼ h <∼ 0.8
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Then we can rewrite the Friedmann equation(
Ṙ

R

)2

+
k

R2
=

8πG

3
ρ

as follows
k

R2H2
= Ω− 1 for Ω ≡ ρ

ρcrit

⇓
The geometry of the Universe is determined by Ω

• Ω > 1 =⇒ k = +1 closed Universe

• Ω < 1 =⇒ k = −1 open Universe

• Ω = 1 =⇒ k = 0 flat Universe

Let’s calculate the deceleration parameter q0 assuming pi = wρi and using (5)

q0 =
4πG

3H2
0

∑
i

(ρ0
i + 3p0

i ) =
4πG

3H2
0

∑
i

(1 + 3wi)ρ
0
i =

1

2

∑
i

Ω0
i (1 + 3wi)
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for

Ω0
i ≡

ρ0
i

ρ0
crit

=
ρ0
i

3H2
0

8πG

Since w = −1 for Λ, therefore in the presence of the cosmological constant q0 may
be negative.
Consider energy density composed of matter, radiation and the cosmological constant,
then we can rewrite the Friedmann equation at the present time as

H2
0 +

k

R2
0

=
8πG

3
(ρ0
m + ρ0

rad + ρΛ)

Dividing by H2
0 and adopting the definition ρ0

crit ≡
3H2

0
8πG we obtain

1 = − k

H2
0R

2
0

+ Ω0
m + Ω0

rad + Ω0
Λ

Introducing Ω0
k ≡ − k

H2
0R

2
0

we have

1 = Ω0
k + Ω0

m + Ω0
rad + Ω0

Λ
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Let’s return to the Friedmann equation

H2 = − k

R2
+

8πG

3
(ρm + ρrad + ρΛ) (6)

The matter and radiation densities scale as

ρm = ρ0
m

(
R0

R

)3

and ρrad = ρ0
rad

(
R0

R

)4

while ρΛ remains constant. The fractional energy densities are defined as follows

Ωi ≡
ρi
ρcrit

for ρcrit ≡
3H2

8πG

while at the present time

Ω0
i ≡

ρ0
i

ρ0
crit

for ρ0
crit ≡

3H2
0

8πG
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So the densities could be rewritten as

ρrad = ρ0
rad

(
R0

R

)4

=
3

8πG
H2

0Ω0
rad

(
R0

R

)4

ρm = ρ0
m

(
R0

R

)3

=
3

8πG
H2

0Ω0
m

(
R0

R

)3

ρΛ = ρ0
Λ =

3

8πG
H2

0Ω0
Λ

The curvature terms will be written as

− k

R2
= − k

R2
0H

2
0︸ ︷︷ ︸

Ω0
k

H2
0

(
R0

R

)2

= Ω0
kH

2
0

(
R0

R

)2

Now, using the relation 1+z = R0
R , we are ready to express the densities corresponding

to a given scale factor as functions of the red-sihft:

ρrad =
3

8πG
H2

0Ω0
rad

(
R0

R

)4

=
3

8πG
H2

0Ω0
rad(1 + z)4
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ρm =
3

8πG
H2

0Ω0
m

(
R0

R

)3

=
3

8πG
H2

0Ω0
m(1 + z)3

− k

R2
= Ω0

kH
2
0

(
R0

R

)2

= H2
0Ω0

k(1 + z)2

ρΛ =
3

8πG
H2

0Ω0
Λ

Let’s insert the above formulas into the Friedmann equation (6):

H2 = H2
0

[
Ω0

rad(1 + z)4 + Ω0
m(1 + z)3 + Ω0

k(1 + z)2 + Ω0
Λ

]
So, we have shown how to determine the expansion rate at a given epoch (z) knowing
its present value and present energy densities.
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The Age of the Universe

♠ Matter or Radiation dominated Universe
The Friedmann equation could be integrated to give the age of the Universe. Two
periods must be separately considered (the possibility of the existence of Λ will not be
considered at this moment): radiation domination (early Universe) when ρ = ρrad =
ρ0(R0/R)4 and matter domination (present Universe) when ρ = ρm = ρ0(R0/R)3:(
Ṙ

R

)2

+
k

R2
=

8πG

3
(ρm + ρrad + ρΛ)← ρm = ρ0

(
R0

R

)3

, ρrad = ρΛ = 0 (MD)

(
Ṙ

R

)2

+
k

R2
=

8πG

3
(ρm + ρrad + ρΛ)← ρrad = ρ0

(
R0

R

)4

, ρm = ρΛ = 0 (RD)

(
Ṙ

R0

)2

+
k

R2
0

=
8πG

3
ρ0R0

R
(MD) (7)

(
Ṙ

R0

)2

+
k

R2
0

=
8πG

3
ρ0

(
R0

R

)2

(RD) (8)
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The age t of the Universe of a size R(t) is defined as

t ≡
∫ t(R)

t(0)

dt′

Changing integration variables to R′ = R′(t′) we can write

t =

∫ R(t)

0

dR′

Ṙ′

Using the relation
k

R2
0H

2
0

= Ω0
m + Ω0

rad + Ω0
Λ − 1

to eliminate k
R2

0
and defining x ≡ R

R0
one can rewrite (7) for Ω0

rad = Ω0
Λ = 0 and

Ω0
m = Ω0

(
Ṙ

R0

)2

= −H2
0(Ω0 − 1) +

8πG

3
ρ0︸ ︷︷ ︸

H2
0Ω0

x−1 = H2
0

(
Ω0x−1 + 1− Ω0

)
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So,

Ṙ′(x) = R0H0

(
Ω0x−1 + 1− Ω0

)1/2
and dR′ = R0dx

Then expressing the scale factor R in terms of the redshift z (1 + z = R0
R = 1

x) one
gets the age for MD as

t
(MD)
0 =

∫ R(t)

0

dR′

Ṙ′
=

∫ (1+z)−1

0

R0dx

Ṙ′(x)

t
(MD)
0 = H−1

0

∫ (1+z)−1

0

dx

[1− Ω0 + Ω0x−1]
1/2

(MD) (9)

t
(RD)
0 = H−1

0

∫ (1+z)−1

0

dx

[1− Ω0 + Ω0x−2]
1/2

(RD) (10)

Comments:

• For R <∼ lPl (the Planck length lPl ≡
(
6hG
c3

)1/2

) our knowledge of the Universe

is uncertain. However if we assume that R(t) = R0

(
t
t0

)n
(n < 1) then this first
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period of the expansion (from R = 0 till R = lPl) contributes a tiny piece to the
total age ∫ lPl

0

dR′

Ṙ′
=

t0

nR
1/n
0

∫ lPl

0

dR′

R′ (n−1)/n
= t0

(
lPl
R0

)1/n

Since 1/n > 1 this contribution could be neglected.

• Note that if I wanted to include more Universe components in the same spirit as
in (9-10) then I would be allowed just to add add various Ω’s only if interaction
between them could be neglected. Otherwise the scaling of ρ = ρ(R) is more
complicated. For instance the interaction between matter and radiation, could be
neglected after neutral atoms were created (the recombination ), so that photons
stopped interacting with matter.

First the (MD) Universe. The present age could be obtained substituting z = 0 in
(9), then integrating for Ω0 > 1 we obtain

t
(MD)
0 = H−1

0

Ω0

2(Ω0 − 1)3/2

[
cos−1

(
2Ω0−1 − 1

)
− 2

Ω0

(
Ω0 − 1

)1/2]
(11)
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and for Ω0 < 1

t
(MD)
0 = H−1

0

Ω0

2(1− Ω0)3/2

[
2

Ω0

(
1− Ω0

)1/2 − cosh−1
(
2Ω0−1 − 1

)]
(12)

For Ω0 = 1 we have t
(MD)
0 = 2

3H
−1
0 . Note that t0 = t0(Ω0) is a decreasing function

of Ω0.
Expanding (11-12) around Ω0 = 1 we obtain

t
(MD)
0 =

2

3
H−1

0

[
1− 1

5
(Ω0 − 1) + · · ·

]

The present age of the (MD) Universe could be easily estimated assuming Ω0 ' 1

t
(MD)
0 =

2

3
H−1

0 = 6.5× 109h−1 yr for 0.6 <∼ h <∼ 0.8

for H0 = 100 km s−1 Mpc−1h. The above estimates assumes that the Universe was
MD from the very beginning till today.
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For the (RD) Universe we obtain at z = 0

t
(RD)
0 = H−1

0

Ω0 1/2 − 1

Ω0 − 1
=

1

2
H−1

0

[
1− 1

4

(
Ω0 − 1

)
+ · · ·

]
Matter domination leads to larger age: t

(MD)
0 (Ω0) > t

(RD)
0 (Ω0).

♠ Universe made of Matter and Cosmological Constant

Let’s now discuss the age of the Universe for a model that is flat (k = 0) but that
contains both matter and Λ > 0, so(

Ṙ

R

)2

=
8πG

3
(ρm + ρΛ)

Following the same steps as above for the (MD) case and using the fact that
Ω0
m + Ω0

Λ = 1 (it follows from k = 0) we find (see class) that

t
(Λ)
0 = H−1

0

∫ 1

0

dx

(Ω0
mx
−1 + Ω0

Λx
2)1/2

=
2

3
H−1

0

1

Ω
0 1/2
Λ

ln

[
1 + Ω

0 1/2
Λ

(1− Ω0
Λ)1/2

]
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Comments:

• For Ω0
Λ
>∼

3
4, t

(Λ)
0

>∼ H
−1
0 , unlike t

(MD)
0 and t

(RD)
0 .

• t(Λ)
0 = t

(Λ)
0 (ΩΛ) is an increasing function of ΩΛ,

lim
Ω0

Λ
→0

t
(Λ)
0 =

2

3
H−1

0 and lim
Ω0

Λ
→1

t
(Λ)
0 =∞

♠ The General Case

The expansion rate at a given epoch (z) as a function of its present value and present
energy densities:

H2 = H2
0

[
Ω0

rad(1 + z)4 + Ω0
m(1 + z)3 + Ω0

k(1 + z)2 + Ω0
Λ

]
(13)

Using the above form of the Friedmann equation we will derive a general formula that
allows to determine the age of the Universe at a given redshift (the ”lookback time”).
The Hubble parameter could be written as

H =
d

dt
ln

(
R(t)

R0

)
=
d

dt
ln

(
1

1 + z

)
=
−1

1 + z

dz

dt
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Then using (13) we get

dt

dz
= H−1

0

−1

1 + z

1

[Ω0
rad(1 + z)4 + Ω0

m(1 + z)3 + Ω0
k(1 + z)2 + Ω0

Λ]1/2

Integrating we obtain

t0−t = H−1
0

∫ z

0

dz′

(1 + z′)[Ω0
rad(1 + z′)4 + Ω0

m(1 + z′)3 + Ω0
k(1 + z′)2 + Ω0

Λ]1/2
(14)

Note that Ω0
i are not independent as they satisfy

1 = Ω0
k + Ω0

m + Ω0
rad + Ω0

Λ

Choosing t = 0 and z = ∞ in (14) we have the present age of the Universe. Note
that (as we have anticipated) the scale of the lookback time is set by H−1

0 , which is
called the Hubble time.
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Future of the Universe(
Ṙ

R

)2

+
k

R2
=

8πG

3
(ρm + ρrad + ρΛ) (15)

ρm ∝ R−3 ρrad ∝ R−4 ρΛ = const.

In general (15) is difficult to solve. However at present ρrad = 2 × 105 eV m−3 for
the CMB while ρbaryon = 109 eV m−3, so we can assume that ρm � ρrad.

♠ No cosmological constant: ρΛ = 0

Therefore we have (neglecting ρΛ temporarily)

ρ = ρ0R
3
0

R3
=⇒ Ṙ2 + k =

8πG

3
ρ0R3

0R
−1 (16)

• Suppose for a moment that ρ0 = 0, then k < 0 is required to have real-valued
solutions for R (so called Milne model). The solution is (in general±|k|1/2t+const.)

RMilne(t) = |k|1/2t = t
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• For ρ0 > 0 and k = 0 the solution reads

R(t) = R0

(
t

t0

)2/3

∝ t2/3

• For ρ0 > 0 and k = −1 we observe that

(
Ṙ

R

)2

=
8πG

3
ρ− k

R2
> 0 (17)

Since ρ = ρ0R
3
0

R3 we find that

Ṙ2 + k =
8πG

3
ρ0R2

0

R0

R

Therefore one can see that if R is large enough (and Ṙ > 0 at some moment),
then matter term becomes sub-dominant and the Universe turns out to expand
forever a’la Milne: R(t) ∝ t.
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• Now let’s consider the case ρ0 > 0 and k = +1

(
Ṙ

R

)2

+
k

R2
=

8πG

3
ρm

Then we observe that in this case there is R = Rcrit such that Ṙ(t) = 0 for
R = Rcrit:

8πG

3
ρ0

(
R0

Rcrit

)3

=
k

R2
crit

=⇒ Rcrit =
8πGρ0R3

0

3

Since we know that
R̈

R
= −4πG

3
(ρ+ 3p) = −4πG

3
ρm

therefore in our case (no Λ and p = 0) we have R̈ < 0. Hence the Universe is
decelerating and at R = Rcrit the expansion stops and the contraction ends as a
”Big Crunch”.
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♠ Cosmological constant: ρΛ 6= 0

Let’s now consider Λ 6= 0 (still neglecting ρrad), then we should solve

Ṙ2 =
8πG

3
ρ0R

3
0

R
− k +

ΛR2

3
(18)

Comments:

• From (18) we can see that even if Λ was negligible for small R (at the beginning of
the expansion) it will eventually dominate over all other forms of matter (including
curvature).

• If Λ < 0 then (18) tells us that R(t) cannot be arbitrarily large since Ṙ(t) must be
real. So, the maximal size of the scale factor is determined by the solution of

8πG

3
ρ0R

3
0

R
= k +

|Λ|R2

3

R̈

R
= −4πG

3

∑
i

(ρi+3pi) = −4πG

3

(
−2ρΛ + ρ0R

3
0

R3

)
= −4πG

3

(
|Λ|

4πG
+ ρ0R

3
0

R3

)
< 0
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The Universe is decelerating, so again we have an oscillating Universe (regardless
of the value of k).

• If Λ > 0 and k = 0 or k = −1 we have

Ṙ2 =
8πG

3
ρ0R

3
0

R
+ |k|+ ΛR2

3
> 0

So, the Universe is expanding forever (as it was expanding at the beginning:
R(t) ∝ t2/3) and after some time the cosmological constant starts to dominate
and enter a period of exponential expansion (de Sitter model).

• For Λ > 0 and k = +1 the picture is more complicated. It is possible to find
Λ = ΛE such that Ṙ(t) = R̈(t) = 0 for some R = RE (see class). This is a
static Universe, the existence of this solution (not consistent with the present data)
motivated Einstein to introduce Λ.

– For Λ = ΛE the Universe is static (Is it stable?).
– For Λ > ΛE the repulsion from Λ (Why is Λ repulsive?) dominates and the

Universe expands forever.
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– For Λ < ΛE there is a range of R: Rmin ≤ R ≤ Rmax such that

Ṙ2 =
8πG

3
ρ0R

3
0

R
− k +

ΛR2

3
≤ 0

that is forbidden (see class). So, for 0 < Λ < ΛE and k = +1 the Universe is:
∗ oscillating between R = 0 and R = Rmin, or
∗ always expands if Ṙ was positive at some moment, or contracts (if Ṙ < 0 at

some initial moment) until R = Rmax is reached then it bounces away and
expands forever (no Big Bang in this case).
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Cosmological Distances

♠ The Luminosity Distance

The total power F (the energy per time per area measured by the detector) of the
light received by a telescope on Earth from an object of emitting power L, called
luminosity (energy produced per time by the source) can be calculated as follows. A
”flash” of Nemitt photons is emitted isotropically at the time t = temitt from a source
located at the radial coordinate r. If there were no expansion then a telescope located
at r = 0 would detect the total power

F =
L

4π[R(temitt)r]2

Note that 4π[R(temitt)r]
2 is the area of the sphere containing photons emitted at

t = temitt.

The two-sphere analogy could be helpful to understand the presence of [R(temitt)r].

Cosmology: 3. Cosmological Models, Winter Semester 2009/10 34



Figure 1: The two sphere.

However, because of the expansion of the sphere (the space time is expanding while
the photon is traveling), at the detection time t = tobser, the area of the spherical
shell within which the photons travel has expanded to 4π[R(tobser)r]

2, therefore the
fraction should be corrected

F =
L

4π[R(tobser)r]2

To compute properly the total power, two other effects must be taken into account:

• Each emitted photon has its energy redshifted by the factor νemitt
νobser

= 1 + z, so the
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photon energy is rescaled by the factor 1
1+z .

• The observed power is defined as energy per time, so that must be taken into
account. If the time distance between photon flashes at the source is δtemitt, then
the time distance between the detection of those flashes, δtobser, will be increased
according to the relation which we have obtained earlier:

δtemitt

δtobser
=
R(temitt)

R(tobser)
=

1

1 + z

So, the detected power is suppressed by the factor 1
1+z .

⇓
The total power observed now reads

F =
L

4πd2
L

for dL ≡ R(t0)r(1 + z)

where dL is called the luminosity distance and the detection time is denoted by t0.
From now on the emission time will be denoted by t. Note that r is unknown radial
coordinate of the source. However, if the solution of the Friedmann equation is known
then r could be related to the redshift z as follows. Let’s recall the expansion of the
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scale factor around the present time:

R(t) = R0 +R0
Ṙ

R|t=t0
(t− t0)− 1

2
R0

[
−R̈
R|t=t0

1

H2
0

]
︸ ︷︷ ︸

≡q0

H2
0(t− t0)2 + · · ·

where q0 is the deceleration parameter. We can eliminate the ratio R(t)
R(t0) using the

relation R(t)
R(t0) = 1

1+z (t0 is the detection moment), so that

1

1 + z
= 1 +H0(t− t0)− 1

2
q0H

2
0(t− t0)2 + · · ·

Inverting we get

z = −H0(t−t0)+
(

1 +
q0

2

)
H2

0(t−t0)2+· · · = H0(t−t0)[−1+
(

1 +
q0

2

)
H0(t−t0)+· · · ]

Therefore we can express the time difference t0 − t as a function of z:

t0 − t = zH−1
0

[
1−

(
1 +

q0

2

)
z + · · ·

]
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Let’s now recall the relation we have obtained for a massless wave traveling on a
geodesic dτ2 = 0:

∫ t0

t

dt′

R(t′)
=

∫ r

0

dr′

(1− kr′ 2)1/2
=


sin−1 r = r + r3

6 + · · · k = +1
r k = 0

sinh−1 r = r − r3

6 + · · · k = −1

(19)

Let’s use the expansion

R(t) = R0 +R0H0(t− t0)− 1

2
R0q0H

2
0(t− t0)2 + · · ·

on the lhs of (19) and keep only ∝ r terms on the rhs, then we get

R−1(t0)

[
(t0 − t) +H0

1

2
(t0 − t)2 + · · ·

]
= r + · · ·

Substituting t0 − t = zH−1
0

[
1−

(
1 + q0

2

)
z + · · ·

]
and keeping only terms O(z2) we

get

r = R−1
0 H−1

0

[
z − 1

2
(1 + q0)z2

]
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Now we are ready to use the above result in the expression for the luminosity distance
dL = R(t0)r(1 + z)

dL = H−1
0

[
z +

1

2
(1− q0)z2

]
where we have kept only terms O(z2). The above result yields a version of the Hubble
law

H0dL = z +
1

2
(1− q0)z2 + · · ·

Note that the above formula differs from the linear Hubble law for q0 6= 1, even
though it was obtained for small z. Since q0 depends on the cosmological model

q0 =
4πG

3H2
0

∑
i

(ρ0
i + 3p0

i ) =
4πG

3H2
0

∑
i

(1 + 3wi)ρ
0
i =

1

2

∑
i

Ω0
i (1 + 3wi)

therefore the measurement of H0dL offers the way to determine the fate of the
Universe.
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♠ The Angular Distances

Assume that there is an object of known diameter D located at the coordinate r = r,
which emitted light at t = t, observed at t = t0 at r = 0. From the FLRW metric we
know that the angular diameter of the source, δ is given by

δ =
D

R(t)r

The angular distance dA is defined as

dA ≡
D

δ
= R(t)r

Since the luminosity distance is given by dL = R(t0)r(1 + z) and we know the

relation between the size of the scale factor at the corresponding redshift: 1
1+z = R(t)

R(t0)

therefore we can derive the relation between dL and dA:

dA =
dL

(1 + z)2
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♠ Determination of Cosmological Parameters

Here we will discuss the determination of cosmological parameters such as H0 and Ω0
i

through a measurement of the luminosity distance dL.
The luminosity distance dL is defined through the total observed power

F =
L

4πd2
L

for dL ≡ R(t0)r(1 + z)

where R(t0), r and t are related by the equation of radial, null (light-like) geodesics
for the FLRW metric (dθ = dϕ = 0):

dτ = 0 =⇒ dr

dt
=

(1− kr2)1/2

R(t)

Using the relation between the scale factor R(t) and the redshift 1 + z = R0
R(t) we get

R0
dr

(1− kr2)1/2
= (1 + z)dt
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The following relation (obtained earlier)

dt

dz
= H−1

0

−1

1 + z

1

[Ω0
rad(1 + z)4 + Ω0

m(1 + z)3 + Ω0
k(1 + z)2 + Ω0

Λ]1/2

could be adopted to change dt into dz such that the integration could be performed

R0

∫ r

0

dr′

(1− kr′ 2)1/2
= H−1

0

∫ z

0

dz′

[Ω0
rad(1 + z′)4 + Ω0

m(1 + z′)3 + Ω0
k(1 + z′)2 + Ω0

Λ]1/2

The lhs could be easily integrated

R0

∫ r

0

dr′

(1− kr′ 2)1/2
= R0


sin−1 r k = +1
r k = 0

sinh−1 r k = −1

Thus we are able to express r as a function of z, this is exactly what is needed to find
the luminosity distance as a function of z, that way we get e.g. for k = +1

r(z) = sin

{
(R0H0)−1

∫ z

o

dz′

[Ω0
rad(1 + z)4 + Ω0

m(1 + z)3 + Ω0
k(1 + z)2 + Ω0

Λ]1/2

}
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Using the definition of Ω0
k = −k

(R0H0)2 we will get rid of R0H0 obtaining

• k = +1

dL = R(t0)(1 + z)r(z) =
R0H0

H0
(1 + z)r(z) = H−1

0 (1 + z)
(
|Ω0
k|
)−1/2×

sin

{(
|Ω0
k|
)1/2 ∫ z

o

dz′

[Ω0
rad(1 + z)4 + Ω0

m(1 + z)3 + Ω0
k(1 + z)2 + Ω0

Λ]1/2

}
Ω0
k = 1− Ω0

rad − Ω0
m − ΩΛ < 0

• k = 0

dL = R(t0)(1 + z)r(z) =
R0H0

H0
(1 + z)r(z) =

H−1
0 (1 + z)

∫ z

o

dz′

[Ω0
rad(1 + z)4 + Ω0

m(1 + z)3 + Ω0
k(1 + z)2 + Ω0

Λ]1/2

Ω0
k = 0
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• k = −1

dL = R(t0)(1 + z)r(z) =
R0H0

H0
(1 + z)r(z) = H−1

0 (1 + z)
(
|Ω0
k|
)−1/2×

sinh

{(
|Ω0
k|
)1/2 ∫ z

o

dz′

[Ω0
rad(1 + z)4 + Ω0

m(1 + z)3 + Ω0
k(1 + z)2 + Ω0

Λ]1/2

}
Ω0
k = 1− Ω0

rad − Ω0
m − ΩΛ > 0

So, a measurement of dL provides a constraint on H0 and Ω0
rad, Ω0

m and Ω0
Λ.
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♠ The General form of the redshift Dependence of Particle Horizon

As we have shown the distance to the particle horizon is given by

dph(t) = R(t)

∫ t

0

dt′

R(t′)

Our goal is to find the distance dph as a function of z (earlier we obtained dL = dL(z)
for small z), therefore it is convenient to change variables from t′ to z′. For that we
can adopt the relation obtained earlier

dt

dz
= H−1

0

−1

1 + z

1

[Ω0
rad(1 + z)4 + Ω0

m(1 + z)3 + Ω0
k(1 + z)2 + Ω0

Λ]1/2

Then

dph(t) = R(t)

∫ t

0

dt′

R(t′)
= R(t)

∫ z

∞
R−1

0

R0

R(t′)

dt′

dz′
dz′

Inserting dt
dz we obtain

dph(z) =
R(t)

R0

∫ z

∞
(1+z′)H−1

0

−1

1 + z′
dz′

[Ω0
rad(1 + z′)4 + Ω0

m(1 + z′)3 + Ω0
k(1 + z′)2 + Ω0

Λ]1/2
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Using 1 + z = R0
R(t) we have

dph(z) =
1

H0(1 + z)

∫ ∞
z

dz′

[Ω0
rad(1 + z′)4 + Ω0

m(1 + z′)3 + Ω0
k(1 + z′)2 + Ω0

Λ]1/2

If we allow for an extra component of the Universe with the equation of state p = wxρ
then the above result is modified such that the horizon distance reads

dph(z) =
1

H0(1 + z)
×∫ ∞

z

dz′

[Ω0
rad(1 + z′)4 + Ω0

m(1 + z′)3 + Ω0
k(1 + z′)2 + Ω0

Λ + Ωx(1 + z′)3(1+wx)]1/2

Comment:

• It is important to realize that various powers of (1 + z) present above (or just on
the rhs of the Friedmann equation, where they come from) originate from different
dependence of energy densities on R (e.g. ∝ R−3 for matter, ∝ R−4 for radiation).
The dependence on R was derived from the first law of thermodynamics separately
for each kind of Universe constituents while the the first law of thermodynamics
applies for the total energy density and pressure. In general (before decoupling)
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non-relativistic matter interacts with radiation and the precise picture is more
involved. So, strictly speaking what we are doing applies for the period when the
radiation and the non-relativistic matter do not interact.
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♠ Measurements of Distances and Observation of Standard Candles

Parallax-based methods:
The most important direct distance measurements come from the parallax. The
Earth’s motion around the sun causes small shifts in stellar positions. These shifts
are angles in a right triangle, with 1 AU making the short leg of the triangle and
the distance to the star being the long leg. One pc is the distance of a star whose
parallax is one arc second.

Figure 2: The parallax.

A standard candle is a class of astrophysical objects, such as supernovae or variable
stars, which have known luminosity due to some characteristic quality possessed by
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the entire class of objects.

• Cepheids
Cepheid is a variable star that has a fairly tight correlation between their period
of variability and intrinsic brightness. Because of this correlation (discovered and
stated by Henrietta Swan Leavitt in 1908 and given precise mathematical form by
her in 1912), a Cepheid can be used as a so called ”standard candle” to determine
the distance to its host cluster or galaxy.

– The variation in luminosity is caused by a cycle of ionization of helium in the
star’s atmosphere, followed by expansion and deionization. While ionized, the
atmosphere is more opaque to light.

– The luminosity of cepheid stars range from 103 to 104 times that of the Sun. A
three-day period Cepheid has a luminosity of about 800 times that of the Sun. A
thirty-day period Cepheid is 104 times as bright as the Sun. The scale has been
calibrated using nearby Cepheid stars, for which the distance was already known
(a source of some uncertainties). This high luminosity, and the precision with
which their distance can be estimated, makes Cepheid stars the ideal standard
candle to measure the distance of clusters and external galaxies.

– First define apparent magnitude m of a celestial body as a measure of its
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brightness as seen on Earth:

m = −2.5 log10F + const.

where F is the total power (energy/area/time) observed on Earth while const. is
a constant to be determined by the requirement that the star Vega has apparent
magnitude m = 0. Then the period-luminosity relationship could be written as
follows:

M = −2.81 log10(P )− (1.43± 0.1)

where M is the absolute magnitude (an apparent magnitude of the object if it
would be at 10 pc distance from the observer) and P is the period measured in
days. The above relation was obtained by Henrietta Leavitt. She was working
at the Harvard College Observatory, studying photographic plates of the Large
(LMC) and Small (SMC) Magellanic Clouds, compiled a list of 1777 periodic
variables. Eventually she classified 47 of these in the two clouds as Cepheid
variables and noticed that those with longer periods were brighter than the
shorter-period ones. She correctly inferred that as the stars were in the same
distant clouds they were all at much the same relative distance from us. Any
difference in apparent magnitude was therefore related to a difference in absolute
magnitude. When she plotted her results for the two clouds she noted that they
formed distinct relationships between brightness and period.
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Figure 3: Period-luminosity relationship for Cepheids and RR Lyrae stars.

Let us now see how this relationship can be used to determine the distance
to a Cepheid. For this procedure we will assume that we are dealing with a
Type I, Classical Cepheid but the same method applies for W Virginis and RR
Lyrae-type stars.

1. Photometric observations, by the naked-eye estimates, photographic plates,
or photoelectric CCD images provide the apparent magnitude values for the
Cepheid.
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2. Plotting apparent magnitude values from observations at different times results
in a light curve such as that below for a Cepheid in the LMC.

Figure 4: The light curve for LMC Cepheid.

3. From the light curve and the photometric data, two values can be determined;
the average apparent magnitude, m, of the star and its period in days. In the
example above the Cepheid has a mean apparent magnitude of 15.56 and a
period of 4.76 days.

4. Knowing the period of the Cepheid we can now determine its mean absolute
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magnitude, M , by adopting the relation found by Henrietta Leavitt

M = −2.81 log10(P )− (1.43± 0.1)

Alternatively one can put a Cepheid on the period-luminosity plot as shown
in (5). The one shown below is based on Cepheids within the Milky Way.
The vertical axis shows absolute magnitude whilst period is displayed as a log
value on the horizontal axes.

5. Once both apparent magnitude, m, and absolute magnitude, M are known
we can simply substitute in to the distance-modulus formula and rewrite it to
find a value for dL the luminosity distance to the Cepheid.

M = −5

2
log10F10 + const. and m = −5

2
log10F + const.

where F10 is the total power observed at the distance of 10 pc (according to
the definition of M). Since F ∝ d−2

L we obtain

5 log10

(
dL

Mpc

)
= m−M − 25, (20)
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Figure 5: The log of 4.76 days = 0.68. When this is plotted a value of about -3.6 results for

absolute magnitude.

• Type Ia Supernovas
A supernova (plural: supernovae or supernovas) is a stellar explosion that creates
an extremely luminous object. A supernova causes a burst of radiation that may
briefly outshine its entire host galaxy before fading from view over several weeks
or months. During this short interval, a supernova can radiate as much energy as
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the Sun could emit over its life span. The explosion expels much or all of a star’s
material at a velocity of up to a tenth the speed of light, driving a shock wave into
the surrounding interstellar medium.
Type Ia Supernova could be formed as follows. If a carbon-oxygen white dwarf
accreted enough matter to reach the Chandrasekhar limit (the maximum non-
rotating mass which can be supported against gravitational collapse) of about 1.38
solar masses, (note that this is for white dwarfs, not for any stars) it would no
longer be able to support the bulk of its plasma and would begin to collapse.
Increasing temperature and density inside the core triggers carbon fusion. Within
a few seconds, a substantial fraction of the matter in the white dwarf undergoes
nuclear fusion, releasing enough energy (1 − 2 × 1044 J) to unbind the star in
a supernova explosion. An outwardly expanding shock wave is generated, with
matter reaching velocities on the order of 5, 000− 20, 000 km/s, or roughly 3% of
the speed of light. There is also a significant increase in luminosity, reaching an
absolute magnitude of −19.3 (or 5 billion times brighter than the Sun), with little
variation.
One model for the formation of a Type Ia explosion involves the merger of
two white dwarf stars, with the combined mass momentarily exceeding the
Chandrasekhar limit. A white dwarf could also accrete matter from other types
of companions (if the orbit is sufficiently close). For the list of supernovae see
http://www.cfa.harvard.edu/iau/lists/Supernovae.html. Supernovae are very rare,
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one per few hundred years per galaxy, however since there are many galaxies we
can observe many supernovae ”simultaneously”.

Figure 6: Two closely orbiting violet-hot carbon-oxygen white dwarfs are spiraling into one

another. The two stars are destined to merge, which will bring the new star over the Chandrasekhar

limit, leading to carbon-oxygen fusion and a Type Ia supernova explosion.
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Figure 7: Type Ia supernova observed

by the Hubble Space Telescope in 1994.

Figure 8: A binary system before the

explosion.

The supernova explosions always release roughly the same amount of energy,
and studies of relatively nearby type Ia supernovae have shown that they reach
almost the same peak brightness in every case. Therefore it can be used as
standard candle to determine their true distance. Fig. 7 is a Type Ia supernova
observed in 1994. It is the bright spot on the lower left at the brink of the galaxy.
Fig. 8 shows such binary system before the explosion. The absolute magnitude for
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the Type Ia supernovae has been calibrated to be M = −19.33± 0.25, therefore a
measurement of the apparent luminosity m allows us to determine the luminosity
distance dL according to (20).
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Figure 9: Hubble diagram with 42 high-redshift supernovae (log redshift scale), from SCP.

The data (from the Supernova Cosmology Project shown in (9) favour a flat
(k = 0) Universe with a positive cosmological constant, ΩΛ = 0.75 ± 0.08. The
current data set of high-redshift Type Ia supernovas is not sufficient to break the
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degeneracy of the density terms, see (10). The results can be approximated by the
linear combination 0.8Ωm − 0.6ΩΛ ' −0.2± 0.1.
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Figure 10: Confidence region on Ωm vs. ΩΛ plane, from SCP.

The geometry of the Universe is determined by Ω = Ωm + ΩΛ:

– Ω > 1 =⇒ k = +1 closed Universe
– Ω < 1 =⇒ k = −1 open Universe
– Ω = 1 =⇒ k = 0 flat Universe

ΩΛ = 1−Ωm separates regions of closed (k = +1) and open (k = −1) Universes.
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Figure 11: The cosmic distance ladder

Comments:

• An explanation of smallness of the cosmological constant is one of the most
outstanding problems of modern theoretical physics. In units with h̄ = c = 1, the
energy density for ΩΛ ' 1 is ρΛ ' 10−46 GeV4. Since the origin of Λ seems to
be gravitational, therefore the natural size of ρΛ should be a 4th power of the
Planck mass, ∼ O(M4

Pl), MPl = 1.2 · 1019 GeV, that gives ρΛ ' 1076 GeV4,
while the observed value is smaller by 122 orders of magnitude! Theoretically, it
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is much easier to explain that a quantity is zero, then to show that it is so small,
unfortunately the data require ΩΛ ' 1.

• There are some problems concerning the distance determination using standard
candles. The principal one is calibration, determining exactly what the absolute
magnitude of the candle is. This includes defining the class well enough that
members can be recognized, and finding enough members with well-known distances
that their true absolute magnitude can be determined with enough accuracy. The
second lies in recognizing members of the class, and not mistakenly using the
standard candle calibration upon an object which does not belong to the class. At
extreme distances, which is where one most wishes to use a distance indicator, this
recognition problem can be quite serious.
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♠ Non-homogeneous universe; the Lamâıtre-Tolman cosmological model

Consider spherically symmetric dust universe with radial inhomogeneities observed
from the origin (xi = 0). The line element takes the following form

dτ2 = dt2 −X2(r, t)dr2 −R2(r, t)(dθ2 + sin2 θdφ2)

The FLRW metric is a limiting case of the Lamâıtre-Tolman (LT):

X(r, t)→ R(t)

(1− kr2)1/2
, R(r, t)→ R(t)r

The energy-momentum tensor in that case reads

Tαβ(r, t) = ρm(r, t)UαUβ

for Uα being perfect fluid 4-velocity, so U0 = 1 and Ui = 0 in the comoving frame.
The Einstein equations leads to the following set of differential equations:
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− 2
R′′

RX2
+ 2

R′X ′

RX3
+ 2

ẊṘ

XR
+

1

R2
+

(
Ṙ

R

)2

−
(
R′

RX

)2

= 8πGρm

Ṙ′ = R′
Ẋ

X
(21)

2
R̈

R
+

1

R2
+

(
Ṙ

R

)2

−
(
R′

RX

)2

= 0

− R′′

RX2
+
R̈

R
+
ẊṘ

XR
+
R′X ′

RX3
+
Ẍ

X
= 0

where R′ ≡ ∂R/∂r and Ṙ ≡ ∂R/∂t. Only three of the above four equations are
independent. Eq.21 could be easily solved by

X(r, t) = C(r)R′(r, t)

The function C(r) (to be determined by boundary conditions) could be written as
follows:

C(r) ≡ 1

[1− k(r)]1/2

Cosmology: 3. Cosmological Models, Winter Semester 2009/10 65



Then the LT metric could rewritten as

dτ2 = dt2 − [R′(r, t)]2

1− k(r)
dr2 −R2(r, t)(dθ2 + sin2 θdφ2)

(The FLRW case could be obtained for k(r)→ kr2 and R(r, t)→ R(t)r.) Then the
two independent Einstein equations read

Ṙ2 + k(r)

R2
+

2ṘṘ′ + k′(r)

RR′
= 8πGρm (22)

Ṙ2 + 2RR̈+ k(r) = 0 (23)

It is easy to verify (apply ∂/∂t) that the first integral of (23) is

RṘ2 = F (r)−Rk(r)

for F (r) to be determined by boundary conditions. Then we get the generalized
Friedmann equation for the local Hubble parameter H(r, t) ≡ Ṙ(r, t)/R(r, t):

H2(r, t) +
k(r)

R2
=
F (r)

R3
(24)
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Instead of F (r) and k(r) one can define Ω0
m(r) and Ω0

k(r)

F (r) = H2
0(r)Ω0

m(r)R2
0(r)

k(r) = −H2
0(r)Ω0

k(r)R
2
0(r)

where

Ω0
m(r) ≡ ρm(r, t0)

ρcrit(r, t0)
, Ω0

k(r) ≡
ρk(r, t0)

ρcrit(r, t0)
, H0(r) ≡ H(r, t0) and R0(r) ≡ R(r, t0)

Then the generalized Friedmann equation (24) reads

H2(r, t) = H2
0(r)

[
Ω0
k(r)

(
R0(r)

R(r, t)

)2

+ Ω0
m(r)

(
R0(r)

R(r, t)

)3
]

That should be compared with the FLRW Friedmann equation in the presence of the
cosmological constant

H2(t) = H2
0

[
Ω0
k

(
R0

R(t)

)2

+ Ω0
m

(
R0

R(t)

)3

+ ΩΛ

]
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Comments

• The ”observed” acceleration of the Universe is not a direct measurement, but a
consequence of interpretation of the supernova data within the standard (FLRW)
cosmology. Within FLRW ΩΛ is a possible explanation of the observed maximal
luminosity of supernovae (the observed luminosity is lower than one expected
in FLRW model with ΩΛ = 0). Therefore in the concordance model we found
ΩΛ ' 0.7 and Ωm ' 0.3. Non-zero ΩΛ and the standard Friedmann’s equations
imply R̈ > 0:

q0 =
4πG

3H2
0

∑
i

(ρ0
i + 3p0

i ) =
4πG

3H2
0

∑
i

(1 + 3wi)ρ
0
i =

1

2

∑
i

Ω0
i (1 + 3wi)

So, the conclusion that R̈ > 0 and ΩΛ 6= 0 are consequences of the assumed
FLRW geometry.

• When light travels from a supernova toward us it ”feels” H(r, t) on its way. That
is seen through the expression for luminosity distance dL. It turns out (see e.g.
H. Iguchi, T. Nakamura and K. i. Nakao, “Is dark energy the only solution to
the apparent acceleration of the present universe?”, Prog. Theor. Phys. 108, 809
(2002) [arXiv:astro-ph/0112419]) that the extra freedom that appears within the
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LT geometry (i.e. H(r, t)) allows to fit the supernova data without invoking the
cosmological constant (no dark energy).
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