Renormalization and Renormalization Group
Prof. A. Buras
Exercises 1 and 2 (27.10.00 and 3.11.00)

Lets define 1- and 2-point scalar, vector and tensor integrals as:
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Problem 1. Show that
m2
Ao(m2) = —m2 (A — IOg E -+ O(G)) (5)
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where A = % — v +log4n, e = %5* and v = 0.5772. .. is the Euler constant.

Problem 2. Show that
. .
Bo(p?,mi,m3) = A~ [ log f(@)dz + O(¢) ©)
where f(z) = miz +mi(1 —z) — p’z(1l — 1)

Problem 3. Show that

Ag(m3) — Ag(m?) + (m3 — m? — p*) Bo(p?, m3, m3)
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Problem 4. Find Feynman representation (i.e. in the form of 1-dimensional integral) for Ba;, Bas.
Problem 5. Find divergent parts (i.e. coefficients of A term) of A, B integrals.

Problem 6. Prove the “generalized Feynman integral” formulae:
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Hint:

i) Calculate directly F». Show that
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and use the Mobius transform z = y/(1+y) and definition of the Euler Beta function

to get the explicit expression for Fy.
ii) Prove eq. (8) by complete induction (use 6(az) = 8(z)/lal)-
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Renormalization and Renormalization Group

Prof. A. Buras
Exercise 3 (10.11.00)

Lets define 3-point scalar, vector and tensor integrals as (C;; = Cii(p, g, m2, m2, m2):
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Problem 1. Find Feynman representation of C' functions (i.e.

+ (p°¢° + ¢°p")Ca + g% Cn4)

perform the momentum inte-

gration leaving the result in the form of 2-dimensional integral over the auxiliary

parameters).

Problem 2. Find the divergent parts of C functions.

Problem 3. Calculate explicit form of the Cj function for the special case m; = m3 =0, my = M,
p* = ¢* =0, (p+¢)* = 5 (such an integral appears e.g. in calculations of the 1-loop
corrections to Z°f f vertex). Express the result in terms of dilogarithm function:

Lir(s) = | 1 de (1)
Some useful identities:
Lip(—1) = %2
Liz(—1 — 2) + Liz(2) = —%2 + log(—=z) log(1 + 2) (2)
Problem 4 Prove the Gordon identity:
Bpan(pr) = 5=(02) (01 + o)+ 0 (2 — 1) () ®)

where 0, = %[7,“ Yru)-

Hint: start from the identity, given simply by the Dirac equation and valid for any

vector a:

a(pa)ld(p, — m) + (f, — m)dfu(p:) = 0 (4)

Find Gordon identity for @(p2)y,vsu(p1)
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Problem 2.

Renormalization and Renormalization Group
Prof. A. Buras
Exercise 4 (16.11.00)

Consider Lie algebra of SU(N) group with N?—1 generators 7 fulfilling the relation
[T®, T%) = if®°T°. The generators are normalized by the condition Tr(7°71?) = §°°.
i) Prove that in the fundamental (NV-dimensional) representation matrices 7 fulfill
the relation:

1

o 1
TijTigvz 2 00k — N

6ij5kl (1)

(hint: every N x N matrix can be written in the form A = ¢yl 4 ¢,T9).
ii) Prove that (the Jacobi identity):

fabefcde + fcbefdae + fdbeface =0 (2)

iii) Use i) and ii) to calculate Tr(T°T*T®), Tr(T*TTT?), T°T*, T*T*T®, T*T*TT*,
fabcfbcd_

Calculate the 1-loop correction to the gluon propagator given by the gluon self-
interaction diagram: .

k+p

gau gbu
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Renormalization and Renormalization Group
Prof. A. Buras
Exercise 5 (23.11.00)

Please consider in details the renormalization of A¢* theory with spontaneously broken
symmetry:
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where m? < 0.

1. Calculate the vacuum expectation value v =< ¢ > of the ¢ field and express the
Lagrangian in terms of the shifted field ¢' = ¢— < ¢ > (keep v explicitly in the
Lagrangian, do not express it by m? and ).

2. Define the renormalized quantities:

or = Z,"¢q
Ar = Z3'Z3o
Vp = Z;I/Q’UO—(S’UO
m% = Zymi — oma

Express Lagrangian in terms of renormalized quantities. Expand renormalization
constants and find all counterterms.

3. Fix vy imposing the condition that terms linear in ¢ must disappear from the
Lagrangian in all orders of perturbation expansion (find explicit expression for duvy
at 1-loop level).

4. Find 1-loop expressions for other renormalization constants in MS and on-shell
renormalization schemes (the latter is defined by the conditions the physical renor-
malized m% and g are equal to the tree level ones and by the additional requirement
that the residuum of the scalar propagator is equal to 1).
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Exercises on “Renormalization Group Methods” (advanced group)

Janusz Rosiek

1. General introduction on regularization and renormalization procedures.

Derivation of Renormalization Group Equations.

Expressing 3 functions and anomalous dimensions in terms of the first
order poles of renormalization constants.

2. Detailed derivation of the RG equations for the scalar A¢* theory.

Renormalized Lagrangian.

Infinite parts of the 2- and 4-point Green’s functions at 1-loop.
Renormalization constants.

8 function and anomalous dimensions.

Some discussion of higher orders.

3. Derivation of 3 function in QED.

4. Solving the RGE:

General expressions for the Green’s functions.
Momentum scaling.

IR/UV fixed points, asymptotic freedom, Landau pole, dimensional trans-
mutation.

Stability of the fixed points - dependence on the choice of the renormaliza-
tion scheme and/or choice of the gauge. Proof of the gauge independence
of 8 function in MS scheme.

Perturbative solution for the running coupling.

a,(Mz) as a function of aen,(Mz) and sin? @y in SM and MSSM.

Introduction to Operator Product Expansion and RG for composite operators.
Practical application: derive and solve RG equations for Wilson coefficients in
the effective Hamiltonian describing AF = 2 transitions (K(’Ko, B;Ba, B,B;
mixing) in the Standard Model.

(optional, if time permits) Introduction to breaking of scale invariance and
RG applications in this case (Bjorken scaling, deep inelastic scattering etc.)




