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“Home work” in Radiative Corrections

H1. Feynman rules of “scalar electrodynamics”

Consider a hypothetical model, consisting of a complex scalar field ¢(z)
and a vector field A, (z). The Lagrangian density of this model reads:

,k 1
L = (Dug)" D¢ — 2FuF™ —V(g),

where

Dyod(z) = OBup(z)—ieA,(z)o(z),

V(¢)

W @) + 5 19@)*

with ), u? real parameters, A > 0.

(a)
(b)

Determine the Feynman rules for the case u? > 0 (“scalar electro-
dynamics”).

Discuss the ground state of the model for the case u?> < 0. Show
that the ground state expectation value of the scalar field is non-
zero and can be chosen real and positive, since the Lagrangian
density is invariant under global phase transformations ¢ — e'*¢,
(w=const.):

v

(0] 6(a) |0) = =

Let us calculate the particle spectrum of this model, which we shall
call “abelian Higgs model”. For this purpose, replace the complex
scalar field using the (non-linear) field redefinition

1 :
z) = — (v + h(z)) e¥® |
¢(z) ﬂ( (z))
with h(z), ¢(z) now being real fields. Show that the field ¢(z) can
be completely eliminated from £ by a suitable gauge transforma-
tion, and that the vector field acquires the mass M4 = ev.

Determine the Feynman rules (propagators and vertices) of this
model. Express (if possible) the constants e, u? and A in terms
of the masses M4 and M}, of the vector and scalar field and the
vacuum expectation value v.

(Remark: the special gauge that eliminates the unphysical field
¢(z) from the Lagrangian is usually called unitary gauge.)
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H2. Dimensional regularization

Show that the surface of a D-dimensional unit sphere is given by
2?TD{‘2

r’

Qp =
Hints: calculate the Gaussian integral in D dimensions,

/de exp( kz)

both in cartesian coordinates and in polar coordinates, where §p is just
the D-dimensional solid angle. Then use

/wﬁ_le_” dg = T{J).
0

H3. Generalized Feynman trick I
Show that

1 > i %)
H3_1 i ik /Hd [Ez lam‘] '

i=1

Hints: use

1 oo .
= / d); e N
a;
0

and the “rescaling tric

=]gd)\§(/\—iz;:/\i) ;

Finally substitute \; — Az;.

”3

H4. Generalized Feynman trick I1
Having mastered the above steps, now prove (M = " m;):

1
1 n i1 :I:ml-l
e dz; 1—§ja:% T
: lal-i : 1,—1]-—1 mi)!H ( i=1 ) ﬂ'.L']M

I i=1 1.—1 g
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H5.

H6.

HT.

Scalar twopoint function

Calculate Bg(0;my, mo) for arbitrary mi,ms. Check your result for
my = Ma = M.

Let us determine By(p?; m,m). To achieve this, first assume that p? <
0, and set 7 = —4m?/p®. Now try to factorize the argument of the
logarithm in the following way:

1+-{1§—(ﬁ1}—_—$)-=(1ﬁ§1) (1—%) :

Can you analytically continue your result to 0 < p?> < 4m? and to
p* > 4m?*?

A simple scalar threepoint function

Calculate the scalar threepoint function Cy(0, ¢, 0; m, m,m) for ¢* < 0.

Hints: use the Feynman parameter representation. With 7 = —4m?/¢?,
show that Cj can be written as

2 N, e
CO(Olq }O!m} m!m) q'2 T

1 /dx log[1 + 4z(1 — z)/7] ;

Decompose the argument of the logarithm as in the preceeding problem,
and use

Lia(t) + Li ( ) = —%logz(l —t) for O0<t<l1.

=5

Find the analytic continuation into the region ¢*> > 0! (You will need
this result if you want to calculate, e.g., the decay of a Higgs-boson into
two photons or into two gluons.)

Algebraic reduction

For which choice of momenta p;,ps and ps; = ps — p; does our tensor
reduction procedure break down for C 7

For advanced students: how would you modify the tensor reduction?

(see e.g., G. Devaraj, R. Stuart, Nucl. Phys. B519 (1998) 483;
J.M. Campbell, E.W.N. Glover, D.J. Miller, Nucl. Phys. B498 (1997) 397)
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HS.

H9.

H10.

H1l.

H12,

H13.
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Photon self energy 111

Verify the transversity of the one-loop integral for the photon self energy,
k*¥,, (k) = 0, by directly manipulating the integral. Which properties
of dimensional regularization are essential for your manipulations?
Photon self energy IV

Calculate the photon self energy in scalar QED.

Self energy of a “scalar electron”

Calculate the self energy of the charged scalar particle in scalar QED.

Renormalization conditions of scalar QED

Formulate the renormalization conditions of scalar QED. For the sake
of simplicity, consider only mass and wave-function renormalizations.

Renormalized vacuum polarization in scalar QED

Calculate the renormalized vacuum polarization in scalar QED. Deter-
mine the asymptotic behaviour of the contribution of a charged scalar
for |k?| > m?, and compare with the contribution of a spin-3 fermion
of the same mass and charge.

Dispersion relations I

Let f(z) be a complex function analytic in the upper half plane (Im(z) >
0), and assume that

I]lim |f(2)] =0, O<Largz< 7.

(a) Starting from Cauchy’s integral formula, show that f(z) is given
by an integral along the real axis,

_ 1 f i
f(z0) = il e dz for Im(z) >0,

and that its analytic continuation vanishes for Im(zy) < 0.

(b) For zp — xo with o real it follows:

(= )——P %ffmio (H13.1)

—Do
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(c) Decompose (H13.1) into real and imaginary parts, f(z) = u(z) +
iv(z), and show that

u(zg) = % P]O “u(:r) dz ,

r—Tp
v(ze) = -;IT—P/ f("””i de . (H13.2)
L — Ig

H14. Dispersion relations II

For k? real, calculate Im (By(k?;m,m)) directly from the parameter rep-
resentation of the scalar twopoint function using

log (x — i€) = —imf(—x) .
Use the above result to obtain the real part of

BO(Z; m, m) " BD(U} m, m)
5 3

fz) =

where it is assumed that By(z; . ..) is analytic in the half plane Im(z) > 0.
Why did we need to “subtract once” in the present case? Compare your
result with that of problem H5.

Hint: use the substitution t = /1 — 4m?/z.

H15. Asymptotic behaviour of the electron-photon vertex
(a) Derive the asymptotic behaviour of Co(m?, k?, m?; A\, m, m) in the
region |k?| > m? > N2

(b) Using the Gordon identity, the on-shell vertex can be rewritten as

b . 7 , Y
F.U(k} _p’: p) = ie 'YpFi(k?:) =+ %U;W(p _p) FQ(kQ) 3

with form factors Fy(k?) und Fy(k?). Calculate the asymptotic
behaviour of the F; for |k?| > m?!

H16. Soft-photon approximation

Discuss the soft-photon approximation for scalar QED.
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