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Chapter 5

Choosing the Representation

This chapter introduces adaptive time-frequency approximation of signals and the
matching pursuit algorithm.

Each of the dictionaries discussed in previous chapters efficiently represents some
kind of structures. Spectrogram (Section 4.1) describes oscillations with chosen
time resolution, wavelets (Section 4.3) zoom nicely on singularities, and so on.
In general, it is very hard to guess which dictionary would provide an optimal
representation for a given signal. On the other hand, efficient and informative
decomposition can be achieved only in a dictionary containing functions reflecting
the structure of the analyzed signal. This rule, illustrated by numerous examples
from previous sections, is hardly a surprise: The limits of my language mean the
limits of my world.1

So, why don’t we extend the limits—by constructing a big dictionary, rich
enough to fit all the structures, possibly occurring in any signal of interest?

5.1 GABOR DICTIONARY

The most common approach to the construction of time-frequency dictionaries
relies on Gabor functions, that is Gaussian envelopes modulated by sine oscillations.
By multiplying these two functions, we can obtain a wide variety of shapes,
depending on their parameters (Figures 5.1 and 5.2).

1 Ludwig Wittgenstein, Tractatus Logico-Philosophicus, thesis 5.6.
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Figure 5.1 Gabor functions (bottom row) are constructed by multiplying Gaussian envelopes (upper
row) with oscillations of different frequencies and phases (middle row).

Figure 5.2 Examples of Gabor functions.

The advantage of this standardized approach is that all these different shapes,
such as those presented in Figure 5.2 and many more,2 can be described in terms
of only four numbers per waveform: time width and position of the center of the
Gaussian envelope, and frequency and phase of the modulating sine. Amplitudes
are adjusted so that each function has equal (unit) energy, since the product of a
waveform of unit energy with the signal will directly measure the contribution of
that structure to the energy of the signal (product and energy were discussed in
Section 2.1).

2 For example, pure sine waves and impulse functions can be treated as sines with very wide
modulating Gauss and very narrow Gaussians, respectively.
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Apart from the variety of shapes, there is a purely mathematical argument in
favor of Gabor functions: they provide the best localization (lowest uncertainty, see
Section 3.2) in the time-frequency plane [1]. However, this property is not crucial
for understanding the procedure; the algorithm discussed in the next section can be
used with any dense dictionary—that is, any dictionary containing at least enough
functions to reproduce (efficiently or not) any signal.

5.2 ADAPTIVE APPROXIMATION

OK, we have a dictionary incorporating a variety of structures—how shall we use it?
Following the classic approach described in the previous chapter for spectrogram
and wavelets, we could try to use the products of all the functions from the dic-
tionary with the signal. But in this case such representation would make no sense.
If we use the whole dictionary of, say, millions of waveforms to describe 10 seconds
of an EEG signal, we do not gain anything, either in terms of compression or under-
standing the signal structure. We must choose the representative waveforms. And if
the choice will be adapted for each signal separately—unlike the a priori selections
from Chapter 4—we may obtain a general, efficient, and adaptive procedure.

Matching pursuit is nothing but a procedure leading to such a choice. We will
exemplify its operation on a signal composed of two Gabor functions and a little
noise (Figure 5.3).

Figure 5.3 Signal constructed as a sum of two Gabor functions plus noise.

As the first candidate for the representation, we take the function, which,
among all the functions from the dictionary, gives the largest product with the signal
(Figure 5.4).

(a)

(b)

Figure 5.4 Function from the Gabor dictionary (b), giving the largest product with the signal (a).
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However, a single function seldom explains exactly the whole signal. So,
which function do we take as the second representative? The one giving the second
largest product?

If the dictionary is rich, then it must contain many similar waveforms. One of
them gives “the best fit” of the strongest structure. But the other, similar waveforms
from the dictionary will most likely also fit the same structure—not “best,” but
still giving a large product. This product can be higher than the product of another,
smaller structure, matched perfectly with a different waveform from the dictionary
(Figure 5.5 (e)). Therefore, choosing all the waveforms that give a large product
with the signal may result in a representation containing many similar waveforms,
all approximating only the strongest structure of the signal—like (b), (c), and (d)
from Figure 5.5—and completely omitting weaker structures, like (e).

(a)

(b)

(c)

(d)

(e)

Figure 5.5 Similar functions from the dictionary (b–d) giving a large product with the signal (a). All
these functions, more or less similar to the stronger structure, give larger products with the signal than
the function exactly reflecting the weaker structure (e).

This is the price we pay for using a redundant dictionary. Smaller dictionaries,
used in wavelet transform or STFT, are chosen so that their functions have little
possible overlap—in the case of an orthogonal basis, the overlap is zero. If the
dictionary were not so redundant, at most one of the functions (b), (c), and (d) in
Figure 5.5 would be present. In such a case, we could use for the representation
all the functions giving large products with the signal. But if the dictionary is so
redundant, we must subtract the contribution of the first chosen function before
fitting the next one.
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5.3 MATCHING PURSUIT

Matching pursuit (MP) algorithm was first proposed in the context of signal analysis
in 1993 by Mallat and Zhang in [2].3 It is an iterative procedure, which can be
described as follows:

1. Find (in the dictionary) the first function, that best fits the signal.

2. Substract its contribution from the signal.

3. Repeat these steps on the remaining residuals, until the representation of the
signal in terms of chosen functions is satisfactory.

The first two iterations of this procedure, applied to the signal from Figure 5.3, are
illustrated in Figure 5.6.

x

g
1

a
1
⋅ g

1

R1x

g
2

a
2
⋅ g

2

R2x

Figure 5.6 Matching pursuit algorithm. In the first step, we find the function g1, which gives the largest
product with the analyzed signal (x, upper trace). Then we adjust the amplitude of g1 to the structure
present in the signal and subtract it from the signal. The resulting (first) residual R1x does not contain
the contribution explained by the first fitted function. Therefore, the next function (g2), found in the
dictionary as giving the largest product with the residual, will fit the next structure present in the signal.
If these two functions (g1 and g2) give a satisfactory representation of the signal x (e.g., explains the
required percentage of energy), we can stop the procedure at this point and leave R2x as the unexplained
residual.

3 A similar approach to signals was proposed in [3]. The general idea was known previously from
statistics as a regression pursuit.
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As a result, we obtain an approximation of the signal x in terms of the
functions g1 and g2 and their amplitudes a1 and a2, plus the unexplained residual:

= + +

or
x = a1 · g1 + a2 · g2 + R2x ,

where R2x denotes the residual of signal x left after the second iteration.

5.4 TIME-FREQUENCY ENERGY DENSITY

So, we have a nice and compact description of the signal in terms of a sum of known
functions. What about the picture of its time-frequency energy density?

First, let us recall the meaning of such a picture. As an image, it naturally
has two dimensions. The horizontal dimension corresponds to time, and its extent
reflects the length of the analyzed epoch. Vertical dimension represents frequency
and may extend from zero to the half of the sampling frequency (i.e., the Nyquist
frequency).4

Graphically we represent the energy density as shades of gray, color scale, or
height in 3-D plots. If the signal has a high-energy activity of a given frequency in
a given time epoch, we expect the corresponding area of the picture to exhibit high
values of energy density. In the previous chapters we used a fixed set of functions
(e.g., sines or wavelets), so we could a priori divide the time-frequency plane into
boxes corresponding to these functions. Examples of such pictures are given in
Figures 4.1 and 4.2 (spectrograms) and 4.7 and 4.8 (orthogonal wavelet transforms).

Using the matching pursuit expansion, we do not know a priori which func-
tions will be chosen for the representation. The decomposition is adaptive, so we
cannot draw a prior division of the time-frequency plane like in Figures 4.3 or 4.6.
But for each of the functions, chosen for the representation of the signal, we can
compute the corresponding time-frequency distribution of energy density, by means
of the Wigner transform (Section 4.4). For the Gabor functions from the dictionary
discussed in Section 5.1, we obtain blobs in the time-frequency plane extending in
time approximately in the regions of the represented structures.5 Their frequency

4 We recall from Section 1.2 that Nyquist frequency is the maximum frequency which can be reliably
detected in a digital signal.

5 This ellipsoidal blob is actually a 2-D Gauss function.
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extent is determined by the uncertainty principle (Section 3.2), which states that the
shorter the structure is in time, the wider is its frequency content. An impulse can be
considered an extremely short structure, so it will be represented as a vertical line.
Infinite sine will be infinitely narrow in frequency, so it will make a horizontal line.
By adding energy densities for all the functions from the decomposition, we obtain
representations like in Figure 5.7.

Figure 5.7 Left: sum of the first two functions (g1 and g2 from Figure 5.6) and its time-frequency
energy density. Right: time-frequency representation of the signal from Figure 5.3, including noise.
Apart from the same two structures representing the major components of the signal, we observe a
lot of weaker blobs distributed uniformly across the time-frequency plane, representing the white noise
added in simulation to the two structures. Vertical axis corresponds to frequency, increasing upwards.

But what do we actually gain from this approach, compared to the direct
calculation of the Wigner transform of the signal, as in Section 4.4? From the
matching pursuit decomposition, we know (or assume) that the signal is a sum
g1 + g2. Using this information, we do not have to take the Wigner transform of
the whole sum (i.e., the whole signal), which would give g2

1 + g2
2 + 2g1g2, but

instead we take only g2
1 + g2

2 , that is the sum of energy densities of the components,
not including cross-terms. The problem of cross-terms is exemplified in Figure 4.9.

Figure 5.8 presents decompositions of a bit more complex signal, constructed
from a continuous sine wave, one-point impulse (Dirac’s delta), and three Gabor
functions. Panel (b) gives time-frequency energy distribution obtained for this signal
from MP decomposition. In the left, three-dimensional plots, energy is proportional
to the height. In the right two-dimensional maps, energy is coded in shades of
gray. Panels (c) and (d) present decompositions of the same signal with addition
of a white noise of energy twice and four times the signal’s energy. We observe
basically retained representation of the major signal structures (slightly disturbed in
the presence of the stronger noise) and a uniform distribution of the noise-related,
weaker structures.
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Figure 5.8 (a): Left—components of the simulated signal: sine A, Dirac’s delta B, and Gabor functions
C, D, and E. Right—signals, labelled b, c, and d, constructed as sum of structures A–E and white noise,
and decomposed in corresponding panels (b), (c), and (d). (b): Time-frequency energy density obtained
for sum of structures A–E ; in 3-D representation on the left, energy is proportional to the height, while
in the right panel it is proportional to the shades of gray. Panels (c) and (d): decompositions of signals
with linear addition of noise, S/N = 1/2 (−3 dB) in (c) and −6 dB in (d). The same realization of white
noise was used in both cases. (Reprinted from [4] with permission. c© 2001 by PTBUN and IBD.)
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