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Analysis of EEG Transients by Means of Matching Pursuit 
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Abstract--Matching pursuit (MP), a new technique of time- 
frequency signal analysis, was applied to simulated signals and 
the awake and sleep EEG. With the MP algorithm, waveforms 
from a very large class of functions were fitted to the local signal 
structures in a recursive procedure. By means of this technique, 
sleep spindles were localized in the time-frequency plane with 
high precision, and their intensities and time spans were found. 
The MP technique makes following the temporal evolution of 
transients and their propagation in brains possible. It opens up 
new possibilities in EEG research providing a means of investi- 
gation of dynamic processes in brains in a much finer time- 
frequency scale than any other method available at present. 
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INTRODUCTION 

We would like to introduce to physiological signal 
analysis a new method called matching pursuit (MP) 
which can be considered a generalization of the wavelet 
transform. MP was proposed by Mallat and Zhang (1). 

The complex structure of physiological time series and 
the rapidly varying characteristics of the patterns embed- 
ded in them suggest their decomposition over large classes 
of waveforms. Linear expansion in a single Fourier or 
wavelet basis is not always sufficient. A Fourier basis 
gives a poor representation of functions well localized in 
time, whereas wavelet bases are not well adapted to rep- 
resent functions whose Fourier transforms have a narrow 
frequency of support. In both above-mentioned methods, 
the detection and identification of signal transients from 
their expansion coefficients may not be easy since the 
information can be diluted across the whole basis. 

Matching pursuit relies on the decomposition of signals 
into linear expansion of waveforms belonging to a very 
broad class of functions. These waveforms are adaptively 
matched to the local signal patterns. This kind of analysis 
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is especially suitable for characterizing transients appear- 
ing randomly in the signal, such as sleep spindles, K-com- 
plexes, epileptic spikes. We have demonstrated the per- 
formance of MP on simulated signals and experimental 
EEG series; special attention was paid to sleep spindles. 

METHOD 

In matching pursuit, the repertoire of functions used for 
the decomposition of signals is very broad and redundant. 
From this large dictionary of possible functions, a sub- 
family of time-frequency atoms is chosen in such a way as 
to best match the local signal structures. The family of 
time-frequency atoms is created by scaling, translating, 
and modulating a window function g(t): 

gl(t) = ~ s s  g , ( 1 )  

where s > 0 is scale, ~ is frequency modulation, and u is 
translation. 

Index I = (s,~,u) describes the set of parameters, g(t) 
is usually even and its energy is mostly concentrated 
around u in a time domain proportional to s. In the fre- 
quency domain energy is mostly concentrated around 
with a spread proportional to 1/s. The minimum of time- 
bandwidth product is obtained when g(t) is Gaussian. The 
windowed Fourier transform (FT) and wavelet transform 
(WT) can be considered as a particular cases of MP cor- 
responding to the certain restrictions concerning the 
choice of parameters. In the case of FT, scale s is con- 
stant----equal to window length and parameters ~ and u are 
uniformly sampled; therefore, FT is not appropriate for 
describing structures much smaller or much larger than the 
window. The wavelet transform overcomes this limitation 
since it allows for the change of scale, decomposing the 
signal over the atoms of varying time-frequency coordi- 
nates. Nevertheless, in the case of WT the frequency mod- 
ulation is limited by the restriction on the frequency pa- 
rameter which remains inversely proportional to the 
scales. Therefore, as was pointed out above, the wavelet 
frame does not provide precise estimates of the frequency 
content of waveforms well localized in the time domain. 

In matching pursuit all parameters defined in Eq. ! vary 
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freely; the time-frequency atoms remain to be chosen in 
an optimal way. The method of adaptive selection of func- 
tions best approximating the signal was proposed by Mal- 
lat and Zhang (7). It relies basically on finding a linear 
expansion o f f  over a selected subset of vectors gl. 

In the first step of iteration procedure, the function g,o 
is chosen to give the biggest product with signal fit). 
Then, the residual vector R1, obtained after approximating 
f in the direction g,o is decomposed in similar way. The 
procedure is iterated on subsequently obtained residues: 

enf  = (gnf, gl,) gl, 4- gn+l f .  (2) 

In this way the signal f is decomposed into a sum of 
time-frequency atoms that are chosen to best match its 
residues: 

m 

f : E ( R n f ,  gl.) gl. 4- Rn+ if. (3) 
I 

n=O 

Although the procedure converges to fit),  we have to 
stop it at some point. We can define a magnitude h(n) as 
a ratio of energy of residue R,f, explained by gt.: 

(Rn(j'), gl,) 
h(n) - R"(f) ll (4) 

It converges to a constant value h e depending on the 
size of a signal. Asymptotic value h e corresponds to a 
situation in which there are no more structures coherent 
with a dictionary in the residuum. Recent research shows 
that residua converge to a chaotic attractor of a process 
called "dictionary noise" (1). 

Energy conservation rule: 

m-I 
f2  = E 1< Rnf gv, > 12 + Rmf2 (5) 

n=0 

allows us to conveniently visualize the energy density in 
time-frequency plane in a form of the Wigner distribution. 
Unlike the Wigner or Cohen class distributions, MP rep- 
resentation does not include interference terms (as shown 
in 7) and thus provides a clear picture in the time- 
frequency space. 

RESULTS AND DISCUSSION 

The properties of MP approach can be illustrated by a 
simulation study. In simulations, as well as in the EEG 
time series analysis, the window function in Eq. 1 was 
Gauss. Resulting gl were Gabor functions (Gauss modu- 
lated by sinus), which gave best time-frequency localiza- 
tion. Fig. I shows a time-frequency map (i.e., Wigner 
distribution of a signal containing different data structures). 
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FIGURE 1. Time-frequency maps obtained by means of MP 
from the simulated signal shown directly below ( s u m m a t i o n  
of s ignals  I, II, and III). (A-F) signal structures and correspond- 
ing atoms or groups of atoms obtained by means of MP. 
F = s inuso id ;  E = delta function; D and C = s inuso ids  m o d u -  
la ted by Gauss. Horizontal ax is- - t ime in seconds; vertical 
axis = frequency in Hz. 

Sinusoid, Dirac's delta, and Gabor functions, belonging to 
the chosen dictionary, are expressed by one atom each. 
Other structures are described by few atoms. Obviously, 
Gabor functions are especially suitable for the description 
of spindles. Spindles can be easily distinguished even if 
two of them occur at the same time (providing that their 
frequencies differ). 

We have applied MP to the awake and sleep EEG. In 
Fig. 2, a time-frequency map of the awake EEG is pre- 
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FIGURE 2. Time-frequency map for the awake EEG shown 
below. The intensities shown as shades of gray. The dynamic 
changes of signals in alpha band and low frequency compo- 
nents are clearly visible, Coordinates as in Fig. 1. 
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sented. One can see that the dynamics of signal features is 
reflected with great fidelity. The changes of activity in 
alpha band and low-frequency components are easy to 
follow. 

Each atom is characterized quantitatively by the fol- 
lowing parameters: time and frequency coordinates, en- 
ergy, and scale s proportional to the spread in time (Eq. 
1). The number of atoms taken into account or, in another 
words, the percentage of energy accounted for in the re- 
cursive procedure can be chosen. 

In Fig. 3a, an example of a time-frequency map for 
EEG signal (sleep stage 2) is shown. It is easy to observe 
that several rhythmic components of frequency below 7 
Hz are present. Sharp, spike-like structures of a signal are 
visible as vertical lines. Circular structure at the frequency 
of 12 Hz corresponds to the sleep spindle. In Fig. 3a, 50 
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FIGURE 3. Time-frequency maps of the signal shown below; 
2048 data points sampled at 102.4 Hz. Number of atoms 
shown: (a) 50, (b) 100, (c) 200. Coordinates as in Fig. 1. 

waveforms corresponding to 94.25% of the energy of sig- 
nal are shown. In Fig. 3 b and c, 100 atoms (97.7%) of 
energy and 200 atoms (99.32% of energy) for the same 
data segment are presented. In Fig. 3b, compared with 
Fig. 3a some higher frequency rhythmical components 
and more spindle-like atoms appear. 

In the next Panel (Fig. 3c), the picture becomes more 
complicated. While inspecting Figure 3 a-c, we have en- 
countered the problem of how many atoms are sufficient 
to characterize the signal? 

Where should the threshold be set in order to discrim- 
inate against a noise without information loss? The h func- 
tion (Eq. 4) can provide some help in this respect. It 
characterizes coherence of the signal with respect to the 
dictionary of functions used in approximation. In Fig. 4, a 
plot of h value as a function of number of atoms (i .e. ,  
algorithm's iterations) is shown. We can observe that for 
> 100 atoms, decrease of h becomes very slow, and for 
150 atoms, h ~ 0.1. If we denote by h e a n  average level 
of h (Eq. 4) for Gabor dictionary of functions fitted to the 
white noise, then for N = 2048 we get h e ~ 0.1.  

These considerations indicate that in order to obtain 
clear Wigner plot, for this particular time series (consist- 
ing of 2048 points) 100-150 atoms should be taken into 
account. Addition of more atoms increases mainly noise 
component. If the very weak components of the signal are 
not of particular interest, it is better not to use too many 
atoms when constructing of time-frequency representa- 
tions. 

A good example of the MP application to the EEG 
analysis is the study of sleep spindles. This phenomenon 
remained elusive to conventional EEG analysis, since 
spindle identification requires a simultaneous information 
on the time and frequency coordinates. The techniques 
used for automatic spindles detection include: phase 
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FIGURE 4. Solid line = k as a function of number of atoms 
taken into account; broken line = the amount of energy not 
accounted for (total energy normalized to 1), 
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FIGURE 5. Time-frequency analysis obtained by means of MP 
for the signal shown below (sleep stage II, derivation C3). 
Spindles ere marked A, B, C, and D. Coordinates as in Fig. 1. 

locked loop (3,8), complex demodulation (6), autoregres- 
sive modeling (5), and matched filtering (4,5). The last 
method gave the most promising results. However,  its 
limitations are due to the fact that the matched filter has 
fixed frequency and shape. The a priori choice of  filter 
obviously biases the results. In Reference 5, five matched 
filters of  frequencies differing by 1 Hz were applied. In 
MP,  the number of  waveforms describing data structures 
is practically infinite, therefore the accuracy of the method 
is superior to any known procedure. 

In Fig. 5, four spindles are visible. Spindles A and B 
appearing in the signal at the same time as the other short- 
time structures are nevertheless clearly resolved. Low- 
intensity spindles C and D may be elusive to conventional 
methods of  analysis, but their characteristics identifies 
them as spindles (Table 1). 

Since spindles are described by only one atom each, it 
is possible to follow their evolution in time and space. 
Figure 6 shows the characteristics of  one spindle at dif- 
ferent derivations. The topographic representation of  spin- 
dies, in terms of their parameters, makes possible to fol- 
low their propagation and ultimately might bring a con- 
siderable progress in understanding of the mechanisms of 
their generation. Well-defined characteristics of  spindles 
offered by MP also make possible their automatic recog- 
nition based on the criteria concerning their frequency, 
t ime spread, and amplitude. 

The EEG analysis by means of MP approach is by no 

TABLE 1. Parameters of spindles marked A, B, C, and D in 
Fig. 7. 

A B C D 

Position (s) 7.58 14.92 1.48 0.39 
Frequency (Hz) 12.8 13.6 11.8 12.6 
Amplitude (arbitrary units) 640 626 433 407 
Scale s (points) 64 64 64 64 
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FIGURE 6. Topographical representation of the parameters of 
spindle B in Fig. 5 and Table 1, for other derivations. 
FREQ = frequency; POS = t ime coordinate (in seconds); 
MOO = intensity. 

means limited to spindles. Different data structures can be 
traced and their spatiotemporal characteristics followed. 
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