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All the involved results are valid for arbitrary dimension: i.e. for dim(M) =n (> 4).
Nevertheless, for the sake simplicity attention will be restricted to the case of n = 4.
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Outline:

o Einsteinian spaces: (M, gu5)

o First part
e Second part

@ in both cases metrics of Euclidean signature will be involved
e no gauge condition
. arbitrary choice of foliations & “evolutionary” vector field
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PART I:

The primary splitting

@ Assume: M is foliated by a one-parameter family of homologous
hypersurfaces, i.e. M >~ R x X, for some three-dimensional manifold X.
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o equivalent to the existence of a smooth function o : M — R with
non-vanishing gradient 9,0 such that the o = const level surfaces
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PART I:
Projections:

The projection operator:

@ n® the ‘unit norm’ vector field that is normal to the X, level surfaces

nng = €
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Projections:

@ n® the ‘unit norm’ vector field that is normal to the X, level surfaces

o the sign is not fixed: ¢ takes the value —1 or +1 for Lorentzian or Riemannian

metric gup, respectively.

o the projection operator

nng = €

hab = (5'11, — en“nb

to the level surfaces of o : M — R.

@ the induced metric on the o = const level surfaces

hab = haahfb gef

° denotes the covariant derivative operator associated with hgp.

The projection operator:
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PART I:

o is “time evolution vector field” if:

@ the integral curves of % meet the o = const level surfaces precisely once

o [0Vur =1

U“:ai—i—o“'l:Nn“—l—N“

e where N and N® denotes the lapse and shift of o*:

\ N =¢(0cn.) and N®=h%0c°

v
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PART I:
Decompositions of various fields:

Any symmetric tensor field P,; can be decomposed

in terms of n® and fields living on the o = const level surfaces as

Poy = 7 ngny, + [N Py + 1 Pal + Pas
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where | ¢ = nenf Gefy Do = eheé n’ Gery, Gap = he,hty Yer ‘

@ r.h.s. of Einstein’s equation: E., = Gap — Yup

(M) (M) (EvOoL)

Eab = NaNyp E(H) + [na Eb + np Ea ] + (Eab (H))

+habE

E™ =nenf By, B =eheunf Eoy, E.y " = by Eop — hay B

a
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The decomposition of the covariant divergence V* Ep, = 0 of Egp = Gop — 9
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The decomposition of the covariant divergence V@ E,, = 0 of Egp = Gap — Yap:
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The main result of the first part:

Let (M, gqy) be an Einsteinian space as specified and assume that the
metric hy, induced on the o = const level surfaces is Riemannian.
Then, regardless whether ¢,, is of Lorentzian or Euclidean

. . . (Evor) .
signature, any solution to the reduced equations £, = 0 is also a
solution to the full set of field equations G, — %,, = 0 provided that
the constraint expressions E'" and E;m vanish on one of the
o = const level surfaces. )
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The main result of the first part:

Let (M, gqy) be an Einsteinian space as specified and assume that the
metric hy, induced on the o = const level surfaces is Riemannian.
Then, regardless whether ¢,, is of Lorentzian or Euclidean

. . . (Evor) .
signature, any solution to the reduced equations £, = 0 is also a
solution to the full set of field equations G, — %,, = 0 provided that
the constraint expressions E'" and E;M vanish on one of the
o = const level surfaces. )

e no gauge condition was used anywhere in the above analyze !

o it applies regardless of the choice of the foliation, , of M

and for any choice of the evolution vector field, .

Istvan Racz (University of Warsaw & Wigner RCP) 26 February 2019 11/30



PART II:

PART II:

Istvan Récz (University of Warsaw & Wigner RCP) 26 February 2019




The explicit form of the constraints:

The constraint expressions are projections of Ey, = Gup — Yup:

E" =nnfE.; = LH{—e "R+ (K°)? - K.; K —2¢} =0
E((IM) = EheanfEef =€ [DeKea - DaKee - Epa] =0
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The explicit form of the constraints:

The constraint expressions are projections of Ey, = Gup — Yup:

(H) (3)

E" =nnfEg=1{—¢ R+ (K%) - K K —2¢}=0
B = ehun'Bop = €[DK — DuK® — €pa] =0

a

@ where D, denotes the covariant derivative operator associated with A, and

e =nens Gef, Do = eheé n’ Ger
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The explicit form of the constraints:

The constraint expressions are projections of Ey, = Gup — Yup:

(H) (3)

E" =nnfEg=1{—¢ R+ (K%) - K K —2¢}=0
ES" = ech®on/ By = €[DeK®q — DoK®, — epg] =0

a

@ where D, denotes the covariant derivative operator associated with A, and

e =nens Gef, Do = eheé n’ Ger

@ it is an underdetermined system: 4 equations for 12 variables

(hij, Kij)
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PART II:
A simple example:

Consider the underdetermined equation on ¥ ~ R? with some coordinates (;, )

(02 +R)u+ (O — Oc)v+ (ady — OF)w+ 2= 0

@ it is an equation for the four variables u, v, w and z on X

v
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(02 +R)u+ (O — Oc)v+ (ady — OF)w+ 2= 0

@ it is an equation for the four variables u, v, w and z on X
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It is an elliptic equation for w on ¥ ~ R
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@ in solving this equation the variables v, w and z have to be specified on R?
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PART II:
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PART II:
A simple example:

It is an algebraic equation for z :

(02 +R)u+ (0F —R)v+ (ady —F)uw+2=0
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PART II:
A simple example:

It is an algebraic equation for z :

(02 +R)u+ (0F —R)v+ (ady —F)uw+2=0

@ once the variables u, v, w are specified on R? the solution is determined as

2= —[(02 4 2)u+ (82 — 0D)v+ (ady — B2)w]

v
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New variables by applying 2 + 1 decompositions:

Splitting of the metric h;;:

v

= = = =
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New variables by applying 2 + 1 decompositions:

Splitting of the metric h;;:

assume: Y~Rx.¥

>} is smoothly foliated by a one-parameter family of two-surfaces .7, :
p = const level surfaces of a smooth real function p : ¥ — R with 0;,p # 0
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New variables by applying 2 + 1 decompositions:

Splitting of the metric h;;:

assume: Y~Rx.¥

>} is smoothly foliated by a one-parameter family of two-surfaces .7, :
p = const level surfaces of a smooth real function p : ¥ — R with 0;,p # 0

@ choose p’ to be a vector field on X : the integral curves... & |pidip =1

@ ‘lapse’ and ‘shift’ of p’

pi:ﬁﬁi+ﬁi, where N:pjﬁj and Jvi:ﬁijpj

o induced metric, extrinsic curvature and acceleration of the .7, level surfaces:

~

~ A~k =l 1 ~ A~ ~ = ==
’Yij =7 j hkl Kij = 536%';' n; :=n Dmi = —Dl In NV
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New variables by applying 2 + 1 decompositions:

Splitting of the metric h;;:

assume: Y~Rx.¥

>} is smoothly foliated by a one-parameter family of two-surfaces .7, :
p = const level surfaces of a smooth real function p : ¥ — R with 0;,p # 0

@ choose p’ to be a vector field on X : the integral curves... & |pidip =1

@ ‘lapse’ and ‘shift’ of p’

pi:ﬁﬁi+ﬁi, where N:pjﬁj and Jvi:ﬁijpj

o induced metric, extrinsic curvature and acceleration of the .7, level surfaces:

~

Fig = " 75 hai Koy = 5 L ’ﬁz =n'Difi; = —D;In N

@ the metric h;; can then be given as

hij = 3ij + iy <= |{N,N,7;}

v
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2 + 1 decompositions:

Splitting of the symmetric tensor field

where
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2 + 1 decompositions:

Splitting of the symmetric tensor field K;;:

where

kil ~k =l ~k Al
K=n"n"Ky, ki =79"n"Ky and K;; =77, Ky

@ the trace and trace free parts of K;;

o~ O -~
K' ="Ky and Kj =K — 57;KY
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2 + 1 decompositions:

Splitting of the symmetric tensor field K;;:

Kz’j = K,ﬁih\j + [ﬁ1 kj —+ ﬁj kl] —+ Kij

where

kil ~k =l ~k Al
K=n"n"Ky, ki =79"n"Ky and K;; =77, Ky

@ the trace and trace free parts of K;;

o~ O -~
K' ="Ky and Kj =K — 57;KY

The new variables:

(hij, Kij) | <= | (N, N*, 35 5, ks, K4y, Kij)

A
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2 + 1 decompositions:

Splitting of the symmetric tensor field K;;:

Kz’j = K,ﬁih\j + [ﬁ1 kj —+ ﬁj kl] —+ Kij

where

kil ~k =l ~k Al
K=n"n"Ky, ki =79"n"Ky and K;; =77, Ky

@ the trace and trace free parts of K;;

o~ O -~
K' ="Ky and Kj =K — 57;KY

The new variables:

(h2]7K ) — (N,]/\}iv/’?ij;n7kiaKllaf<ij)

@ these variables retain the physically distinguished nature of h;; and Kj;

A
— = = — SaReu(
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PART II:
The momentum constraint:

D.K¢, —D,K —€p, =0
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PART II:
The momentum constraint:

D.K¢, — DyK®, — €Pa =0 "\ .

g

i=al'DA; = —D; In N ‘

Ei(Kll) — .57;[‘.2 + ﬁlf(li + (I?ll) k; + Kﬁi — ﬁl K — €P; ;y\li =0
Z(KY) — D'k — k (KY) + KK + 20l k) + ep il =0

Lok —

1
2

v

First order symmetric hyperbolic system:

A
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Z(KY) — D'k — k (KY) + KK + 20l k) + ep il =0

Lok —

1
2

v

First order symmetric hyperbolic system:

e contract (1) with 2 N 5% and mult. (2) by N, when writing them out in
coordinates (p, 2, 23), adopted to the foliation .#, and the vector field p’,
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Ei(Kll) — .57;[‘.2 + ﬁlf(li + (I?ll) k; + Kﬁi — ﬁl K — €P; ;y\li =0
Z(KY) — D'k — k (KY) + KK + 20l k) + ep il =0

First order symmetric hyperbolic system:

e contract (1) with 2 N 5% and mult. (2) by N, when writing them out in
coordinates (p, 2, 23), adopted to the foliation .#, and the vector field p’,

N S~ s k
2 ,.YAB 0 9 N _9 J/\\]‘K ,.YAB 7N1AK 9 B N {@(ﬁ) 0
0 1 P - N /'Y\BK _NK K KEE e93’(I<)
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D.K¢, — DyK®, — €Pa =0 "\ .

g

i=al'DA; = —D; In N ‘

Ei(Kll) — .57;[‘.2 + ﬁlf(li + (I?ll) k; + Kﬁi — ﬁl K — €P; ;y\li =0
Z(KY) — D'k — k (KY) + KK + 20l k) + ep il =0

First order symmetric hyperbolic system:

e contract (1) with 2 N 5% and mult. (2) by N, when writing them out in
coordinates (p, 2, 23), adopted to the foliation .#, and the vector field p’,

= = k
~AB _ o NKSAB _ N7 AAK B BA
(2% (1))8P+ 2JYA1;YK N;YK Ok + ( (k)> =0
—N7~ —N KE, B k)
@ a first order symmetric hyperbolic system for the vector valued variable
(kp,KPp)T

Lok —
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Z(KY) — D'k — k (KY) + KK + 20l k) + ep il =0

Lok —
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First order symmetric hyperbolic system:
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e contract (1) with 2 N 5% and mult. (2) by N, when writing them out in
coordinates (p, 2, 23), adopted to the foliation .#, and the vector field p’,
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The momentum constraint:

D.K¢, — DyK®, — €Pa =0 "\ .

g

i=al'DA; = —D; In N ‘

Ei(Kll) — .57;[‘.2 + ﬁlf(li + (f?ll) k; + Kﬁi — ﬁl K — €P; ;y\li =0
Z(KY) — D'k — k (KY) + KK + 20l k) + ep il =0

Lok —

1
2

First order symmetric hyperbolic system:

|

e contract (1) with 2 N 5% and mult. (2) by N, when writing them out in
coordinates (p, 2, 23), adopted to the foliation .#, and the vector field p’,

= = k
~AB _ o NKSAB _ N7 AAK B BA
(2% (1))8P+ 2JYA;K N;YK Ok + ( (k)> =0
—N7~ —N KE, B k)
@ a first order symmetric hyperbolic system for the vector valued variable
(kp,KPp)T

11T p plays the role of ‘time’ regardless of the value of e = +1

T ———
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PART II:
The Hamiltonian constraint:

The Hamiltonian constraint in terms of the new variables:

(H)

B =nenf By = L{—e "R+ (K°)? = KoK —2¢} =0
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PART II:
The Hamiltonian constraint:

The Hamiltonian constraint in terms of the new variables:

(H)
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using | "R=R— {2,%(1?’1) + (RY)? + RyRM + 21?-11311311?}

R and Ky, denote the scalar and extrinsic curvature of 7y, respectively
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The Hamiltonian constraint in terms of the new variables:
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E
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using | "R=R— {2,%(1?’1) + (RY)? + RyRM + 21?-11311311?}

R and Ky, denote the scalar and extrinsic curvature of 7y, respectively

—EE—F 6{2‘,?@(}?[1) + (I?ll)2 + I?kl I?kl + 2ﬁ_1ﬁlﬁlﬁ}

—|—2h‘,Kll—|—%(Kll)2 —2klkl —I(){klf{kl —2e=0

Alternative choices yielding evolutionary systems:

Istvdn Racz (University of Warsaw & Wigner RCP) 26 February 2019 23/30



PART II:
The Hamiltonian constraint:

The Hamiltonian constraint in terms of the new variables:

(H)

E

=nnf By = 1 {—e "R+ (K°.)? — K.; K —2¢} =0

using | "R=R— {2,%(1?’1) + (RY)? + RyRM + 21?-11311311?}

R and Ky, denote the scalar and extrinsic curvature of 7y, respectively

—EE—F 6{2‘,?@(}?[1) + (I?ll)2 + I?kl I?kl + 2ﬁ_1ﬁlﬁlﬁ}

—|—2K,Kll—|—%(Kll)2 —2klkl —I(){klf{kl —2e=0

Alternative choices yielding evolutionary systems:

@ it is a parabolic equation for (the sign of plays a role)

Istvdn Racz (University of Warsaw & Wigner RCP) 26 February 2019 23/30



PART II:
The Hamiltonian constraint:

The Hamiltonian constraint in terms of the new variables:

(H)

E

=nnf By = 1 {—e "R+ (K°.)? — K.; K —2¢} =0

using | "R=R— {2,%(1?’1) + (RY)? + RyRM + 21?-11311311?}

R and Ky, denote the scalar and extrinsic curvature of 7y, respectively

—EE—F 6{2‘,?@(}?[1) + (I?ll)2 + I?kl I?kl + 2ﬁ_1ﬁlﬁlﬁ}

—|—2K,Kll—|—%(Kll)2 —2klkl —I(){klf{kl —2e=0

Alternative choices yielding evolutionary systems:

@ it is a parabolic equation for (the sign of plays a role)

@ it is an algebraic equation for (what is if vanishes somewhere?)
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The parabolic-hyperbolic system:

—6ﬁ+6{2 gﬁ(kll) +(I?ll)2+f?klf?kl+2 Nﬁlﬁlﬁl[\\f }

+2rKh 4+ L (KY)? - 2Kk - Ky KM —2e=0

v

— = - — Ty
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The parabolic-hyperbolic system:

The Hamiltonian constraint as a p olic equation for N :

—6ﬁ+6{2 gﬁ(kll) +(I?ll)2+f?klf?kl+2 Nﬁlﬁlﬁl[\\f }

+2rKh 4+ L (KY)? - 2Kk - Ky KM —2e=0
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The parabolic-hyperbolic system:

—6ﬁ+6{2 gﬁ(kll) +(I?ll)2+f?klf?kl+2 Nﬁlﬁlﬁl[\\f }

+2rKh 4+ L (KY)? - 2Kk - Ky KM —2e=0

31 L,7;; — D;NI] = N-1K

o ‘I?ll :a”ﬁ” :Nil[

1
2

o [ Za(R\) = ~R—2K[(8,8) — (R'Du)] + N2 (8, ) — (N'Dif6)] |

v

— = - — Ty
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The parabolic-hyperbolic system:

olic equation for N :

The Hamiltonian constraint as a p

—6ﬁ+6{2 gﬁ(kll) +(I?ll)2+f?klf?kl+2 Nﬁlﬁlﬁl[\\f }

+2rKh 4+ L (KY)? - 2Kk - Ky KM —2e=0

o [ Za(R\) = ~R—2K[(8,8) — (R'Du)] + N2 (8, ) — (N'Dif6)] |

[ A=20(@,K) - N(DiK) + K 4 kg k¥
@ using ) l 1 12 l v rokl
BZ—R+E[2H(KZ)+§(KZ) —2kkl—Kle —22]

e = =yt

26 February 2019 24 /30
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The parabolic-hyperbolic system:

The Hamiltonian constraint as a p olic equation for N :

—6ﬁ+6{2 gﬁ(kll) +(I?ll)2+f?klf?kl+2 Nﬁlﬁlﬁl[\\f }

+2rKh 4+ L (KY)? - 2Kk - Ky KM —2e=0

31 L,7;; — D;NI] = N-1K

o ‘I?ll :a”ﬁ” :Nil[%

o [ Za(R\) = ~R—2K[(8,8) — (R'Du)] + N2 (8, ) — (N'Dif6)] |

A=2[(8,K) - N(DK) | + K + Ky K*

@ using -
B= —R+e[2r(KY)+ 1 (KY)? — 2Kk — Ky KM — 2¢]

@ it gets to be a Bernoulli-type parabolic partial differential equation provided that I*{

2K [(8,N) — NY(D,N)] = 2N?(D'D,N) + AN + BN3 ‘

v

— = - — Ty
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The parabolic-hyperbolic system:

The Hamiltonian constraint as a p olic equation for N :

—6ﬁ+6{2 gﬁ(kll) +(I?ll)2+f?klf?kl+2 Nﬁlﬁlﬁl[\\f }

+2rKh 4+ L (KY)? - 2Kk - Ky KM —2e=0

(] ‘I?ll :a” I?ij = Nﬁl[%fy\ijfpfy\i]‘ —ﬁjﬁj} = N*ll*(

o [ Za(R\) = ~R—2K[(8,8) — (R'Du)] + N2 (8, ) — (N'Dif6)] |

A=2[(8,K) - N(DK) | + K + Ky K*

@ using -
B= —R+e[2r(KY)+ 1 (KY)? — 2Kk — Ky KM — 2¢]

@ it gets to be a Bernoulli-type parabolic partial differential equation provided that I*{

2K [(8,N) — NY(D,N)] = 2N?(D'D,N) + AN + BN3 ‘

@ in highly specialized cases of “quasi-spherical” foliations with 7;; = 72 §;; and with time
symmetric initial data K;; = 0 R. Bartnik (1993), G. Weinstein & B. Smith (2004)
v,

— = - — Ty
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The parabolic-hyperbolic system:

The Hamiltonian constraint as a p olic equation for N :

—6ﬁ+6{2 gﬁ(kll) +(I?ll)2+f?klf?kl+2 Nﬁlﬁlﬁl[\\f }

+2rKh 4+ L (KY)? - 2Kk - Ky KM —2e=0

31 L,7;; — D;NI] = N-1K

o ‘I?ll :a”ﬁ” :Nil[%

o [ Za(R\) = ~R—2K[(8,8) — (R'Du)] + N2 (8, ) — (N'Dif6)] |

A=2[(8,K) - N(DK) | + K + Ky K*

@ using -
B= —R+e[2r(KY)+ 1 (KY)? — 2Kk — Ky KM — 2¢]

@ it gets to be a Bernoulli-type parabolic partial differential equation provided that I*{

) Qf{[(ap]\A[) 7]/\71(5#/\7)] = QNZ(BZEZN) + AN+ BN3 ‘ & momentum constr.

@ in highly specialized cases of “quasi-spherical” foliations with 7;; = 72 §;; and with time
symmetric initial data K;; = 0 R. Bartnik (1993), G. Weinstein & B. Smith (2004)
v,

— = - — Ty
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PART II:
Constraints as evolutionary systems |.

The parabolic-hyperbolic system:
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PART II:
Constraints as evolutionary systems |.

The parabolic-hyperbolic system:

~ o~

° (hij, Kij) | represented by the variables ’(N,Ni,"y}-j; n,ki,Kll,Io(ij)

= = = = = A
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PART II:

Constraints as evolutionary systems |.

The parabolic-hyperbolic system:

° (hij, Kij) | represented by the variables ‘ (N, N 73 n,ki,Kll,Io(ij)

@ the constraints comprise a parabolic-hyperbolic system for (]\A/', ki, K')
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Constraints as evolutionary systems |.

The parabolic-hyperbolic system:

° (hij, Kij) | represented by the variables ‘ (N, N 73 n,ki,Kll,Io(ij)

@ the constraints comprise a parabolic-hyperbolic system for (]\A/', ki, K')
o with freely specifiable variables on

K ‘

‘( N7 K, Ki;)
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PART II:

Constraints as evolutionary systems |.

The parabolic-hyperbolic system:

° (hij, Kij) | represented by the variables ‘ (N, N, 7:;; K, ki, Kll,Io{ij) ‘

@ the constraints comprise a parabolic-hyperbolic system for (]\A/', ki, K')

o with freely specifiable variables on and on :

‘(A\i‘ﬁ *ﬁiz:y\ij§”7k/‘5 1 'K//‘Sm.& KU)‘

n.data in.data

ata

S

indata .-~
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PART II:

Constraints as evolutionary systems |.

The parabolic-hyperbolic system:

° (hij, Kij) | represented by the variables ‘ (N, N, 7:;; K, ki, Kll,Io{ij) ‘

@ the constraints comprise a parabolic-hyperbolic system for (]\A/', ki, K')

o with freely specifiable variables on and on :

‘(A\i‘ﬁ *ﬁiz:y\ij§”7k/‘5 1 'K//‘Sm.& KU)‘

n.data in.data

ata

o a fixed (+/—) sign of ‘l*( = 15027 - ﬁjﬁj‘ can be guaranteed

S
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Constraints as evolutionary systems |.

The parabolic-hyperbolic system:
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Summary:
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@ concerning the constraint equations in Einstein’s theory it was shown:

e momentum constraint as a first order symmetric hyperbolic system

o the Hamiltonian constraint as a parabolic or an algebraic equation

e in either case the coupled constraint equations comprise a well-posed
evolutionary system: a parabolic-hyperbolic or a strongly hyperbolic,

e in C*° setting (local) existence and uniqueness of solutions are guaranteed

© !!! regardless whether the primary space is Riemannian or Lorentzian

@ !!l no use of gauge conditions

The take home message:

two explicit examples of physical interest were shown where, on contrary to the
folklore, evolutionary methods can be applied in spaces of Euclidean
signature where, in principle, there is no room for ‘time’
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