Fully constraint time evolution in Einstein theory

István Rácz

istvan.racz@fuw.edu.pl \& racz.istvan@wigner.mta.hu Faculty of Physics, University of Warsaw, Warsaw, Poland Wigner Research Center for Physics, Budapest, Hungary

Supported by the POLONEZ programme of the National Science Centre of Poland which has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 665778.

European Commission

Horizon 2020
European Union funding

Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada, 5 March 2019

How to get a fully constrained evolutionary scheme?

- one needs to uncover (intimate) relations between various parts of Einstein's equations
- spherically symmetric case
- without symmetries ? \checkmark ?

Based on

- I. Rácz: On the use of the Kodama vector field in spherically symmetric dynamical problems, Class. Quantum Grav. 23, 115-123 (2006)
- I. Rácz: Is the Bianchi identity always hyperbolic? Class. Quantum Grav. 31 (2014) 155004
- I. Rácz: Cauchy problem as a two-surface based 'geometrodynamics' Class. Quantum Grav. 32 (2015) 015006
- I. Rácz: Dynamical determination of the gravitational degrees of freedom, arXiv:1412.0667
- I. Rácz: Constraints as evolutionary systems, Class. Quantum Grav. 33015014 (2016)

Assumptions:

- The primary space: $\left(M, g_{a b}\right)$
- $M: n+1$-dim. ($n \geq 3$), smooth, paracompact, connected, orientable manifold
- $g_{a b}$: smooth Lorentzian $(-,+, \ldots,+)$ or Riemannian $(+, \ldots,+)$ metric
- Einsteinian space: Einstein's equation restricting the geometry

$$
G_{a b}-\mathscr{G}_{a b}=0
$$

with source term $\mathscr{G}_{a b}$ having a vanishing divergence, $\nabla^{a} \mathscr{G}_{a b}=0$.

- or, in a more familiarly looking setup

$$
\left[R_{a b}-\frac{1}{2} g_{a b} R\right]+\Lambda g_{a b}=8 \pi T_{a b}
$$

with matter fields satisfying their individual field equations with - energy-momentum tensor $T_{a b}$ and with cosmological constant Λ

$$
\mathscr{G}_{a b}=8 \pi T_{a b}-\Lambda g_{a b}
$$

Dynamics in the spherically symmetric case:

- ! $(t, r, \theta, \phi)-r$ is the area radius: $\quad \mathcal{A}=4 \pi r^{2}$
- the line element is

$$
\mathrm{d} s^{2}=-A \mathrm{~d} t^{2}+B \mathrm{~d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin \theta^{2} \mathrm{~d} \phi^{2}\right)
$$

A and B are assumed to be smooth functions of the coordinates t and r

- $E_{a b}=G_{a b}-\mathscr{G}_{a b}$ with only 'four' non-trivial components: $E_{t t}, E_{t r}, E_{r r}, E_{\theta \theta}$
- $\nabla^{a} \mathscr{G}_{a b}=0 \Rightarrow \nabla^{a} E_{a b}=0$ (with only two non-trivial components: ' t ' and ' r ')

$$
\begin{array}{r}
-2 A B^{2} r\left(\frac{\partial}{\partial t} E_{t t}\right)+2 B^{2} r E_{t t} \frac{\partial}{\partial t} A+A B r E_{t r}\left(\frac{\partial}{\partial r} A\right)+2 A^{2} B r\left(\frac{\partial}{\partial r} E_{t r}\right) \\
-A B r E_{t t}\left(\frac{\partial}{\partial t} B\right)-A^{2} r E_{t r} \frac{\partial}{\partial r} B-A^{2} r E_{r r} \frac{\partial}{\partial t} B+4 A^{2} B E_{t r}=0 \\
2 A B^{2} r^{3}\left(\frac{\partial}{\partial t} E_{t r}\right)-B^{2} r^{3} E_{t t} \frac{\partial}{\partial r} A-B^{2} r^{3} E_{t r} \frac{\partial}{\partial t} A+A B r^{3} E_{t r}\left(\frac{\partial}{\partial t} B\right) \\
-A B r^{3} E_{r r}\left(\frac{\partial}{\partial r} A\right)-2 A^{2} B r^{3}\left(\frac{\partial}{\partial r} E_{r r}\right)+2 A^{2} r^{3} E_{r r} \frac{\partial}{\partial r} B \\
-4 A^{2} B r^{2} E_{r r}+4 A^{2} B^{2} E_{\theta \theta}=0
\end{array}
$$

The standard argument:

- assume that the evolution equations hold: $E_{r r}=0$ and $E_{\theta \theta}=0$
- the constraints propagate: $E_{t t}=0$ and $E_{t r}=0$

$$
\begin{array}{r}
-2 A B^{2} r\left(\frac{\partial}{\partial t} E_{t t}\right)+2 B^{2} r E_{t t} \frac{\partial}{\partial t} A+A B r E_{t r}\left(\frac{\partial}{\partial r} A\right)+2 A^{2} B r\left(\frac{\partial}{\partial r} E_{t r}\right) \\
-A B r E_{t t}\left(\frac{\partial}{\partial t} B\right)-A^{2} r E_{t r} \frac{\partial}{\partial r} B-A^{2} r E_{r r} \frac{\partial}{\partial t} B+4 A^{2} B E_{t r}=0 \\
2 A B^{2} r^{3}\left(\frac{\partial}{\partial t} E_{t r}\right)-B^{2} r^{3} E_{t t} \frac{\partial}{\partial r} A-B^{2} r^{3} E_{t r} \frac{\partial}{\partial t} A+A B r^{3} E_{t r}\left(\frac{\partial}{\partial t} B\right) \\
-A B r^{3} E_{r}\left(\frac{\partial}{\partial r} A\right)-2 A^{2} B r^{3}\left(\frac{\partial}{\partial r} E_{r r}\right)+2 A^{2} r^{3} E_{r r} \frac{\partial}{\partial r} B \\
-4 A^{2} B r^{2} E_{r r}+4 A^{2} B^{2} E_{\theta \theta}
\end{array}=0
$$

- a first-order strongly hyperbolic system for $E_{t t}, E_{t r}$ linear \& homogeneous
- if they vanish on one of the $t=$ const time-level surface they vanish on each

The non-standard argument:

- assume that one of the constraints $E_{t t}=0$ and one of the evolutionary equations $E_{r r}=0$ hold on each of the $t=$ const time-level surfaces

$$
\begin{aligned}
& -2 A B^{2} r\left(\frac{\partial}{\partial t} E_{t t}\right)+2 B^{2} r E_{t t} \frac{\partial}{\partial t} A+A B r E_{t r}\left(\frac{\partial}{\partial r} A\right)+2 A^{2} B r\left(\frac{\partial}{\partial r} E_{t r}\right) \\
& -A B r E_{t r}\left(\frac{\partial}{\partial t} B\right)-A^{2} r E_{t r} \frac{\partial}{\partial r} B-A^{2} r E_{r r} \frac{\partial}{\partial t} B+4 A^{2} B E_{t r}=0 \\
& \frac{2 A B^{2} r^{3}\left(\frac{\partial}{\partial t} E_{t r}\right)-B^{2} r^{3} E_{t t} \frac{\partial}{\partial r} A-B^{2} r^{3} E_{t r} \frac{\partial}{\partial t} A+A B r^{3} E_{t r}\left(\frac{\partial}{\partial t} B\right)}{-A B r^{3} E_{r r}\left(\frac{\partial}{\partial r} A\right)-2 A^{2} B r^{3}\left(\frac{\partial}{\partial r} E_{r r}\right)+2 A^{2} r^{3} E_{r r} \frac{\partial}{\partial r} B} \\
& -4 A^{2} B r^{2} E_{r r}+4 A^{2} B^{2} E_{\theta \theta}=0
\end{aligned}
$$

- the firts equation is a first-order ODE for $E_{t r}$ linear and homogeneous $\Rightarrow E_{t r} \equiv 0$ on any of the time-level surfaces if $E_{t r}=0$ at the origin!!!
- the second equation implies that $E_{\theta \theta}$ vanishes everywhere

The case of a scalar field 'ala Choptuik':

$$
T_{a b}=\nabla_{a} \psi \nabla_{b} \psi-\frac{1}{2} g_{a b} \nabla^{e} \psi \nabla_{e} \psi
$$

and using the auxiliary variables

$$
\Phi=\frac{\partial}{\partial r} \psi, \quad \Pi=\sqrt{\frac{B}{A}} \frac{\partial}{\partial t} \psi
$$

- $\nabla^{e} \nabla_{e} \psi=0 \Rightarrow \frac{\partial}{\partial t} \Phi=\frac{\sqrt{\frac{A}{B}}\left(r\left(\frac{\partial}{\partial r} \Pi\right)+\Pi(1-B)\right)}{r}$
- $E_{t t}=0 \quad \Rightarrow \quad \frac{\partial}{\partial r} B=\frac{B(1-B)}{r}+4 \pi r B\left(\Pi^{2}+\Phi^{2}\right) \quad\left(\left.B\right|_{r=0}=1\right)$
- $E_{t r}=0 \quad \Rightarrow \quad \frac{\partial}{\partial t} B=8 \pi r \Phi \Pi \sqrt{A B}$
$\left(\left.B\right|_{r=0}=1!!!\right)$
- $E_{r r}=0 \Rightarrow \quad \frac{\partial}{\partial r} A=-\frac{A(1-B)}{r}+4 \pi r A\left(\Pi^{2}+\Phi^{2}\right)$.

The primary $n+1$ splitting:

No restriction on the topology by Einstein's equations! (local PDEs)

- Assume: M is foliated by a one-parameter family of homologous hypersurfaces, i.e. $M \simeq \mathbb{R} \times \Sigma$, for some codimension-one manifold Σ.
- known to hold for globally hyperbolic spacetimes (Lorentzian case)
- equivalent to the existence of a smooth function $\sigma: M \rightarrow \mathbb{R}$ with non-vanishing gradient $\nabla_{a} \sigma$ such that the $\sigma=$ const level surfaces $\Sigma_{\sigma}=\{\sigma\} \times \Sigma$ comprise the one-parameter foliation of M.

The main creatures:

- n^{a} the 'unit norm' vector field that is normal to the Σ_{σ} level surfaces

$$
n^{a} n_{a}=\epsilon
$$

- ϵ takes the value -1 or +1 for Lorentzian or Riemannian metric $g_{a b}$, resp.
- the projection operator

$$
h_{a}^{b}=\delta_{a}^{b}-\epsilon n_{a} n^{b}
$$

- the metric induced

$$
h_{a b}=h_{a}{ }^{e} h_{b}{ }^{f} g_{e f}=g_{a b}-\epsilon n_{a} n_{b}
$$

- the covariant derivative operator D_{a} associated with $h_{a b}: \forall \omega_{b}$ on Σ

$$
D_{a} \omega_{b}:=h_{a}{ }^{d} h_{b}{ }^{e} \nabla_{d} \omega_{e}
$$

- the extrinsic curvature and the acceleration of n^{a} on Σ

$$
K_{a b}=h_{a}^{e} \nabla_{e} n_{b}=\frac{1}{2} \mathscr{L}_{n} h_{a b}
$$

$$
\dot{n}_{a}:=n^{e} \nabla_{e} n_{a}
$$

Decompositions of various fields:

arbitrary symmetric tensor field $P_{a b}$ on M can be decomposed
in terms of n^{a} and fields living on the $\sigma=$ const level surfaces as

$$
P_{a b}=\boldsymbol{\pi} n_{a} n_{b}+\left[n_{a} \mathbf{p}_{b}+n_{b} \mathbf{p}_{a}\right]+\mathbf{P}_{a b}
$$

where

$$
\boldsymbol{\pi}=n^{e} n^{f} P_{e f}, \quad \mathbf{p}_{a}=\epsilon h_{a}^{e} n^{f} P_{e f}, \quad \mathbf{P}_{a b}=h_{a}^{e} h_{b}^{f} P_{e f}
$$

decomposition of the contraction $\nabla^{a} P_{a b}$:

$$
\begin{aligned}
\epsilon\left(\nabla^{a} P_{a e}\right) n^{e} & =\mathscr{L}_{n} \boldsymbol{\pi}+D^{e} \mathbf{p}_{e}+\left[\boldsymbol{\pi}\left(K^{e}{ }_{e}\right)-\epsilon \mathbf{P}_{e f} K^{e f}-2 \epsilon \dot{n}^{e} \mathbf{p}_{e}\right] \\
\left(\nabla^{a} P_{a e}\right) h^{e}{ }_{b} & =\mathscr{L}_{n} \mathbf{p}_{b}+D^{e} \mathbf{P}_{e b}+\left[\left(K^{e}{ }_{e}\right) \mathbf{p}_{b}+\dot{n}_{b} \boldsymbol{\pi}-\epsilon \dot{n}^{e} \mathbf{P}_{e b}\right]
\end{aligned}
$$

I.h.s. of Einstein's equation: $E_{a b}=G_{a b}-\mathscr{C}_{a b}$

$$
E_{a b}=n_{a} n_{b} E^{(\mathcal{H})}+\left[n_{a} E_{b}^{(\mathcal{M})}+n_{b} E_{a}^{(\mathcal{M})}\right]+\left(E_{a b}^{(\mathcal{V} \mathcal{O L})}+h_{a b} E^{(\mathcal{H})}\right)
$$

$$
E^{(\mathcal{H})}=n^{e} n^{f} E_{e f}, \quad E_{a}^{(\mathcal{M})}=\epsilon h_{a}^{e} n^{f} E_{e f}, \quad E_{a b}^{(\mathcal{E V O L})}=h_{a}^{e} h_{b}^{f} E_{e f}-h_{a b} E^{(\mathcal{H})}
$$

Relations between various parts of Einstein's equations:

$$
\begin{aligned}
& \mathscr{L}_{n} E^{(\mathcal{H})}+D^{e} E_{e}^{(\mathcal{M})}+ {\left[E^{(\mathcal{H})}\left(K_{e}^{e}\right)-2 \epsilon\left(\dot{n}^{e} E_{e}^{(\mathcal{M})}\right)\right.} \\
&\left.-\epsilon K^{a e}\left(E_{a e}^{(\mathcal{V} \mathcal{L})}+h_{a e} E^{(\mathcal{H})}\right)\right]=0 \\
& \mathscr{L}_{n} E_{b}^{(\mathcal{M})}+D^{a}\left(E_{a b}^{(\mathcal{E} \mathcal{O L})}+h_{a b} E^{(\mathcal{H})}\right)+\left[\left(K_{e)}^{e} E_{b}^{(\mathcal{M})}+E^{(\mathcal{H})} \dot{n}_{b}\right.\right. \\
&\left.-\epsilon\left(E_{a b}^{(\mathcal{E} \mathcal{V} \mathcal{L})}+h_{a b} E^{(\mathcal{H})}\right) \dot{n}^{a}\right]=0
\end{aligned}
$$

reverse the argument

If the constraint expressions $E^{(\mathcal{H})}$ and $E_{a}^{(\mathcal{M})}$ vanish on the $\sigma=$ const level surfaces then the relations

$$
\begin{aligned}
K^{a b} E_{a b}^{(\mathcal{E V O L})} & =0 \\
D^{a} E_{a b}^{(\mathcal{E} \mathcal{O L})}-\epsilon \dot{n}^{a} E_{a b}^{(\mathcal{E} \mathcal{O L})} & =0
\end{aligned}
$$

hold for the evolutionary expression $E_{a b}^{(\mathcal{E V O L})}$

$$
h^{e}{ }_{a} h^{f}{ }_{b} E_{e f}=E_{a b}^{(\mathcal{E V O L})}+h_{a b} E^{(\mathcal{V})}
$$

The secondary $[n-1]+1$ splitting:

Assume that on one of the $\sigma=$ const level surfaces-say on Σ_{0}, for some $\sigma=\sigma_{0}(\in \mathbb{R})$,—there exists a smooth function $\rho: \Sigma_{0} \rightarrow \mathbb{R}$, with (a.e.—almost everywhere) non-vanishing gradient, $\partial_{i} \rho$, such that:

- the $\rho=$ const level surfaces \mathscr{S}_{ρ} provide a one-parameter foliation of Σ_{0}

- the metric $h_{i j}$ on Σ_{0} can be decomposed as

$$
h_{i j}=\widehat{\gamma}_{i j}+\widehat{n}_{i} \widehat{n}_{j} \quad \text { where } \widehat{\gamma}_{i j}=\widehat{\gamma}^{k}{ }_{i} \widehat{\gamma}_{j}^{l} h_{i j} \text { with } \widehat{\gamma}^{i}{ }_{j}=\delta^{i}{ }_{j}-\widehat{n}^{i} \widehat{n}_{j}
$$

in terms of the positive definite metric $\widehat{\gamma}_{i j}$, induced on the \mathscr{S}_{ρ} hypersurfaces,

- the secondary extrinsic curvature and the acceleration of \widehat{n}^{a} on the \mathscr{S}_{ρ} hypersurfaces

$$
\widehat{K}_{i j}=\frac{1}{2} \mathscr{L}_{\widehat{n}} \widehat{\gamma}_{i j} \quad \dot{\hat{n}}_{i}:=\widehat{n}^{l} D_{l} \widehat{n}_{i}
$$

The two-parameter family of foliations:

The Lie drag this foliation of Σ_{0} along the integral curves of the vector field σ^{a} yields then a two-parameter family of foliating surfaces: $\mathscr{S}_{\sigma, \rho}$

- the fields $\widehat{n}^{i}, \widehat{\gamma}_{i j}$ and the projection $\widehat{\gamma}^{k}{ }_{l}=h^{k}{ }_{l}-\widehat{n}^{k} \widehat{n}_{l}$, to the codimension-two surfaces $\mathscr{S}_{\sigma, \rho}$, get to be well-defined on each of the individual $\sigma=$ const hypersurfaces

Recasting the reduced Einstein equations:

the kinematical background $\longrightarrow[n-1]+1$ decomposition of $E_{a b}^{(\varepsilon v O C)}$

$$
h_{b}{ }^{e} h_{d}{ }^{f} R_{e f}={ }^{(n)} R_{b d}+\epsilon\left\{-\mathscr{L}_{n} K_{b d}-K_{b d} K_{e}{ }^{e}+2 K_{b}{ }^{e} K_{d e}-\epsilon N^{-1} D_{b} D_{d} N\right\}
$$

$$
R={ }^{(n)} R+\epsilon\left\{-2 \mathscr{L}_{n}\left(K_{b d} h^{b d}\right)-\left(K_{e}^{e}\right)^{2}-K_{e f} K^{e f}-2 \epsilon N^{-1} D^{e} D_{e} N\right\}
$$

one gets

$$
\begin{aligned}
\hline h_{b}{ }^{e} h_{d}{ }^{f} E_{e f} & =h_{b}{ }^{e} h_{d}{ }^{f}\left\{\left[R_{e f}-\frac{1}{2} g_{e f} R\right]-\mathscr{G}_{b d}\right\}=h_{b}{ }^{e} h_{d}{ }^{f}\left\{\left[R_{e f}-\frac{1}{2} h_{e f} R\right]-\mathscr{G}_{b d}\right\} \\
& =\left[{ }^{(n)} R_{b d}-\frac{1}{2} h_{e f}{ }^{(n)} R\right]-{ }^{(n)} \mathscr{G}_{b d}={ }^{(n)} G_{b d}-{ }^{(n)} \mathscr{G}_{b d}={ }^{(n)} E_{b d}
\end{aligned}
$$

where

$$
\begin{aligned}
{ }^{(n)} \mathscr{G}_{a b}=\mathfrak{S}_{a b} & -\epsilon\left\{-\mathscr{L}_{n} K_{a b}-\left(K_{e}^{e}\right) K_{a b}+2 K_{a e} K_{b}^{e}-\epsilon N^{-1} D_{a} D_{b} N\right. \\
& \left.+h_{a b}\left[\mathscr{L}_{n}\left(K_{e}^{e}\right)+\frac{1}{2}\left(K_{e}^{e}\right)^{2}+\frac{1}{2} K_{e f} K^{e f}+\epsilon N^{-1} D^{e} D_{e} N\right]\right\}
\end{aligned}
$$

$$
{ }^{(n)} E_{i j}=\widehat{E}^{(\mathcal{H})} \widehat{n}_{i} \widehat{n}_{j}+\left[\widehat{n}_{i} \widehat{E}_{j}^{(\mathcal{M})}+\widehat{n}_{j} \widehat{E}_{i}^{(\mathcal{M})}\right]+\left(\widehat{E}_{i j}^{(\mathcal{E V O L})}+\widehat{\gamma}_{i j} \widehat{E}^{(\mathcal{H})}\right)
$$

$\widehat{E}^{(\mathcal{H})}=\widehat{n}^{e} \widehat{n}^{f(n)} E_{e f}, \quad \widehat{E}_{i}^{(\mathcal{M})}=\widehat{\gamma}^{e}{ }_{j} \widehat{n}^{f(n)} E_{e f}, \quad \widehat{E}_{i j}^{(\mathcal{E V O L})}=\widehat{\gamma}^{e}{ }_{i} \widehat{\gamma}^{f}{ }_{j}{ }^{(n)} E_{e f}-\widehat{\gamma}_{i j} \widehat{E}^{(\mathcal{H})}$

Relations between various parts of the basic equations:

Substituting the $[n-1]+1$ splitting of ${ }^{(n)} E_{i j}$:

$$
\begin{aligned}
K^{a b^{(n)}} E_{a b} & =0 \\
D^{a}\left[{ }^{(n)} E_{a b}\right]-\epsilon \dot{n}^{(n)} E_{a b} & =0
\end{aligned}
$$

as

$$
{ }^{(n)} E_{a b}=h^{e}{ }_{a} h^{f}{ }_{b} E_{e f}=E_{a b}^{(\mathcal{E} \mathcal{O L})}+h_{a b} E^{(\eta)}
$$

$$
\begin{aligned}
K^{a b}{ }^{(n)} E_{a b} & =\boldsymbol{\kappa} \widehat{E}^{(\mathcal{H})}+2 \mathbf{k}^{e} \widehat{E}_{e}^{(\mathcal{M})}+\mathbf{K}^{e f} \widehat{E}_{f t}^{(\mathcal{E V O L})}+\left(\mathbf{K}^{e} e\right) \widehat{E}^{(\mathcal{H})} \\
\dot{n}^{a(n)} E_{a b} & =\left[\left(\widehat{n}_{a} \dot{n}^{a}\right) \widehat{E}^{(\mathcal{H})}+\left(\dot{n}^{a} \widehat{E}_{a}^{(\mathcal{M})}\right)\right] \widehat{n}_{b}+\left(\widehat{n}_{a} \dot{n}^{a}\right) \widehat{E}_{b}^{(\mathcal{M})}+\dot{n}^{a}\left[\widehat{E}_{a b}^{(\mathcal{E} V C)}+\widehat{\gamma}_{a b} \widehat{E}^{(\mathcal{H})}\right]
\end{aligned}
$$

$$
\widehat{n}^{e} D^{a}\left[{ }^{(n)} E_{a e}\right]=\mathscr{L}_{\widehat{n}} \widehat{E}^{(\mathcal{H})}+\widehat{D}^{e} \widehat{E}_{e}^{(\mathcal{M})}+\left(\widehat{K}_{e}^{e}\right) \widehat{E}^{(\mathcal{H})}-\left[\widehat{E}_{e f}^{(\mathcal{E V O K})}+\widehat{\gamma}_{e f} \widehat{E}^{(\mathcal{H})}\right] \widehat{K}^{e f}-2 \dot{\bar{n}}^{e} \widehat{E}_{e}^{(\mathcal{M})}
$$

$$
\widehat{\gamma}^{e}{ }_{b} D^{a}\left[{ }^{(n)} E_{a e}\right]=\mathscr{L}_{\widehat{n}} \widehat{E}_{b}^{(\mathcal{M})}+\widehat{D}^{e}\left[\widehat{E}_{e b}^{(\mathcal{E} V O G}+\widehat{\gamma}_{e b} \widehat{E}^{(\mathcal{H})}\right]+\left(\widehat{K}^{e}{ }_{e}\right) \widehat{E}_{b}^{(\mathcal{M})}-\dot{\hat{n}}^{e} \widehat{E}_{e b}^{(\mathcal{E V O c})}
$$

$$
\begin{aligned}
& \mathscr{L}_{\widehat{n}} \widehat{E}^{(\mathcal{H})}+\widehat{\gamma}^{e f} \widehat{D}_{e} \widehat{E}_{f}^{(\mathcal{M})}=\widehat{\mathscr{E}} \\
& \mathscr{L}_{\widehat{n}} \widehat{E}_{b}^{(\mathcal{M})}+\widehat{D}_{b} \widehat{E}^{(\mathcal{H})}=\widehat{\mathscr{E}}_{b}
\end{aligned}
$$

$\Longrightarrow \mathbf{I F} \widehat{E}_{e f}^{(\mathcal{E V O L})}=0$ holds: a linear and homogeneous FOSH for $\left(\widehat{E}^{(\mathcal{H})}, \widehat{E}_{i}^{(\mathcal{M})}\right)^{T}$

A fully constrained evolutionary scheme?

Theorem

- Assume that the primary constraint expressions $E^{(\mathcal{H})}$ and $E_{a}^{(\mathcal{M})}$ vanish on the $\sigma=$ const level surfaces, also that
- the secondary constraint expressions $\widehat{E}^{(\mathcal{H})}$ and $\widehat{E}_{a}^{(\mathcal{M})}$ vanish along the hypersurface yielded by the Lie dragging, $\mathscr{W}_{\rho_{0}}=\Phi_{\sigma}\left[\mathscr{S}_{\rho_{0}}\right]$, of one of the level surfaces $\mathscr{S}_{\rho_{0}}$ foliating Σ_{0}.
$\bullet \Longrightarrow$
Then, to get solutions to the full set of Einstein's equations $G_{a b}-\mathscr{G}_{a b}=0$ it suffices-regardless whether the primary metric $g_{a b}$ is Riemannian or Lorentzian-to solve, in addition, only the secondary reduced equations $\widehat{E}_{i j}^{(\mathcal{E} \mathcal{O L})}=0$.

Remark (i).: the Lie dragging is done by using the one-parameter group of diffeomorphisms, Φ_{σ}, associated by the "time evolution vector field" σ^{a} - could be only a world-line

Remark (ii): if one wants to setup an initial-boundary value problem on either side of the hypersurface $\mathscr{W}_{\rho_{0}}$ the previous theorem provides a clear mean to identify the geometrical freedom we have on $\mathscr{W}_{\rho_{0}}$

