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How to get a fully constrained evolutionary scheme?

one needs to uncover (intimate) relations between various parts of Einstein’s
equations

spherically symmetric case X
without symmetries ?X?

Based on
I. Rácz: On the use of the Kodama vector field in spherically symmetric dynamical
problems, Class. Quantum Grav. 23, 115-123 (2006)

I. Rácz: Is the Bianchi identity always hyperbolic?
Class. Quantum Grav. 31 (2014) 155004

I. Rácz: Cauchy problem as a two-surface based ‘geometrodynamics’
Class. Quantum Grav. 32 (2015) 015006

I. Rácz: Dynamical determination of the gravitational degrees of freedom, arXiv:1412.0667

I. Rácz: Constraints as evolutionary systems, Class. Quantum Grav. 33 015014 (2016)
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Assumptions:

The primary space: (M, gab)
M : n+ 1-dim. (n ≥ 3), smooth, paracompact, connected, orientable manifold
gab: smooth Lorentzian(−,+,...,+) or Riemannian(+,...,+) metric

Einsteinian space: Einstein’s equation restricting the geometry

Gab − Gab = 0

with source term Gab having a vanishing divergence, ∇aGab = 0.

or, in a more familiarly looking setup

[Rab − 1
2
gabR ] + Λ gab = 8π Tab

with matter fields satisfying their individual field equations with
energy-momentum tensor Tab and with cosmological constant Λ

Gab = 8π Tab − Λ gab
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Dynamics in the spherically symmetric case:

! (t, r, θ, φ) — r is the area radius: A = 4πr2

the line element is ds2 = −Adt2 +Bdr2 + r2(dθ2 + sinθ2dφ2)

A and B are assumed to be smooth functions of the coordinates t and r

Eab = Gab − Gab with only ‘four’ non-trivial components: Ett, Etr, Err, Eθθ

∇aGab = 0 ⇒ ∇aEab = 0 (with only two non-trivial components: ‘t’ and ‘r’)
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The standard argument:

assume that the evolution equations hold: Err = 0 and Eθθ = 0

the constraints propagate: Ett = 0 and Etr = 0
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a first-order strongly hyperbolic system for Ett, Etr linear & homogeneous

if they vanish on one of the t = const time-level surface they vanish on each
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The non-standard argument:

assume that one of the constraints Ett = 0 and one of the evolutionary

equations Err = 0 hold on each of the t = const time-level surfaces
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the firts equation is a first-order ODE for Etr linear and homogeneous

⇒ Etr ≡ 0 on any of the time-level surfaces if Etr = 0 at the origin!!!

the second equation implies that Eθθ vanishes everywhere
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The case of a scalar field ‘ala Choptuik’:

Tab = ∇aψ∇bψ − 1
2gab∇

eψ∇eψ

and using the auxiliary variables
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The primary n+ 1 splitting:

No restriction on the topology by Einstein’s equations! (local PDEs)

Assume: M is foliated by a one-parameter family of homologous
hypersurfaces, i.e. M ' R× Σ, for some codimension-one manifold Σ.

known to hold for globally hyperbolic spacetimes (Lorentzian case)
equivalent to the existence of a smooth function σ : M → R with
non-vanishing gradient ∇aσ such that the σ = const level surfaces
Σσ = {σ} × Σ comprise the one-parameter foliation of M .
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The main creatures:

na the ‘unit norm’ vector field that is normal to the Σσ level surfaces

nana = ε

ε takes the value −1 or +1 for Lorentzian or Riemannian metric gab, resp.

the projection operator

ha
b = δa

b − ε nanb

the metric induced

hab = ha
ehb

f gef = gab − ε nanb
the covariant derivative operator Da associated with hab: ∀ ωb on Σ

Daωb := ha
dhb

e∇d ωe
the extrinsic curvature and the acceleration of na on Σ

Kab = hea∇enb = 1
2 Lnhab ṅa := ne∇ena
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Decompositions of various fields:
arbitrary symmetric tensor field Pab on M can be decomposed

in terms of na and fields living on the σ = const level surfaces as

Pab = π nanb + [na pb + nb pa] + Pab

where π = nenf Pef , pa = ε hean
f Pef , Pab = heah

f
b Pef

decomposition of the contraction ∇aPab:

ε (∇aPae)ne = Lnπ +Depe + [π (Ke
e)− εPefKef − 2 ε ṅepe]

(∇aPae)heb = Lnpb +DePeb + [(Ke
e)pb + ṅb π − ε ṅePeb]

l.h.s. of Einstein’s equation: Eab = Gab − Gab

Eab = nanbE
(H)

+ [naE
(M)

b + nbE
(M)

a ] + (E
(EVOL)

ab + habE
(H)

)

E
(H)

= nenf Eef , E
(M)

a = ε hean
f Eef , E

(EVOL)

ab = heah
f
bEef − habE

(H)
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Relations between various parts of Einstein’s equations:

Ln E
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reverse the argument

If the constraint expressions E
(H)

and E
(M)

a vanish on the σ = const level
surfaces then the relations
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hold for the evolutionary expression E
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The secondary [n− 1] + 1 splitting:

Assume that on one of the σ = const level surfaces—say on Σ0, for some
σ = σ0 (∈ R),—there exists a smooth function ρ : Σ0 → R, with (a.e.—almost
everywhere) non-vanishing gradient, ∂iρ, such that:

the ρ = const level surfaces Sρ provide a one-parameter foliation of Σ0
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the metric hij on Σ0 can be decomposed as

hij = γ̂ij + n̂in̂j where γ̂ij = γ̂kiγ̂
l
jhij with γ̂ij = δij − n̂in̂j

in terms of the positive definite metric γ̂ij , induced on the Sρ hypersurfaces,
the secondary extrinsic curvature and the acceleration of n̂a on the Sρ

hypersurfaces

K̂ij = 1
2

Ln̂γ̂ij ˙̂ni := n̂lDln̂i
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The two-parameter family of foliations:

The Lie drag this foliation of Σ0 along the integral curves of the vector field σa

yields then a two-parameter family of foliating surfaces: Sσ,ρ

Σσ
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σ
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the fields n̂i, γ̂ij and the projection γ̂kl = hkl − n̂kn̂l , to the

codimension-two surfaces Sσ,ρ, get to be well-defined on each of the
individual σ = const hypersurfaces
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Recasting the reduced Einstein equations:

the kinematical background =⇒ [n− 1] + 1 decomposition of E
(EVOL)

ab
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Relations between various parts of the basic equations:

Substituting the [n− 1] + 1 splitting of
(n)

Eij :
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(M)

b + D̂e[��
��

Ê
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= Êb
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i )T
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A fully constrained evolutionary scheme?

Theorem

Assume that the primary constraint

expressions E
(H)

and E
(M)

a vanish on
the σ = const level surfaces, also that

the secondary constraint expressions

Ê
(H)

and Ê
(M)

a vanish along the
hypersurface yielded by the Lie
dragging, Wρ0 = Φσ[Sρ0 ], of one of
the level surfaces Sρ0 foliating Σ0.

=⇒
Then, to get solutions to the full set
of Einstein’s equations Gab − Gab = 0
it suffices—regardless whether the
primary metric gab is Riemannian
or Lorentzian—to solve, in addition,
only the secondary reduced equations

Ê
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Remark (i).: the Lie dragging is done by
using the one-parameter group of

diffeomorphisms, Φσ , associated by the
“time evolution vector field” σa

— could be only a world-line

Remark (ii): if one wants to setup an
initial-boundary value problem on either

side of the hypersurface Wρ0 the previous
theorem provides a clear mean to identify
the geometrical freedom we have on Wρ0
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