Fully constraint time evolution in Einstein theory
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How to get a fully constrained evolutionary scheme?

@ one needs to uncover (intimate) relations between various parts of Einstein's
equations

o spherically symmetric case
o without symmetries 7v'7

Based on

@ |. Rdcz: On the use of the Kodama vector field in spherically symmetric dynamical
problems, Class. Quantum Grav. 23, 115-123 (2006)

@ |. Racz: Is the Bianchi identity always hyperbolic?
Class. Quantum Grav. 31 (2014) 155004

@ |. Rédcz: Cauchy problem as a two-surface based ‘geometrodynamics’
Class. Quantum Grav. 32 (2015) 015006

|. Racz: Dynamical determination of the gravitational degrees of freedom, arXiv:1412.0667

|. Récz: Constraints as evolutionary systems, Class. Quantum Grav. 33 015014 (2016)
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ssumptions:

o The primary space: (M, g.)

e M : n+1-dim. (n > 3), smooth, paracompact, connected, orientable manifold
® gab: smooth Lorentzian_ | . 4y or Riemannian( . ) metric

o Einsteinian space: Einstein's equation restricting the geometry

Gab - gab =0

with source term ¥,; having a vanishing divergence, V%9, ;, = 0.

e or, in a more familiarly looking setup

[Rab — % gab R] + A gap = 87 Tas

with matter fields satisfying their individual field equations with
, energy-momentum tensor Tap and with cosmological constant A

gab = 87 Tab - Agab

v
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Dynamics in the spherically symmetric case:
o ! |(t,r,0,0)| — ris the area radius:

o the line element is | ds? = —Adt? + Bdr? + r2(d6? + sinf?d¢?)

A and B are assumed to be smooth functions of the coordinates ¢ and r

° ‘Eab =Gap — Y ‘ with only ‘four' non-trivial components: ‘Ett, FEiry Err, Ego ‘

° ‘V“gab =0= VeE, = 0‘ (with only two non-trivial components: ‘t' and ‘r’)

2 0 2 0 0 2 0
—2AB T (8tEtt> +QB rEttatA+AB7"Etr (aTA> +2A Br <87‘EN‘)

15) 2 1o} 2 0 2 _
AB’I‘Ett (EB> A T‘EtTEB A TETTEB =+ 4A BEtr =0
2 3( 0 2 3 0 2 3 0 3 5]
2AB T (8tEtT) B°r Ett aTA B°r Etr 8tA+ABT’ Etr (8tB)
— ABr°E,., 9 4\ — 242" QEM +2A2r3EMQB
or or or
—4A’Br’E,, + 4 A’B*Egy = 0
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The standard argument:

@ assume that the evolution equations hold: ‘Er,« =0 and Eyg = 0‘

@ the constraints propagate: ‘Ett =0and E;. = 0‘

2 0 2 0 0 ) 0
_ @ 9 (2 2A42Br ( LB,
2AB T <8t Ett + 2B T’Ett 8tA + ABTEt BTA + T 87‘ t
15) 2 0 2 2
— ABTEtt (aB) — A TEtTEB — A 7‘7‘&.8 4 414 B Etr =0

2 AB%*® ( J E”) BBy — 9 A— BzrsE”g A+ ABr®E,, (QB)

or
—ALA/BT‘LE:-F 00 = 0

@ a first-order strongly hyperbolic system for linear & homogeneous
o if they vanish on one of the t = const time-level surface they vanish on each
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The non-standard argument:

@ assume that one of the constraints and one of the evolutionary

equations hold on each of the t = const time-level surfaces

—2AB? 9 ” +2/B27/E{%+ABTE” 9 4) +242Br (2R,
or or
~ ABrEA5 B 7A2rEtr—B M+4A2BE”_O
248 2T, | - Btk A~ B ,T—A+A}Ew%f)
_W_M A2 3

—A,A/Brzﬂ—i—élAQB Ego =0

@ the firts equation is a first-order ODE for linear and homogeneous

= on any of the time-level surfaces if at the origin!!!

@ the second equation implies that vanishes everywhere
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The case of a scalar field ‘ala Choptuik’:

Tap = VahVpih — %gabveq/}veﬂ}

and using the auxiliary variables

_ 9 _ /Ba
=g, H=1/Z5

(r(&£M)+1(1 - B))

Yl

A

[l
N

e | VV=0|=

,
°[Bu=0] = |§B=2CEiu4rrB(IP+ %) (Blo=1)
o [EB,=0] = ‘%B:SWMI)H\/AB‘ (Blrmo = 1 111
°|E,=0 = 2 A=-202B) 4 yrrA(D + @%).
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The primary n + 1 splitting:

No restriction on the topology by Einstein's equations! (local PDEs)

@ Assume: M is foliated by a one-parameter family of homologous
hypersurfaces, i.e. M ~ R x ¥, for some codimension-one manifold X.

e known to hold for globally hyperbolic spacetimes (Lorentzian case)

o equivalent to the existence of a smooth function o : M — R with
non-vanishing gradient Vo such that the o = const level surfaces
Yo = {0} x X comprise the one-parameter foliation of M.

v
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The main creatures:

@ n® the ‘unit norm’ vector field that is normal to the X, level surfaces

o ¢ takes the value —1 or +1 for Lorentzian or Riemannian metric gqp, resp.

o the projection operator

‘ ha? = 8,° — engn® ‘

@ the metric induced

‘ hap = haehbf Gef = Gab — €NgTp ‘
@ the covariant derivative operator associated with hgp: V wp on X

‘ Dawb = hadhbevd We

@ the extrinsic curvature and the acceleration of n® on X

Kap = WaVers = 53 Zuhao
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Decompositions of various fields:

arbitrary symmetric tensor field P,; on M can be decomposed

in terms of n® and fields living on the o = const level surfaces as

Pap = 7 ngny + [na Py + o Pal + Pap

where |7 =n°nf Py, Po=chant Py, Puy=hahdy Py

decomposition of the contraction V% P,;:

€ (VP,e)n® = Ly + Dpe + [ (K¢,) — ePefKef — 2en°pe)
(VPe) by = Znpy + DPep, + [(KCe) Pp + 1y T — € Py

I.h.s. of Einstein's equation: Eu, = Gap — Yup

Egy=namy B 4 na By +mp B 1+ (ES 77 + hay ™)
E(H) — nent E., E;M) _ eheanf E.;, E:ZVOC) _ heahfb Eef — hay E(H

.
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Relations between various parts of Einstein’s equations:

(K%) —2¢(i® B )

(Evocr) (H)
“F hae E )} =0

(H

2, E™ 1 peg™

(H)

+[E
Kae(E

(M)

2o B + e

H)
+hay BT+ (Ko By + BT
(evocr)
7€(Eu,h

+habE(”))na]=o

reverse the argument

2
E
A\

If the constraint expressions £ " and E, ~ vanish on the o = const level
surfaces then the relations

Kab E(svoz) -0

(svoc) (evocr)

*E.p =0

D°E,,

hold for the evolutionary expression E( ves

heohy Bop = B+ bt
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The secondary [n — 1] + 1 splitting:

Assume that on one of the 0 = const level surfaces—say on ¥, for some
o = o (€ R),—there exists a smooth function p : ¥y — R, with (a.e.—almost
everywhere) non-vanishing gradient, 9;p, such that:

@ the p = const level surfaces .7, provide a one-parameter foliation of 3

X

o the metric h;; on 3 can be decomposed as

hij = aij + /ﬁzﬁ] where ‘ /’)71'3' = ﬁkialjhij ‘ with ‘/’)71] = 6ij — /ﬁlﬁ]

in terms of the positive definite metric 7;;, induced on the %, hypersurfaces,
o the secondary extrinsic curvature and the acceleration of 7 on the .,

hypersurfaces
I?ij = zﬁ/’%] ﬁ, = ﬁlDzﬁi
v
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The two-parameter family of foliations:

The Lie drag this foliation of ¥y along the integral curves of the vector field ¢
yields then a two-parameter family of foliating surfaces: ./ ,

e the fields 7%, 7;; and the projection hkl = hF, — nFny ‘ to the
codimension-two surfaces ., ,, get to be well-defined on each of the
individual o = const hypersurfaces
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Recasting the reduced Einstein equations:

und [n — 1] + 1 decomposition of

‘ hbehdeef = (n)Rbd + € {_og/ﬂnKbd — Kpg K¢+ 2K, Kge — GN_lDdeN}

R="R+ ¢ {~2.2,(Kah"") — (K.*)? = Kes K/ —2¢ N"'D*D.N}

one gets

= hyha’ {[Res = 5 9esR] — %a} = hyha’ {[Res — 5 hefR] — %oa}
(n) (n) (n) (n) n
=[ Rya—3hes Rl— %a= Gpa — gbd =

where
(n) e e —

5qab :6ab75{ 7$nKab7(K e)Kab+2KaeK b*EN 1DanN

+ hao [ Zn(K ) + 3 (K°.)’ + } Kes K + ¢ N7 D°D.N] }
(n) ~(H) ~(M) (svcw) ~(H)
By = B nm; + By B + (B0 +5,E7)

~(H) ~e~f (1) (M) ~e ~f(1) ~(EVOoL) ~e ~f (n) ~ 7H)

E = n°n' Eer, E; = ’yejnf E.;, E;; = 'ye,'yf] Eey —7i;E
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Relations between various parts of the basic equations:

" e ()
Substituting the [n — 1] + 1 splitting of = E;;:

K% B, =0

Da[(n)E’ab] —en’ (n)Elab =0

as

(n)

(svoc)
Eap = héahly Eop = By O 4 b 877

K% VB, =k B 4 okeBNY KefW+ (Ke.) B

. q (M) —~ . ~(H) ca M) (o ~ . ~(M) . ~(EV ~ =~H)
7B, = [(Ran®) B + (29 B i + Gan®) By 4+ 1% [Bar o+ Fap BV
(n)

7D Bae] = 5 B74 DB 4 (Re0) B - [BSP0 4 5y BV RS — 27 B

—~ (n) ~(M) (EVo ~ =#H) ~(M) e S(EVO
79D VBae] = %5 By +DEM+VebE 1+ (Be) By — e B2

~(EVOL)

— IF B, BT

= 0 holds: a linear and homogeneous FOSH for (f«? ,E

i
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A fully constrained evolutionary scheme?

Theorem

@ Assume that the primary constraint
. H) (M) )

expressions I~ and E,  vanish on

the o = const level surfaces, also that

@ the secondary constraint expressions
E™ and EflM) vanish along the
hypersurface yielded by the Lie
dragging, W), = ®,[.7),], of one of

the level surfaces .7, foliating ¥g.

o —> Remark (i).: the Lie dragging is done by
Then, to get solutions to the full set _ using the one-parameter group of
T equa tions Gy — %ab -0 dlffe?r'norphlsms,' o, aSSOCI.atel(If by the
. . time evolution vector field” o®
it suffices—regardless whether the

; = X . . — could be only a world-line
primary metric g, is Riemannian Remark (ii): if one wants to setup an

or Lorentzian—to solve, in addition, initial-boundary value problem on either
only the secondary reduced equations  side of the hypersurface #,, the previous
~Evor) theorem provides a clear mean to identify
E;. =0. ;
] the geometrical freedom we have on ¥/,
.
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