The many faces of the constraints

István Rácz

istvan.racz@fuw.edu.pl \& racz.istvan@wigner.mta.hu
Faculty of Physics, University of Warsaw, Warsaw, Poland Wigner Research Center for Physics, Budapest, Hungary

Supported by the POLONEZ programme of the National Science Centre of Poland (under the project No. 2016/23/P/ST1/04195) which has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 665778.

Umeå University, Department of Mathematics and Mathematical Statistics, Umeå, 10 December, 2019

The main message:

some of the arguments and techniques developed originally and applied so far exclusively only in the Lorentzian case do also apply to Riemannian spaces

Based on some recent works:

- I. Rácz: Is the Bianchi identity always hyperbolic?, CQG 31155004 (2014)
- I. Rácz: Cauchy problem as a two-surface based 'geometrodynamics', Class. Quantum Grav. 32 (2015) 015006
- I. Rácz: Dynamical determination of the gravitational degrees of freedom, arXiv:1412.0667 (2015)
- I. Rácz: Constraints as evolutionary systems, CQG 33015014 (2016)
- I. Rácz and J. Winicour: Black hole initial data without elliptic equations, Phys. Rev. D 91, 124013 (2015)
- I. Rácz: A simple method of constructing binary black hole initial data, Astronomy Reports 62 953-958 (2018)
- I. Rácz: On the ADM charges of multiple black holes, arXiv:1608.02283
- I. Rácz and J. Winicour: Toward computing gravitational initial data without elliptic solvers, CQG 35135002 (2018)
- K. Csukás and I. Rácz: On the asymptotics of solutions to the evolutionary form of the constraints, to be submitted for publication (2019)

All the involved results are valid for arbitrary dimension: i.e. for $\operatorname{dim}(M)=n(\geq 4)$. Nevertheless, for the sake of simplicity attention will be restricted to the case of $n=4$.

Outline:

- Einsteinian spaces: $\left(M, g_{a b}\right)$
- First part
- Second part

- in both cases metrics of Euclidean signature will be involved
- no gauge condition
... arbitrary choice of foliations \& "evolutionary" vector field

The basic setup:

- Einsteinian spaces: $\left(M, g_{a b}\right)$
- M : 4-dimensional, smooth, paracompact, connected, orientable manifold
- $g_{a b}$: smooth Lorentzian $(-,+,+,+)$ or Riemannian $(+,+,+,+)$ metric
- Einstein's equations:

$$
G_{a b}-\mathscr{G}_{a b}=0 \quad \text { with source term: } \quad \nabla^{a} \mathscr{G}_{a b}=0
$$

- ∇_{a} denotes the covariant derivative operator associated with $g_{a b}$.
- in a more familiar setup: Einstein's equations with cosmological constant Λ

$$
\left[R_{a b}-\frac{1}{2} g_{a b} R\right]+\Lambda g_{a b}=8 \pi T_{a b}
$$

with matter fields satisfying their Euler-Lagrange equations
-

$$
\mathscr{G}_{a b}=8 \pi T_{a b}-\Lambda g_{a b}
$$

PART I:

The primary splitting

- Assume: M is smoothly foliated by a one-parameter family of homologous hypersurfaces, i.e. $M \simeq \mathbb{R} \times \Sigma$, for some three-dimensional manifold Σ.
- known to hold for globally hyperbolic spacetimes (Lorentzian case)
- equivalent to the existence of a smooth function $\sigma: M \rightarrow \mathbb{R}$ with non-vanishing gradient $\partial_{a} \sigma$ such that the $\sigma=$ const level surfaces $\Sigma_{\sigma}=\{\sigma\} \times \Sigma$ comprise the one-parameter foliation of M.
- $\quad n_{a} \sim \partial_{a} \sigma \ldots \& \ldots g^{a b} \longrightarrow n^{a}=g^{a b} n_{b}$

Projections:

The projection operator:

- n^{a} the 'unit norm' vector field that is normal to the Σ_{σ} level surfaces

$$
n^{a} n_{a}=\epsilon
$$

- the sign is not fixed: ϵ takes the value -1 or +1 for Lorentzian or Riemannian metric $g_{a b}$, respectively
- the projection operator

$$
h_{b}^{a}=\delta_{b}^{a}-\epsilon n^{a} n_{b}
$$

to the level surfaces of $\sigma: M \rightarrow \mathbb{R}$.

- the induced metric on the $\sigma=$ const level surfaces

$$
h_{a b}=h^{e}{ }_{a} h^{f}{ }_{b} g_{e f}
$$

- D_{a} denotes the covariant derivative operator associated with $h_{a b}$.

σ^{a} is "time evolution vector field" if:

- the integral curves of σ^{a} meet the $\sigma=$ const level surfaces precisely once
- $\sigma^{e} \nabla_{e} \sigma=1$

$$
\sigma^{a}=\sigma_{\perp}^{a}+\sigma_{\|}^{a}=N n^{a}+N^{a}
$$

- where N and N^{a} denotes the lapse and shift of σ^{a} :

$$
N=\epsilon\left(\sigma^{e} n_{e}\right) \quad \text { and } \quad N^{a}=h_{e}^{a} \sigma^{e}
$$

- adopted coordinates \& Lie derivatives: ! $\left(x^{2}, x^{3}, x^{4}\right)$ local coordinates on Σ_{0}; extend them along the integral curves of σ^{a} onto a neighborhood of Σ_{0} in M; $\left(\sigma, x^{2}, x^{3}, x^{4}\right)$ local coordinates there \& Lie derivative $\mathscr{L}_{\sigma} T$ is $\partial_{\sigma} T=\partial T / \partial \sigma$

Decompositions of various fields:

Any symmetric tensor field $P_{a b}$ can be decomposed

in terms of n^{a} and fields intrinsic to the individual $\sigma=$ const level surfaces as

$$
P_{a b}=\boldsymbol{\pi} n_{a} n_{b}+\left[n_{a} \mathbf{p}_{b}+n_{b} \mathbf{p}_{a}\right]+\mathbf{P}_{a b}
$$

where

$$
\boldsymbol{\pi}=n^{e} n^{f} P_{e f}, \quad \mathbf{p}_{a}=\epsilon h^{e}{ }_{a} n^{f} P_{e f}, \quad \mathbf{P}_{a b}=h^{e}{ }_{a} h^{f}{ }_{b} P_{e f}
$$

It is also rewarding to inspect the decomposition of the cov. divergence $\nabla^{a} P_{a b}$:

$$
\begin{aligned}
\epsilon\left(\nabla^{a} P_{a e}\right) n^{e} & =\mathscr{L}_{n} \boldsymbol{\pi}+D^{e} \mathbf{p}_{e}+\left[\boldsymbol{\pi}\left(K^{e}{ }_{e}\right)-\epsilon \mathbf{P}_{e f} K^{e f}-2 \epsilon \dot{n}^{e} \mathbf{p}_{e}\right] \\
\left(\nabla^{a} P_{a e}\right) h^{e}{ }_{b} & =\mathscr{L}_{n} \mathbf{p}_{b}+D^{e} \mathbf{P}_{e b}+\left[\left(K^{e}{ }_{e}\right) \mathbf{p}_{b}+\dot{n}_{b} \boldsymbol{\pi}-\epsilon \dot{n}^{e} \mathbf{P}_{e b}\right]
\end{aligned}
$$

$$
K_{a b}=h^{e}{ }_{a} \nabla_{e} n_{b}=\frac{1}{2} \mathscr{L}_{n} h_{a b} \quad \quad \dot{n}_{a}:=n^{e} \nabla_{e} n_{a}=-\epsilon D_{a} \ln N
$$

$$
\nabla^{a} P_{a e}=g^{a b} \nabla_{a} P_{b e}=\left[h^{a b}-\epsilon n^{a} n^{b}\right] \nabla_{a}\left\{\boldsymbol{\pi} n_{b} n_{e}+\left[n_{b} \mathbf{p}_{e}+n_{b} \mathbf{p}_{e}\right]+\mathbf{P}_{b e}\right\}
$$

Decompositions of various fields:

Examples:

- the metric

$$
g_{a b}=\epsilon n_{a} n_{b}+h_{a b}
$$

- the "source term"

$$
\mathscr{G}_{a b}=n_{a} n_{b} \mathfrak{e}+\left[n_{a} \mathfrak{p}_{b}+n_{b} \mathfrak{p}_{a}\right]+\mathfrak{S}_{a b}
$$

where

$$
\mathfrak{e}=n^{e} n^{f} \mathscr{G}_{e f}, \quad \mathfrak{p}_{a}=\epsilon h^{e}{ }_{a} n^{f} \mathscr{G}_{e f}, \quad \mathfrak{S}_{a b}=h^{e}{ }_{a} h^{f}{ }_{b} \mathscr{G}_{e f}
$$

- I.h.s. of Einstein's equation: $E_{a b}=G_{a b}-\mathscr{G}_{a b}$

$$
E_{a b}=n_{a} n_{b} E^{(\mathcal{H})}+\left[n_{a} E_{b}^{(\mathcal{M})}+n_{b} E_{a}^{(\mathcal{M})}\right]+\left(E_{a b}^{(\mathcal{E V O L})}+h_{a b} E^{(\mathcal{H})}\right)
$$

$$
E^{(\mathcal{H})}=n^{e} n^{f} E_{e f}, \quad E_{a}^{(\mathcal{M})}=\epsilon h^{e}{ }_{a} n^{f} E_{e f}, \quad E_{a b}^{(\mathcal{E V O L})}=h_{a}^{e}{ }_{a} h_{b} E_{e f}-h_{a b} E^{(\mathcal{H})}
$$

The decomposition of the covariant divergence $\nabla^{a} E_{a b}=0$ of $E_{a b}=G_{a b}-\mathscr{G}_{a b}$:

$$
\begin{aligned}
\mathscr{L}_{n} E^{(\mathcal{H})}+D^{e} E_{e}^{(\mathcal{M})}+[& E^{(\mathcal{H})}\left(K_{e}^{e}\right)-2 \epsilon\left(\dot{n}^{e} E_{e}^{(\mathcal{M})}\right) \\
& \left.-\epsilon K^{a e}\left(E_{a e}^{(\mathcal{E} \mathcal{O L})}+h_{a e} E^{(\mathcal{H})}\right)\right]=0
\end{aligned}
$$

$$
\mathscr{L}_{n} E_{b}^{(\mathcal{M})}+D^{a}\left(E_{a b}^{(\mathcal{E} \mathcal{O L})}+h_{a b} E^{(\mathcal{H})}\right)+\left[\left(K_{e}^{e}\right) E_{b}^{(\mathcal{M})}+E^{(\mathcal{H})} \dot{n}_{b}\right.
$$

$$
\left.-\epsilon\left(E_{a b}^{(\mathcal{E} O \mathcal{L})}+h_{a b} E^{(\mathcal{H})}\right) \dot{n}^{a}\right]=0
$$

1st order symmetric hyperbolic system: linear and homogeneous in $\left(E^{(\mathcal{H})}, E_{I}^{(\mathcal{M})}\right)^{T}$:

- $N \times$ "(1)" and $N h^{i j} \times$ "(2)" in local coordinates $\left(\sigma, x^{1}, x^{2}, x^{3}\right)$ adopted to an arbitrary flow field $\sigma^{a}=N n^{a}+N^{a}: \sigma^{e} \nabla_{e} \sigma=1$ and the foliation $\left\{\Sigma_{\sigma}\right\}$, read as

$$
\left\{\left(\begin{array}{cc}
1 & 0 \\
0 & h^{I J}
\end{array}\right) \partial_{\sigma}+\left(\begin{array}{cc}
-N^{K} & N h^{I K} \\
N h^{J K} & -N^{K} h^{I J}
\end{array}\right) \partial_{K}\right\}\binom{E^{(\mathcal{H})}}{E_{I}^{(\mathcal{M})}}=\binom{\mathscr{E}}{\mathscr{E}^{J}}
$$

$!!!$ the source terms \mathscr{E} and \mathscr{E}^{J} are linear and homogeneous in $E^{(\mathcal{H})}$ and $E_{I}^{(\mathcal{M})}$!!! ϵ

$$
\mathcal{A}^{\mu} \partial_{\mu} v+\mathcal{B} v=0 \quad \text { with } \quad v=\left(E^{(\mathcal{H})}, E_{I}^{(\mathcal{M})}\right)^{T} \quad \text { FOSH }!!!v \equiv 0
$$

The main result of the first part:

Theorem

Let $\left(M, g_{a b}\right)$ be an Einsteinian space as specified and assume that the metric $h_{a b}$ induced on the $\sigma=$ const level surfaces is Riemannian. Then, regardless whether $g_{a b}$ is of Lorentzian or Euclidean signature, any solution to the reduced equations $E_{a b}^{(\mathcal{E V O L})}=0$ is also a solution to the full set of field equations $G_{a b}-\mathscr{G}_{a b}=0$ provided that the constraint expressions $E^{(\mathcal{H})}$ and $E_{a}^{(\mathcal{M})}$ vanish on one of the $\sigma=$ const level surfaces.

- no gauge condition was used anywhere in the above analyze !
- it applies regardless of the choice of the foliation, Σ_{σ}, of M and for any choice of the flow field, $\sigma^{a} \rightleftarrows N, N^{a}$

PART II:

The explicit form of the constraints:

The constraint expressions are projections of $E_{a b}=G_{a b}-\mathscr{G}_{a b}$:

$$
\begin{aligned}
E^{(\mathcal{H})} & =n^{e} n^{f} E_{e f}=\frac{1}{2}\left\{-\epsilon^{(3)} R+\left(K_{e}^{e}\right)^{2}-K_{e f} K^{e f}-2 \mathfrak{e}\right\}=0 \\
E_{a}^{(\mathcal{M})} & =\epsilon h^{e}{ }_{a} n^{f} E_{e f}=\epsilon\left[D_{e} K_{a}^{e}-D_{a} K_{e}^{e}-\epsilon \mathfrak{p}_{a}\right]=0
\end{aligned}
$$

- where D_{a} denotes the covariant derivative operator associated with $h_{a b}$ and

$$
\mathfrak{e}=n^{e} n^{f} \mathscr{G}_{e f}, \quad \mathfrak{p}_{a}=\epsilon h_{a}^{e} n^{f} \mathscr{G}_{e f}
$$

- it is an underdetermined system: 4 equations for 12 variables

$$
\left(h_{i j}, K_{i j}\right)
$$

A simple example:

Consider the underdetermined equation on $\Sigma \approx \mathbb{R}^{2}$ with some coordinates (χ, ξ)

$$
\left(\partial_{\chi}^{2}+\partial_{\xi}^{2}\right) u+\left(\partial_{\chi}-\partial_{\xi}\right) v+\left(a \partial_{\chi}-\partial_{\xi}^{2}\right) w+z=0
$$

- it is an equation for the four variables u, v, w and z on Σ
- in advance of solving it three of these variables have to be fixed on Σ

A simple example:

It is an elliptic equation for u on $\Sigma \approx \mathbb{R}^{2}$:

$$
\left(\partial_{\chi}^{2}+\partial_{\xi}^{2}\right) u+\left(\partial_{\chi}-\partial_{\xi}\right) v+\left(a \partial_{\chi}-\partial_{\xi}^{2}\right) w+z=0
$$

- in solving this equation the variables v, w and z have to be specified on \mathbb{R}^{2}
- the variable u has also to be fixed at the boundaries $S_{o u t}$ and $S_{\text {in }}$

A simple example:

It is a hyperbolic equation for v on $\Sigma \approx \mathbb{R}^{2}$

$$
\left(\partial_{\chi}^{2}+\partial_{\xi}^{2}\right) u+\left(\partial_{\chi}-\partial_{\xi}\right) v+\left(a \partial_{\chi}-\partial_{\xi}^{2}\right) w+z=0
$$

- in solving this equation the variables u, w and z have to be specified on \mathbb{R}^{2}
- the variable v has also to be fixed at the initial data surface $\mathrm{S}_{\text {in.data }}$

A simple example:

It is a parabolic equation for w on $\Sigma \approx \mathbb{R}^{2}$:

$$
\left(\partial_{\chi}^{2}+\partial_{\xi}^{2}\right) u+\left(\partial_{\chi}-\partial_{\xi}\right) v+\left(a \partial_{\chi}-\partial_{\xi}^{2}\right) w+z=0
$$

- in solving this equation the variables u, v and z have to be fixed on \mathbb{R}^{2} :

```
a>0
```

- the variable w has also to be fixed at the initial data surface $S_{\text {in.data }}$

A simple example:

It is a parabolic equation for w on $\Sigma \approx \mathbb{R}^{2}$:

$$
\left(\partial_{\chi}^{2}+\partial_{\xi}^{2}\right) u+\left(\partial_{\chi}-\partial_{\xi}\right) v+\left(a \partial_{\chi}-\partial_{\xi}^{2}\right) w+z=0
$$

- in solving this equation the variables u, v and z have to be fixed on \mathbb{R}^{2} : $a<0$
- the variable w has also to be fixed at the initial data surface $S_{\text {in.data }}$

A simple example:

It is an algebraic equation for z :

$$
\left(\partial_{\chi}^{2}+\partial_{\xi}^{2}\right) u+\left(\partial_{\chi}^{2}-\partial_{\xi}^{2}\right) v+\left(a \partial_{\chi}-\partial_{\xi}^{2}\right) w+z=0
$$

- once the variables u, v, w are specified on \mathbb{R}^{2} the solution is determined as

$$
\boldsymbol{z}=-\left[\left(\partial_{\chi}^{2}+\partial_{\xi}^{2}\right) \boldsymbol{u}+\left(\partial_{\chi}^{2}-\partial_{\xi}^{2}\right) v+\left(a \partial_{\chi}-\partial_{\xi}^{2}\right) u\right]
$$

New variables by applying $2+1$ decompositions:

Splitting of the metric $h_{i j}$:

assume:

$$
\Sigma \approx \mathbb{R} \times \mathscr{S}
$$

Σ is smoothly foliated by a one-parameter family of two-surfaces \mathscr{S}_{ρ} : $\rho=$ const level surfaces of a smooth real function $\rho: \Sigma \rightarrow \mathbb{R}$ with $\partial_{i} \rho \neq 0$

$$
\Longrightarrow \quad \widehat{n}_{i} \sim \partial_{i} \rho \ldots \& \ldots h^{i j} \longrightarrow \widehat{n}^{i}=h^{i j} \widehat{n}_{j} \longrightarrow \widehat{\gamma}_{j}^{i}=\delta^{i}{ }_{j}-\widehat{n}^{i} \widehat{n}_{j}
$$

- choose ρ^{i} to be a flow field on Σ : the integral curves. . \& \& $\rho^{i} \partial_{i} \rho=1$
- 'lapse' and 'shift' of ρ^{i}

$$
\rho^{i}=\widehat{N} \widehat{n}^{i}+\widehat{N}^{i}, \quad \text { where } \quad \widehat{N}=\rho^{j} \widehat{n}_{j} \quad \text { and } \quad \widehat{N}^{i}=\widehat{\gamma}_{j}^{i} \rho^{j}
$$

- induced metric, extrinsic curvature and acceleration of the \mathscr{S}_{ρ} level surfaces:

$$
\widehat{\gamma}_{i j}=\widehat{\gamma}^{k}{ }_{i} \widehat{\gamma}_{j}^{l} h_{k l} \quad \widehat{K}_{i j}=\frac{1}{2} \mathscr{L}_{\widehat{n}} \widehat{\gamma}_{i j} \quad \dot{\widehat{n}}_{i}:=\widehat{n}^{l} D_{l} \widehat{n}_{i}=-\widehat{D}_{i} \ln \widehat{N}
$$

- the metric $h_{i j}$ can then be given as

$$
h_{i j}=\widehat{\gamma}_{i j}+\widehat{n}_{i} \widehat{n}_{j} \quad \Longleftrightarrow\left\{\widehat{N}, \widehat{N}^{i}, \widehat{\gamma}_{i j}\right\}
$$

$2+1$ decompositions:

Splitting of the symmetric tensor field $K_{i j}$:
-

$$
K_{i j}=\boldsymbol{\kappa} \widehat{n}_{i} \widehat{n}_{j}+\left[\widehat{n}_{i} \mathbf{k}_{j}+\widehat{n}_{j} \mathbf{k}_{i}\right]+\mathbf{K}_{i j}
$$

where

$$
\boldsymbol{\kappa}=\widehat{n}^{k} \widehat{n}^{l} K_{k l}, \quad \mathbf{k}_{i}=\widehat{\gamma}^{k}{ }_{i} \widehat{n}^{l} K_{k l} \quad \text { and } \quad \mathbf{K}_{i j}=\widehat{\gamma}^{k}{ }_{i} \widehat{\gamma}^{l}{ }_{j} K_{k l}
$$

- the trace and trace free parts of $\mathbf{K}_{i j}$

$$
\mathbf{K}^{l}{ }_{l}=\widehat{\gamma}^{k l} \mathbf{K}_{k l} \quad \text { and } \quad \stackrel{\circ}{\mathbf{K}}_{i j}=\mathbf{K}_{i j}-\frac{1}{2} \widehat{\gamma}_{i j} \mathbf{K}_{l}^{l}
$$

The new variables:

$$
\left(h_{i j}, K_{i j}\right) \Longleftrightarrow\left(\widehat{N}, \widehat{N}^{i}, \widehat{\gamma}_{i j} ; \boldsymbol{\kappa}, \mathbf{k}_{i}, \mathbf{K}_{l}^{l}, \stackrel{\circ}{\mathbf{K}}_{i j}\right)
$$

- these variables retain the physically distinguished nature of $h_{i j}$ and $K_{i j}$

The momentum constraint:

$$
\dot{\bar{n}}_{i}:=\widehat{n}^{l} D_{l} \widehat{n}_{i}=-\widehat{D}_{i} \ln \widehat{N} \quad \quad D_{e} K^{e}{ }_{a}-D_{a} K_{e}^{e}-\epsilon \mathfrak{p}_{a}=0
$$

$$
\widehat{K}_{i j}=\frac{1}{2} \mathscr{L}_{\widehat{n}} \widehat{\gamma}_{i j} ; \widehat{K}^{l}{ }_{l}=\widehat{\gamma}^{i j} \widehat{K}_{i j}
$$

$\mathscr{L}_{\widehat{n}} \mathbf{k}_{i}-\frac{1}{2} \widehat{D}_{i}\left(\mathbf{K}^{l}{ }_{l}\right)-\widehat{D}_{i} \boldsymbol{\kappa}+\widehat{D}^{l} \stackrel{\circ}{\mathbf{K}}_{l i}+\left(\widehat{K}_{l}^{l}\right) \mathbf{k}_{i}+\boldsymbol{\kappa} \dot{\widehat{n}}_{i}-\dot{\hat{n}}^{l} \mathbf{K}_{l i}-\epsilon \mathfrak{p}_{l} \widehat{\gamma}^{l}{ }_{i}=0$
4 back: str.hyp.sys.

$$
\mathscr{L}_{\widehat{n}}\left(\mathbf{K}_{l}^{l}\right)-\widehat{D}^{l} \mathbf{k}_{l}-\boldsymbol{\kappa}\left(\widehat{K}_{l}^{l}\right)+\mathbf{K}_{k l} \widehat{K}^{k l}+2 \dot{\hat{n}}^{l} \mathbf{k}_{l}+\epsilon \mathfrak{p}_{l} \widehat{n}^{l}=0
$$

First order symmetric hyperbolic system:

- contract " (1) " with $2 \widehat{N} \widehat{\gamma}^{i j}$ and mult. "(2)" by \widehat{N}, when writing them out in coordinates $\left(\rho, x^{2}, x^{3}\right)$, adopted to the foliation \mathscr{S}_{ρ} and the vector field ρ^{i},

$$
\left\{\left(\begin{array}{cc}
2 \widehat{\gamma}^{A B} & 0 \\
0 & 1
\end{array}\right) \partial_{\rho}+\left(\begin{array}{cc}
-2 \widehat{N}^{K} \widehat{\gamma}^{A B} & -\widehat{N} \widehat{\gamma}^{A K} \\
-\widehat{N} \widehat{\gamma}^{B K} & -\widehat{N}^{K}
\end{array}\right) \partial_{K}\right\}\binom{\mathbf{k}_{B}}{\mathbf{K}_{E}^{E}}+\binom{\mathscr{B}_{(\mathbf{k})}^{A}}{\mathscr{B}_{(\mathbf{K})}}=0
$$

- a first order symmetric hyperbolic system for the vector valued variable

$$
\left(\mathbf{k}_{B}, \mathbf{K}_{E}^{E}\right)^{T}
$$

!!! ρ plays the role of 'time'
regardless of the value of $\epsilon= \pm 1$

The coupled constraint system:

The Hamiltonian constraint in terms of the new variables:

$$
E^{(\mathcal{H})}=n^{e} n^{f} E_{e f}=\frac{1}{2}\left\{-\epsilon^{(3)} R+\left(K_{e}^{e}\right)^{2}-K_{e f} K^{e f}-2 \mathfrak{e}\right\}=0
$$

> using

$$
{ }^{(3)} R=\widehat{R}-\left\{2 \mathscr{L}_{\widehat{n}}\left(\widehat{K}_{l}^{l}\right)+\left(\widehat{K}_{l}^{l}\right)^{2}+\widehat{K}_{k l} \widehat{K}^{k l}+2 \widehat{N}^{-1} \widehat{D}^{l} \widehat{D}_{l} \widehat{N}\right\}
$$

\widehat{R} and $\widehat{K}_{k l}$ denote the scalar and extrinsic curvature of $\widehat{\gamma}_{k l}$, respectively

$$
\begin{aligned}
-\epsilon \widehat{R}+\epsilon\left\{2 \mathscr{L}_{\widehat{n}}\left(\widehat{K}_{l}^{l}\right)\right. & \left.+\left(\widehat{K}_{l}^{l}\right)^{2}+\widehat{K}_{k l} \widehat{K}^{k l}+2 \widehat{N}^{-1} \widehat{D}^{l} \widehat{D}_{l} \widehat{N}\right\} \\
& +2 \kappa \mathbf{K}_{l}^{l}+\frac{1}{2}\left(\mathbf{K}_{l}^{l}\right)^{2}-2 \mathbf{k}^{l} \mathbf{k}_{l}-\stackrel{\circ}{\mathbf{K}}_{k l} \stackrel{\circ}{K}^{k l}-2 \mathfrak{e}=0
\end{aligned}
$$

Alternative choices yielding evolutionary systems:

- parabolic equation for \widehat{N}
- algebraic equation for $\boldsymbol{\kappa}$ algebraic-hyperbolic for the coupled system
Tack!

