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Black hole physics

• significant part of our knowledge about black holes originates from what
we learnt about the well-known Schwarzschild or Kerr black holes.

– the only asymptotically flat stationary black hole solutions to the
vacuum Einsteins equations

– asymptotically flatness =⇒ black holes completely isolated in space

• it is of obvious interest to know how these isolated black holes might
be distorted by external matter distributions

• it may also be tempting to determine all the possible distorted black
hole solutions and (at least) to provide a clear characterization of them

• a key result in the black holes uniqueness proofs is the black hole rigidity
theorem by Hawking:

– the event horizon of an !analytic! stationary asymptotically flat
electrovac black hole spacetime is necessarily a Killing horizon, i.e.,
the spacetime must possess a Killing field (possibly distinct from
the stationary Killing field) which is normal to the event horizon

– in an asymptotically flat stationary (non-static) black hole space-
time there exists an additional axial Killing field, i.e., a stationary
black hole spacetime is either static or stationary axisymmetric.
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Generic stationary distorted black holes:

• spacetimes admitting a one-parameter family of isometry actions and
an associated Killing horizon (not as general as spacetimes with isolated
horizon!)

• in studying distorted stationary black holes the assumption on the
asymptotic flatness should be relaxed

–
”
a priory” we do not assume any sort of asymptotic behavior =⇒

whenever a regular asymptotic region exists the relevant asymptotic
properties should be deduced by using the field equations

• static distorted black hole solutions were considered to be relevant only
locally by representing a black hole solution yielded by the distortion of
the Schwarzschild solution by certain external mass distributions: Israel
& Khan 64’, Mysak & Szekeres 66’, Geroch & Hartle 82’
(all static & axially symmetric solutions are given)

• V. Frolov,.... distorted static black hole spacetimes may also play im-
portant role in context of four (or higher) dimensional theories whenever
one (or some) of the spacelike dimensions is (or are) compactified
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Motivation: To have a framework capable to include all the
”stationary” distorted black hole spacetimes

• Rácz, I. (2007): Stationary black holes as holographs, Classical and Quantum Gravity
24, 5541-5571

• Rácz, I. (2014): Stationary black holes as holographs II., Classical and Quantum Gravity
31, 035006

– Here we shall present some results relevant for the pure vacuum case. We would
like to emphasize that the associated techniques do extend to spacetimes with a
source free electromagnetic field and for the inclusion of a non-zero cosmological
constant.

• Cole, M.J., Rácz, I., Valiente Kroon, J.A. (2018): Killing spinor data on distorted black
hole horizons and the uniqueness of stationary vacuum black holes, arXiv:1804.10287,
submitted to Class. and Quantum Grav.

• Spacetime: (M, gab)

– M : smooth, 4-dim., paracompact, connected, orientable manifold

– gab: smooth Lorentzian metric with signature (+,−,−,−)

– (M, gab) is time orientable; a time orientation has been chosen.

Rab = 0
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Gaussian null coordinates

• we shall use the Newman-Penrose formalism which refer to the Gaussian
null coordinates (u, r, x3, x4)
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• na: ne∇en
a = 0 on H1 = χu[Z0]

• la: lene|Zu
= 1 & le∇el

a = 0 on O

• ∃ an open subset of Z0 on which local coordinates (x3, x4) can be defi-
ned
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The most general form of the spacetime metric

• in O and (u, r, x3, x4) the spacetime metric takes the form

ds2 = guu du2 + 2 dr du + 2 guAdudxA + gAB dxAdxB

where guu, guA and gAB are smooth functions of the coordinates
u, r, x3, x4 in O such that guu and guA vanish on H1, and gAB is a
negative definite 2× 2 matrix.

• By patching domains where Gaussian null coordinates can be defined one can always ex-
tend results derived in one of them to the entire of the underlying

”
elementary spacetime

region”O.
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The Newman-Penrose formalism:

• Choose now real-valued functions U , XA and complex-valued functions
ω, ξA on O, with Gaussian null coordinates (u, r, x3, x4) such that

– the functions U,XA, ω vanish on H1

• we obtain a complex null tetrad: {la, na,ma,ma} in O by setting

lµ = δµr, nµ = δµu + Uδµr + XAδµA, mµ = ωδµr + ξAδµA

• the contravariant form of the metric in O can then be given as

gab = lanb + lbna −mamb −mamb , gαβ =

 0 1 0
1 grr grB

0 gAr gAB



grr = 2(U −ωω̄), grA = XA− (ω̄ξA +ωξ̄A), gAB = −(ξAξ̄B + ξ̄AξB)
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Spin coefficients

κ = lamb∇alb ε = 1
2 l

a(nb∇alb −mb∇amb) π = −lamb∇anb

ρ = mamb∇alb α = 1
2m

a(nb∇alb −mb∇amb) λ = −mamb∇anb

σ = mamb∇alb β = 1
2m

a(nb∇alb −mb∇amb) µ = −mamb∇anb

τ = namb∇alb γ = 1
2n

a(nb∇alb −mb∇amb) ν = −namb∇anb

Weyl spinor components

Ψ0 = −Cabcdl
amblcmd

Ψ1 = −Cabcdl
anblcmd

Ψ2 = −1
2Cabcd(lanblcnd − lanbmcmd)

Ψ3 = −Cabcdn
albncmd

Ψ4 = −Cabcdn
ambncmd
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• The Newman-Penrose equations relates derivatives of the spin coeffici-
ents and Weyl spinor components in the direction of the frame vectors
defined above and denote the corresponding operators in O by

D = ∂/∂r, ∆ = ∂/∂u+U ·∂/∂r+XA·∂/∂xA, δ = ω·∂/∂r+ξA·∂/∂xA

• To simplify the NP equations a part of the gauge freedom can be fixed
by assuming that the tetrad {la, na,ma,ma} is parallelly propagated
along the null geodesics with tangent la = (∂/∂r)

a
in O.

• These assumptions guarantee that for the spin coefficients, correspond-
ing to this specific choice of complex null tetrad, κ = π = ε = 0, ρ = ρ,
τ = α + β hold everywhere in O.

• ne∇en
a = 0 on H1 =⇒ ν ≡ 0 on H1

• u is an affine par. along the generators of H1 =⇒ γ + γ ≡ 0 on H1

• γ = 1
2
na(nb∇alb − mb∇amb) ⇒ ∃ φ : H1 → R real function: by

performing the rotation ma → eiφma: γ ≡ 0 on H1 can be ensured.

These gauge fixing simplifies the equations in great extent.
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The Newman - Penrose equations:

D(ρ) = ρ2 + σσ̄ (NP.1)

D(σ) = 2ρσ + Ψ0 (NP.2)

D(τ) = τρ+ τ̄σ + Ψ1 (NP.3)

D(α) = ρα + βσ̄ (NP.4)

D(β) = ασ + ρβ + Ψ1 (NP.5)

D(γ) = τα + τ̄β + Ψ2 (NP.6)

D(λ) = ρλ+ σ̄µ (NP.7)

D(µ) = ρµ+ σλ+ Ψ2 (NP.8)

D(ν) = τ̄µ+ τλ+ Ψ3 (NP.9)

∆(λ)− δ̄(ν) = (γ̄ − 3γ − µ− µ̄)λ+ (3α + β̄ − τ̄)ν −Ψ4 (NP.10)

δ(ρ)− δ̄(σ) = (ᾱ + β)ρ− (3α− β̄)σ −Ψ1 (NP.11)

δ(α)− δ̄(β) = ρµ− σλ+ αᾱ + ββ̄ − 2αβ −Ψ2 (NP.12)

δ(λ)− δ̄(µ) = (α + β̄)µ+ (ᾱ− 3β)λ−Ψ3 (NP.13)

δ(ν)−∆(µ) = µ2 + λλ̄+ (γ + γ̄)µ+ (τ − ᾱ− 3β)ν (NP.14)

δ(γ)−∆(β) = µτ − σν − (γ − γ̄ − µ)β + αλ̄ (NP.15)

δ(τ)−∆(σ) = µσ + λ̄ρ+ (τ − ᾱ + β)τ − (3γ − γ̄)σ (NP.16)

∆(ρ)− δ̄(τ) = −ρµ̄− σλ+ (γ + γ̄)ρ− (τ̄ + α− β̄)τ −Ψ2 (NP.17)

∆(α)− δ̄(γ) = ρν − (τ + β)λ+ (γ̄ − µ̄)α + (β̄ − τ̄)γ −Ψ3 (NP.18)
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The Bianchi identities:

D(Ψ1)− δ(Ψ0) = −4αΨ0 + 4ρΨ1 (B.1)

∆(Ψ0)− δ(Ψ1) = (4γ − µ)Ψ0 − 2(2τ + β)Ψ1 + 3σΨ2 (B.2)

D(Ψ2)− δ(Ψ1) = −λΨ0 − 2αΨ1 + 3ρΨ2 (B.3)

∆(Ψ1)− δ(Ψ2) = νΨ0 + 2(γ − µ)Ψ1 − 3τΨ2 + 2σΨ3 (B.4)

D(Ψ3)− δ(Ψ2) = −2λΨ1 + 2ρΨ3 (B.5)

∆(Ψ2)− δ(Ψ3) = 2νΨ1 − 3µΨ2 − 2αΨ3 + σΨ4 (B.6)

D(Ψ4)− δ(Ψ3) = −3λΨ2 + 2αΨ3 + ρΨ4 (B.7)

∆(Ψ3)− δ(Ψ4) = 3νΨ2 − 2(γ + 2µ)Ψ3 + (4β − τ)Ψ4 (B.8)

The metric equations:

D(ξA) = ρξA + σξ̄A (M.1)

D(ω) = ρω + σω − τ (M.2)

D(XA) = τ ξ̄A + τ̄ ξA (M.3)

D(U) = τω + τ̄ω − (γ+γ) (M.4)

δ(XA)−∆(ξA) = (µ+ γ̄ − γ)ξA + λ̄ξ̄A (M.5)

δ(ξ
A

)− δ(ξA) = (β − α)ξA + (α− β)ξ̄A (M.6)

δ(ω)− δ(ω) = (β − α)ω + (α− β)ω + (µ− µ) (M.7)

δ(U)−∆(ω) = (µ+ γ̄ − γ)ω + λ̄ω − ν (M.8)
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One of the motivations

• is to give the generic argument using the Newman-Penrose variables
is rooted in remarks made by Chandrasekhar when discussing the role
of the full set of the Newman-Penrose equations in Sections 7 and 8
of Chapter 1 in his brilliant book

”
The Mathematical Theory of Black

Holes” (1983).

• right after he made an excellent (perhaps the best) introduction of the
NP formalism in his book he ended up with the following comments:

•
”

It is not clear how many of these equations are independent, how
they are to be ordered or used and, indeed, what they are for.”

• the following part is to answer these questions by making use of a
suitable adaptation hyperbolic reduction techniques
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The characteristic initial value formulation

• Recall first that the Newman-Penrose equations, taking them as first
order PDEs, with respect to Gaussian null coordinates, (u, r, x3, x4) in
O for the vector valued variable

V = (ξA, ω,XA, U ; ρ, σ, τ, α, β, γ, λ, µ, ν; Ψ0,Ψ1,Ψ2,Ψ3,Ψ4)

are overdetermined simply because we have more equations, (NP.1)-
(NP.18),(B.1)-(B.8),(M.1)-(M.8), than unknowns.

• But some of the Newman-Penrose equations are
”
interior equations” on

Z , H1 and H2, respectively

• the generic hyperbolic reduction procedures: by taking aside some of
the Newman-Penrose equations and taking linear combinations some
other ones we get a suitable

”
reduced set of vacuum field equations”
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The reduced set of vacuum field equations

D ξA = ρ ξA + σ ξ
A

(RE.1)

Dω = ρω + σ ω − τ (RE.2)

DXA = τ ξ
A

+ τ ξA (RE.3)

DU = τ ω + τ ω − (γ+γ) (RE.4)

D ρ = ρ2 + σ σ (RE.5)

Dσ = 2ρ σ + Ψ0 (RE.6)

D τ = τ ρ+ τ σ + Ψ1 (RE.7)

Dα = ρα + β σ (RE.8)

D β = ασ + ρ β + Ψ1 (RE.9)

D γ = τ α + τ β + Ψ2 (RE.10)

Dλ = ρ λ+ σ µ (RE.11)

Dµ = ρ µ+ σ λ+ Ψ2 (RE.12)

D ν = τ µ+ τ λ+ Ψ3 (RE.13)

∆ Ψ0 − δΨ1 = (4 γ − µ) Ψ0 − 2 (2 τ + β) Ψ1 + 3σΨ2 (RE.14)

∆ Ψ1 + D Ψ1 − δΨ2 − δΨ0 = (ν − 4α) Ψ0 − 2 (µ− γ − 2 ρ) Ψ1 − 3 τ Ψ2 − 2σΨ3 (RE.15)

∆ Ψ2 + D Ψ2 − δΨ3 − δΨ1 = −λΨ0 − 2 (α− ν) Ψ1 + 3 (ρ− µ) Ψ2 − 2 (τ − β) Ψ3 + σΨ4 (RE.16)

∆ Ψ3 + D Ψ3 − δΨ4 − δΨ2 = −2λΨ1 + 3 ν Ψ2 + 2 (ρ− γ − 2µ) Ψ3 + (4 β − τ) Ψ4 (RE.17)

D Ψ4 − δΨ3 = −3λΨ2 + 2αΨ3 + ρΨ4 (RE.18)
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• These equations, besides comprising a determined system for the vec-
tor variable, V, (from evolutionary point of view) are equivalent the
complete set of the Newman-Penrose equations. More precisely:

Theorem:

• Denote by V0 an initial data set, satisfying the
”
inner”Newman-Penrose

equations on the initial data surface comprised by the pair of inter-
secting null hypersurfaces H1 and H2.

• If V is the solution on the domain of dependence D[H1 ∪ H2] to the
reduced vacuum field equations, (RE.1)-(RE.18), with V|H1∪H2

= V0,
then V is also a solution to the full set of the Newman-Penrose equa-
tions.

• Moreover, the metric, the connection and the curvature tensor deter-
mined by V are so that the connection will be metric and torsion free,
as well as, the curvature tensor which can be built from the Weyl spi-
nor components is the curvature tensor associated with this torsion free
connection.

!*! Note that the condition requiring the initial data V0 satisfies the
”
inner”Newman-Penrose

equations on H1 ∪H2 is not as restrictive as it seems to be.



Home Page

Title Page

Contents

JJ II

J I

Page 16 of 30

Go Back

Full Screen

Close

Quit

• ... some of the Newman-Penrose equations are
”
interior equations” on

Z , H1 and H2, respectively ...

• Therefore, we may start, instead of

V0 = {ξA, ω,XA, U ; ρ, σ, τ, α, β, γ, λ, µ, ν; Ψ0,Ψ1,Ψ2,Ψ3,Ψ4}|H1∪H2

with a
”
reduced initial data set”, Vred

0 , which consists of the specification
of the Weyl spinor components Ψ4 on H1 and Ψ0 on H2, moreover, it is
required to include the specification of the spin-coefficients ρ, σ, τ, µ, λ,

along with a vector field ξA such that gAB = −(ξAξ
B

+ ξ
A
ξB) is a

negative definite metric, on Z .

Vred
0 = {ρ, σ, µ, λ, τ ; ξA}|Z ∪ {Ψ4}|H1

∪ {Ψ0}|H2

– the inner equations on Z can be solved algebraically for the rest of the variables
listed in V: {ξA, 6ω, 6XA, 6U ; ρ, σ, τ, α, β, 6γ, λ, µ, 6ν; Ψ0,Ψ1,Ψ2,Ψ3,Ψ4}|Z

– once the components of V are known on Z the desired initial data V0 can be deter-
mined on H1 and H2 by integrating a sequence of ordinary differential equations.

– V0, yielded by this construction, satisfies all the inner equations as it was required
in the above Theorem.

• Vred
0 , along with the Newman-Penrose equations, determines uniquely

the initial data set V0 on H1 ∪H2
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• In addition to the fact that the reduced vacuum field equations, (RE.1)-
(RE.18), comprise a determined system—by inspection of the particu-
lar form they have when written out in the Gaussian null coordinates
(u, r, x3, x4)—it can also be verified that they possess the form

Aµ · ∂µV + B = 0

where the matrices Aµ and B smoothly depend on V and on its complex
conjugate V.

• Moreover, it can also be seen that the matrices Aµ are Hermitian, i.e.,

AµT = Aµ and the combination Aµ(nµ + lµ) is positive definite. The-

reby, the system comprised by (RE.1)-(RE.18) is a quasilinear sym-
metric hyperbolic system for which the existence and uniqueness of
solutions to the characteristic initial value problem is guaranteed.

As a summary we have (for its proof see the Appendix of BH holograph II):

Theorem: In the characteristic initial value problem to any ‘reduced ini-
tial data set’ there always exists a unique solution to the vacuum Einstein’s
equations.
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Stationary distorted black hole spacetimes

• These are definitely not the most generic configurations to which the
above general results are known to apply(!)

• the bifurcate Killing horizon H∗ is necessarily expansion and shear
free⇒ λ and µ vanish on H1, while σ and ρ is identically zero on H2;
moreover, Ψ3 and Ψ4 vanish on H1 and Ψ0 and Ψ1, vanish on H2.

• a reduced initial data set, Vred
0 , is given as

Vred
0 = {6ρ, 6σ, 6µ, 6λ, τ ; ξA}|Z ∪ {6Ψ4}|H1

∪ {6Ψ0}|H2

• =⇒ the only variables which can
”
yet” be freely specified as our initial

data are the spin coefficient τ and the vector field ξA on Z

Corollary: Consider a 4-dimensional stationary distorted vacuum black
hole spacetime (M, gab) with a pair of intersecting expansion and shear free
null hypersurfaces H1 ∪ H2. Then the spacetime metric gab is uniquely
determined in the black hole region once the spin coefficient τ and the
vector field ξA are specified on the intersection Z = H1 ∩H2.
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The determination of a full initial data set V0, on H1 ∪H2

• The
”
inner equations” on Z :

– (M.6), along with our gauge condition τ = α+ β in O, yields that

δξ
A − δξA = (2 β − τ ) ξA + (τ − 2 β) ξ

A

– τ and ξA are known thus this equation can be solved algebraically
for β and, in turn, for α = τ − β.

– (NP.12) fixes the value of Ψ2 on Z̃ as

Ψ2 = −δα + δβ + αα− 2αβ + β β

• The
”
inner equations” on H2 : (Ψ0 ≡ 0)

– In virtue of D(Ψ1) − δ(Ψ0) =−4αΨ0 + 4ρΨ1 & Ψ1|Z ≡ 0 we
have Ψ1|H2

≡ 0.

– Similarly, ρ|Z ≡ 0 and σ|Z ≡ 0, along with D(ρ) = ρ2 + σσ̄ and
D(σ)=2ρσ + Ψ0, yield ρ ≡ 0 and σ ≡ 0 on H2

– Then D(τ )=τρ+ τ̄σ+ Ψ1, D(α)=ρα+βσ̄, D(β)=ασ+ ρβ + Ψ1

Dα = Dβ = Dτ = 0 on H2 ......... DΨ2 = 0 .........
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The full initial data set V0 on H1 ∪H2 determining stationary
distorted vacuum black hole configurations

H1 Z H2

ρ = u · (δτ − 2α τ −Ψ2) ρ = 0 ρ = 0

σ = u · (δ τ − 2 β τ) σ = 0 σ = 0

µ = 0 µ = 0 µ = r ·Ψ2

λ = 0 λ = 0 λ = 0

∆α = ∆β = ∆τ = 0 α, β : τ = α + β Dα = Dβ = Dτ = 0

∆Ψ2 = 0 ξA, τ → α, β,Ψ2 DΨ2 = 0

Ψ0 = 1
2u

2 ·
(
δ2Ψ2 − (7τ + 2β) · δΨ2 + 12τ2Ψ2

)
Ψ0 = 0 Ψ0 = 0

Ψ1 = u · (δΨ2 − 3τΨ2) Ψ1 = 0 Ψ1 = 0

Ψ3 = 0 Ψ3 = 0 Ψ3 = r · δΨ2

Ψ4 = 0 Ψ4 = 0 Ψ4 = 1
2 r

2 · (δ2Ψ2 + 2α · δΨ2)

(gauge) ν = 0 → ν = 0 → ν = 1
2 r

2 · (δΨ2 + τ Ψ2)

(gauge) γ = 0 → γ = 0 → γ = r · (τ α + τ β + Ψ2)
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How to identify the Kerr solution?
The Kerr solution admits a non-trivial Killing spinor

Killing spinor:

• a symmetric rank 2 spinor κAB = κ(AB) satisfying the Killing spinor
equation

∇A′(AκBC) = 0

• Given a Killing spinor κAB, the spinor

ξAA′ ≡ ∇P
A′κAP

is the spinorial counterpart of a (possibly complex) Killing vector

• it satisfies the equation

∇AA′ξBB′ +∇BB′ξAA′ = 0
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The Killing form and the Ernst potential

• the Killing form of a KVF ξa

Hab ≡ ∇[aξb] = ∇aξb

• its spinorial counterpart HAA′BB′ and its self-dual part HAA′BB′ read as

HAA′BB′ ≡ ∇AA′ξBB′ , HAA′BB′ ≡ HAA′BB′ + iH∗AA′BB′

•
H2 ≡ HabHab

• Then, Ernst form of the Killing vector ξa is defined as

χa = 2ξbHba

• It is well-known that in vacuum, the Ernst form closed

⇒ (locally) there exists a (complex) function, the Ernst potential χ:

χa = ∇aχ

• remarkably

χAA′ = 3κCFΨABCF∇DA′κDB
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How to find the Kerr black hole?

Theorem: [Marc Mars (2000)]

• Let (M, g) denote a smooth vacuum spacetime

– endowed with a Killing spinor κAB satisfying κABκ
AB 6= 0,

– such that the spinor
ξAA′ ≡ ∇B

A′κAB

is Hermitian.

• Then there exist two complex constants l and c such that

H2 = −l(c− χ)4

• If, in addition, c = 1 and l is real positive, then (M, g) is locally
isometric to the Kerr spacetime.
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How to construct a Killing spinor field?

• wave equation for the Killing spinor:

�κAB + ΨABCD κ
CD = 0

where ΨABCD denotes the Weyl spinor.

• if κAB is a solution to this wave equation then the spinor fields

HA′ABC ≡ 3∇A′(AκBC)
SAA′BB′ ≡ ∇AA′ξBB′ +∇BB′ξAA′

satisfy the system of wave equations

�HAA′BC = 4
(
Ψ(AB

PQHC)PQA′ +∇(A
Q′
SBC)Q′A′

)
,

�SAA′BB′ = −∇AA′(ΨB
PQRHB′PQR)−∇BB′(ΨA

PQRHA′PQR)

+2ΨAB
PQSPA′QB′ + 2ΨA′B′

P ′Q′
SAP ′BQ′

• As the above equations constitute a system of homogeneous linear wave
equations for the fields HA′ABC and SAA′BB′, there vanishing are the
conditions for the existence of a Killing spinor in the development
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The basic variables

• denote by {oA, ιA} a spin dyad normalised according to oAι
A = 1

• NP null tetrad {la, na, ma,ma} —if {lAA′
, nAA

′
, mAA′

,mAA′} denote
the spinorial counterparts of the null tetrad, one has the corresponden-
ces

lAA
′
= oAoA

′
, nAA

′
= ιAιA

′
, mAA′

= oAιA
′
, mAA′

= ιAoA
′

• The spinor κAB can be written as

κAB = κ2oAoB − 2κ1o(AιB) + κ0ιAιB ,

where
κ0 ≡ κABo

AoB, κ1 ≡ κABo
AιB, κ2 ≡ κABι

AιB

• It can be readily verified that the scalars κ2, κ1 and κ0 have, respecti-
vely, spin weights −1, 0, 1 — i.e. they transform as

κj 7→ e−2(j−1)iϑκj

under a rotation {oA, ιA} 7→ {eiϑoA, e−iϑιA}.
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The wave equation for the Killing spinor:

�κAB + ΨABCD κ
CD = 0,

in completely generic context.

D∆κ2 + ∆Dκ2 − δδκ2 − δδκ2
+(µ+ µ+ 3γ − γ)Dκ2 − (ρ+ ρ)∆κ2 + (τ − 3α− β)δκ2 + (α− 5β + τ)δκ2

+(Ψ2 + 2αα− 8αβ − 2ββ − 2γρ+ 2µρ− 2γρ+ 2λσ + 2ατ + 2βτ + 2Dγ − 2δα− 2δβ)κ2

+(Ψ4 − 4λµ)κ0 = 0

D∆κ1 + ∆Dκ1 − δδκ1 − δδκ1
−2τDκ2 + (µ+ µ− γ − γ)Dκ1 + 2νDκ0 − (ρ+ ρ)∆κ1 + 2ρδκ2 + (α− β + τ)δκ1

−2λδκ2 + 2σδκ2 + (α− β + τ)δκ1 − 2µδκ0

+(−Ψ1 − αρ+ 3βρ+ ασ + βσρτ − στ −Dτ + δρδσ)κ2

+(−Ψ3 + αλ+ βλ+ 3αµ− βµ− νρ− νρ+ λτ + µτ +Dν − δλ− δµ)κ0 = 0

D∆κ0 + ∆Dκ0 − δδκ0 − δδκ0
+(µ+ µ− 5γ − γ)Dκ0 − (ρ+ ρ)∆κ0 + (5α− β + τ)δκ0 + (α + 3β + τ)δκ0

+(Ψ2 − 2αα− 8αβ + 2ββ + 2γρ+ 2µρ+ 2γρ+ 2λσ − 2ατ − 2βτ − 2Dγ + 2δα + 2δβ)κ0

+(Ψ0 − 4ρσ)κ2 = 0
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The transport equations on H1

2D∆κ0 − δδκ0 − δδκ0 + (α + 3β)δκ0 + (5α− β)δκ0 + (µ+ µ− 4γ)Dκ0 + 4τDκ1

+2κ1Dτ + (Ψ2 − 2αα− 8αβ + 2ββ − 2ατ − 2βτ − 2Dγ + 2δα + 2δβ)κ0 = 0

2D∆κ1 − δδκ1 − δδκ1 − 2νDκ0 + (µ+ µ)Dκ1 + 2τDκ2 + (α− β)δκ1 + 2µδκ0 + (α− β)δκ1

+(Ψ3 − 3αµ+ βµ− µτ −Dν + δµ)κ0 − 2Ψ2κ1 + κ2Dτ = 0

2D∆κ2 − δδκ2 − δδκ2 − 4νDκ1 + (4γ + µ+ µ)Dκ2 − (3α + β)δκ2 + 4µδκ1 + (α− 5β)δκ2

+(Ψ2 + 2αα− 8αβ − 2ββ + 2ατ + 2βτ + 2Dγ − 2δα− 2δβ)κ2

+(2αµ− 2Ψ3 + 2βµ− 2µτ − 2Dν + 2δµ)κ1 + Ψ4κ0 = 0

If the value of the components κ0, κ1, κ2 are known on H1, then the above equations can be
read as a system of ordinary differential equations for the transversal derivatives

∆κ0, ∆κ1, ∆κ2

along the null generators of H1. Initial data for these transport equations is naturally pre-
scribed on Z.
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The transport equations on H2

2∆Dκ0 − δδκ0 − δδκ0 − (ρ+ ρ)∆κ0 + 4τDκ1 + (5α− β + 2τ)δκ0 + (α + 3β + 2τ)δκ0

+4σδκ1 − 4ρδκ1 + (Ψ2 − 2αα− 8αβ + 2ββ − 2ατ − 2βτ + 2δα + 2δβ)κ0

+(2αρ+ 2βρ+ 6ασ − 2βσ − 2ρτ + 2στ + 2Dτ − 2δρ− 2δσ − 2Ψ1)κ1

+(Ψ0 − 4ρσ)κ2 = 0

2∆Dκ1 − δδκ1 − δδκ1 − (ρ+ ρ)∆κ1 + 2τDκ2 + (α− β + 2τ)δκ1 + (α− β + 2τ)δκ1

−2ρδκ2 + 2σδκ2 − 2Ψ2κ1

+(Ψ1 − αρ− 3βρ− ασ − βσ − ρτ + στ +Dτ − δρ− δσ)κ2 = 0

2∆Dκ2 − δδκ2 − δδκ2 − (ρ+ ρ)∆κ2 + (2τ − 3α− β)δκ2 + (α− 5β + 2τ)δκ2

+(Ψ2 + 2αα− 8αβ − 2ββ + 2ατ + 2βτ − 2δα− 2δβ)κ2 = 0

If the values of κ0, κ1, κ2 are known on H2 then the above equations can be read as a system
of ordinary differential equations for the transversal derivatives

Dκ0, Dκ1, Dκ2

along the null generators of H2. Initial data for these transport equations is naturally pre-
scribed on Z.
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The necessary and sufficient conditions for the existence of
a Killing spinor field on a distorted black hole

The components of the Killing spinor field κAB on the null hypersurface
H1 ∪H2.

H1 Z H2

κ0 = 0 κ0 = 0 κ0 = −2u (ðκ1 + τ κ1)

κ1 = κ1|Z κ1 : ð2κ1 = ð2κ1 = 0 κ1 = κ1|Z
κ2 = −2 r ðκ1 κ2 = 0 κ2 = 0

The components of the Killing vector field ξAA′ on the null hypersurface
H1 ∪H2.

H1 Z H2

ξ11′ = −3 r (τ ðκ1 − τ ðκ1) ξ11′ = 0 ξ11′ = 0

ξ10′ = −3ðκ1 ξ10′ = −3ðκ1 ξ10′ = −3ðκ1
ξ10′ = 3ðκ1 ξ10′ = 3ðκ1 ξ10′ = 3ðκ1
ξ00′ = 0 ξ00′ = 0 ξ00′ = −3u (τ ðκ1 − τ ðκ1)

As due to Hawking’s black hole topology theorem if Z compact without
boundary then it has to be spherical.

the KVF ξAA′ is an axial KVF (it may be complex) on Z
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• It is known that if a generic Killing spinor field κAB is admitted by
a vacuum spacetime (generic, if κAB = α(AβB), for some αA 6= βA
spinors) then ΨABCD = ψ κ(ABκCD) is of Petrov type D.

• axisymmetry: ⇒
κ1 = c + d cos θ

with c, d ∈ C

• the integrability condition for the Killing spinor: ⇒

κ3
1 Ψ2 = M

with M ∈ C

• ⇒ Ψ2 =
M

(c + d cos θ)3

• one parameter is eliminated by the Gauss-Bonnet formula∫
Z

Ψ2dS = −2π

• Those distorted black hole configurations which admit a Killing spinor
form a five (real) parameter family of solutions. Each is of Petrov
type D and possesses an axial symmetry everywhere in the Cauchy
development of H1 ∪H2.


