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The main message:

some of the arguments and techniques developed originally and applied so far
exclusively only in the Lorentzian case do also apply to Riemannian spaces

@ |. Racz: Is the Bianchi identity always hyperbolic?, CQG 31 155004 (2014)

I. Récz: Cauchy problem as a two-surface based ‘geometrodynamics’, Class. Quantum Grav. 32 (2015) 015006

I. Rdcz: Dynamical determination of the gravitational degrees of freedom, arXiv:1412.0667 (2015)

|. Racz: Constraints as evolutionary systems, CQG 33 015014 (2016)
I. Récz and J. Winicour: Black hole initial data without elliptic equations, Phys. Rev. D 91, 124013 (2015)

I. Récz and J. Winicour: On solving the constraints by integrating a strongly hyperbolic system, arXiv:1601.05386

I. Racz: A simple method of constructing binary black hole initial data, arXiv:1605.01669

I. Rédcz: On the ADM charges of multiple black holes, arXiv:1608.02283

A. Nakonieczna, L. Nakonieczny and |. Récz: Black hole initial data by numerical integration of the parabolic-hyperbolic form of the constraints,
arXiv:1712.00607

I. Récz and J. Winicour: On computing black hole initial data without elliptic solvers, arXiv:1712.03294

All the involved results are valid for arbitrary dimension: i.e. for dim(M) =n (> 4).
Nevertheless, for the sake simplicity attention will be restricted to the case of n = 4.
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Outline:

o Einsteinian spaces: (M, g.s)

o First part
e Second part

@ in both cases metrics of Euclidean signature will be involved

@ no gauge condition
. arbitrary choice of foliations & *“evolutionary” vector field
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The generic framework:

o Einsteinian spaces: (M, gu5)

e M : 4-dimensional, smooth, paracompact, connected, orientable manifold
® gab: smooth Lorentzian_ | 1y or Riemannian | | i) metric

o Einstein’s equations:

G — % =0 with source term: | V%, =0

e in a more familiar setup: Einstein’s equations with cosmological constant A

[Rab - %gab R} iy Agab =81 Ty

with matter fields satisfying their Euler-Lagrange equations

gab =87 Tab - Agab
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PART |- |

The primary splitting

@ Assume: M is foliated by a one-parameter family of homologous
hypersurfaces, i.e. M >~ R x X, for some three-dimensional manifold X.

e known to hold for globally hyperbolic spacetimes (Lorentzian case)

e equivalent to the existence of a smooth function o : M — R with
non-vanishing gradient V.o such that the o = const level surfaces
Yo = {0} x X comprise the one-parameter foliation of M.

° nawvao...&...g“bﬂ n“:g“bnb

Istvan Racz (University of Warsaw & Wigner RCP) 23 March 2018 5/31



PART I:
Projections:

The projection operator:

@ n% the ‘unit norm’ vector field that is normal to the X, level surfaces

e the sign is not fixed: € takes the value —1 or +1 for Lorentzian or Riemannian

metric gq», respectively.

o the projection operator

hab = 6% — en“nb

to the level surfaces of o : M — R.

@ the induced metric on the o = const level surfaces

hap = heahfb gef

° denotes the covariant derivative operator associated with hgp.
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PART I:
Decompositions of various fields:

e aform field: | L, = 6%, L. = (h¢, +€nng) Le = Ly + Ang

where ’La =h®, L. and A=enL,

@ “time evolution vector field”

c%: o0¢V.o=1

aazai—l—a‘T:Nna—l—Na

e where N and N*® denotes the ‘lapse’ and ‘shift’ of 0% = (0,)%:
’N =¢(o°ne) and N®=ho°
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PART I:
Decompositions of various fields:

Any symmetric tensor field P,;, can be decomposed

in terms of n® and fields living on the o = const level surfaces as

Pop = 7 ngny, + [na Py + 1o Pal + Pap

where |7 =7n°nS Py, Po=chan! Py, Puy=hahly Py

It is also rewarding to inspect the decomposition of the contraction V¢ P,;:

€ (VO Pue) n® = L + D°p, + [ (K©.) — e Py K — 2en°p,]
(VOPue) b = Zupp + DPep + [(KC) Py + 1o T — € Py

Kap = h®Veny = £ Zohay | |fa :=1Veng = —e DyIn N |
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PART I:
Decompositions of various fields:

@ the metric

|gab = €ENgNp + hab |

@ the “source term”

Gop = NgMp ¢ + [N Py + 1 Pa] + Sap

where |e = nenf %f, Po = Ghea’nf %f, Guw = heahfb %f

@ r.h.s. of Einstein’s equation: E., = Gap — Yup

(M) (M) (eEvoc)

Eop = nany B + e By +mp E; ']+ (B,

+ hay E7)

(H) (evoc)

E — eheonf By, Ely

=nn’ By, E™ = h¢hly Bep — hap E"

a
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PART I:

The decomposition of the covariant divergence V@ E,, = 0 of Egp = Gap — Yap:

2, BE™ + DB + B (K°.) —2¢ (e BS)
ek (B, "7 4+ hae E7)] =0
LBy + DB + hay BT+ [(Ke) By + BT
—e(By Y 4 hap BT Y001 =0

1st order symmetric hyperbolic system: linear and homogeneous in (E(H),EZ({M))T:

@ N x7(1)” and Nh%¥ x ”(2)” in local coordinates (o, 2", z?, 2*) adopted to the
vector field |0“ =Nn*+ N* 0°Veo=1 | and the foliation {3}, read as

10 Nk NR* g™ &
0 niv ) Ot Npr _Nrpi ) O ™) T \&?
(M)

; . . ()
o Where the source terms & and & are linear and homogeneous in &' “and E;

e

(H) (M)

| A" g+ Bv=0| with v=(E ,E )" FOSHlv =0
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The main result of the first part:

Theorem

Let (M, gq) be an Einsteinian space as specified and assume that the
metric hy, induced on the o = const level surfaces is Riemannian.
Then, regardless whether ¢,, is of Lorentzian or Euclidean

. . . (Evor) .
signature, any solution to the reduced equations £, = 0 is also a
solution to the full set of field equations G, — %,, = 0 provided that
the constraint expressions E'" and E;M vanish on one of the
o = const level surfaces.

e no gauge condition was used anywhere in the above analyze !

o it applies regardless of the choice of the foliation, , of M

and for any choice of the evolution vector field, o (N, N%) |
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PART II: The explicit form of the constraints

The constraint expressions are projections of E,, = Gup — Yop:

E™ =nnf By = L{—e "R+ (K°)? = Koy K% —2¢} =0
(M)

) :Ghea’nfEef:e[DeKea_DaKee_€pa] =0

a

@ where D, denotes the covariant derivative operator associated with A, and

¢ =nen’ Gef, Po = eheé,n’ Yer

@ it is an underdetermined system: 4 equations for 12 variables

(hij, Kij)
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PART II:
A simple example:

Consider the underdetermined equation on ¥ ~ R? with some coordinates (Y, £)

(02 +R)u+ (O — Oc)v+ (ady — OF)w+ 2= 0

@ it is an equation for the four variables %, v, w and z on X

@ in advance of solving it three of these variables have to be fixed on ¥

v
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PART II:
A simple example:

It is an elliptic equation for u on X =

(02 +R)u+ (O — Oc)v+ (ady — OF)w+ 2= 0

@ in solving this equation the variables v, w and z have to be specified on R?

@ the variable u has also to be fixed at the boundaries Sout and Sin
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PART II:
A simple example:

It is a hyperbolic equation for v on X ~

(02 +R)u+ (0 — Oc)v+ (ady — OF)w+ 2= 0

@ in solving this equation the variables u, w and z have to be specified on R?

@ the variable v has also to be fixed at the initial data surface Sin data

Ulg

in data

S

indata Tol__
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PART II:
A simple example:

It is a parabolic equation

(02 +R)u+ (O — Oc)v+ (ady — OF)w+ 2=0

@ in solving this equation the variables u, v and z have to be fixed on R? : |a > 0

@ the variable w has also to be fixed at the initial data surface Sin.data

S

indata ol _
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PART II:
A simple example:

It is a parabolic equatio

(02 +R)u+ (O — Oc)v+ (ady — OF)w+ 2=0

@ in solving this equation the variables u, v and z have to be fixed on R? : |a < 0

@ the variable w has also to be fixed at the initial data surface Sin.data

S

in.data -
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PART II:
A simple example:

It is an algebraic equation for z :

(02 +R)u+ (02 —R)v+ (a0y — R)w+2=0

@ once the variables u, v, w are specified on R? the solution is determined as

z=—[(2+F)u+ (0} — R)v+ (ady — 0F)uw)|

o’
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New variables by applying 2 + 1 decompositions:

Splitting of the metric h;;:

assume: Y~Rx.¥

Y is smoothly foliated by a one-parameter family of two-surfaces ., :
p = const level surfaces of a smooth real function p : ¥ — R with 9;p # 0

— ﬁi:Naip...&...hij —)ﬁi:hijh\j _),’y\ij:(sij_ﬁiﬁj

@ choose p’ to be a vector field on ¥ : the integral curves... & |p'dip =1

@ ‘lapse’ and ‘shift’ of p’

pi=Nnt+ N, where Z\Af:pjﬁj and ]Vi:ﬁij/ﬂ

@ induced metric, extrinsic curvature and acceleration of the ., level surfaces:

-~

Jig = T*: 95 b 5oy = 5% ’ﬁz =n'Din; = —D;In N

@ the metric h;; can then be given as

hij =i + — [{N,N7;}
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PART II:

2 + 1 decompositions:

Splitting of the symmetric tensor field Kj;;:
°

Kij = K,ﬁih\j + [ﬁ1 kj —+ ﬁj kl] —+ Kij

where

_ 1 _ okl _ koAl
k=n"n'Ki, k;=3%n'Ky and K;j =757 Ky

@ the trace and trace free parts of K;;

K, —3H K d K =K., — 13, K!
1= Kl an 15 — ANqg 2’77,] l

The new variables:
°

(h2]7K ) = (Nvﬁiafy\ij;n7kivKll7Io<ij)

@ these variables retain the physically distinguished nature of h;; and Kj;
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PART II:
The momentum constraint:

D.K¢ —D,K® —€ps, =0 |[= ol ciim

Di(KY) — Dik + D'Ky; + (Al)k4+nﬁifﬁlKlifepl§li:()
Z(K'Y) - D'y — k (K') + K K™ + 270 kg + epy ! =0

First order symmetric hyperbolic system:

@ contract (1) with Zﬁﬁij and mult. (2) by N, when writing them out in
coordinates (p, 2, 2), adopted to the foliation .#, and the vector field p’,

= = k
AB _9 NK2AB _ A AAK B BA
(27 O)a . QJXA;K NZK O +< (k)>:0
0 —N7~ —N KEZ, B k)
@ a first order symmetric hyperbolic system for the vector valued variable

(kB) KEE)T

11 p plays the role of ‘time’ regardless of the value of e = +1
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PART II:

The Hamiltonian constraint:

The Hamiltonian constraint in terms of the new variables:

(H)

B =nenf B = L{—e "R+ (K°)? — KoK —2¢} =0

using (3)R = ﬁ — {2$ﬁ(f€ll) 4 (I?lz)2 4= f?klf?kl 4= 2]?713[51]/\?}

R and Ky, denote the scalar and extrinsic curvature of ki, respectively

—6§+ € {2$ﬁ([?ll) + (I?ll)Q + [?kl I?kl + QN_lﬁlﬁlN}

+2K,Kll +%(Kll)2 —2klkl —IO(MIO(M —2¢e=0

o’

Alternative choices yielding evolutionary systems
@ it is a parabolic equation for (the sign of plays a role)

@ it is an algebraic equation for (what is if vanishes somewhere?)

vy
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The parabolic-hyperbolic system:

The Hamiltonian constraint as a p olic equation for N:

_eme{z ) | R a o R | B }

+2rKh 4+ 1 (KY)? - 2Kk - Ky KM — 26 =0

o | £a(RY) = —N2K((0,8) — (WD) + N-2( (0, %) — (V' Dik)

A=2[8,K) — NU(DK) |+ K® + Ky K™

@ using . a2 &
B=—R+e[26(KY)+ 1 (K)? — 2Kk — Ky KF — 2¢]

@ it gets to be a Bernoulli-type parabolic partial differential equation provided that K.

° 2K [(8,N) — NY(D,N)] = 2N2(D'D,N) + AN + BN3 | & momentum constr.

@ in highly specialized cases of “quasi-spherical” foliations with 7;; = 72 9;; and with time
symmetric initial data K;; = 0 R. Bartnik (1993), G. Weinstein & B. Smith (2004)
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PART II:
Constraints as evolutionary systems |.

The parabolic-hyperbolic system:

~ o~

° (hij, Kij;) | represented by the variables | (IV, Ni,;y\ij;lﬂ,ki7Kll7Io<«ij)

@ the constraints comprise a parabolic-hyperbolic system for (]V, ki,Kll)

o with freely specifiable variables on and on :

~ ~. o
(‘\“\:n i ”Nl7ﬂyij;n7k/‘5u1(l 'K]/‘S KU)

data ’in.data

ata

o a fixed (+/—) sign of |I*( = 13 L7 — ﬁjﬁjl can be guaranteed

S

indata .-
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The strongly hyperbolic system:

The Hamiltonian constraint as an algebraic equation for x:

—E§+E{2$ﬁ(i€ll) —‘r([?ll)Q +[?kl I?kl +2]/\7_1 ﬁlﬁlﬁ}
+2Kll aF % (Kll)z 72klkl = IO{kl f{kl —2lei=—10

whence |k = (2KY) '[2klk; — % (K')? — ko], ko= - IO{kl KM —2¢

@ by eliminating from the momentum constraint one gets

gﬁkl + (Kll)_l[ﬁﬁi(Kll) - 2klﬁlkl} + (2 Kll)_lﬁih‘,o
+HE ki + [k — § (KL )7 — 7 Ky + D'Ky; —ep3ts =0,
fﬁ(Kll) = f)lkl = K',(I?ll) +KMI’€M +2ﬁl k; +ep Aal=0

@ the above system is a strongly hyperbolic one for| (k;, KZZ)T provided that
@ Kk is determined algebraically once are known !!

@ the entire three-metric | h;; = 7;; + n;nj | is freely specifiable. !l!
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PART II:

Constraints as evolutionary systems |l:

The strongly hyperbolic system:

~ o~

° (hij, Kij;) | represented by the variables | (IV, Ni,;y\ij;li,ki7Kll7Io<ij)

@ the constraints form a strongly hyperbolic system for |(k;, K';)| (alg.for [<])
o with freely specifiable variables on and on :

o~ A~ . O
|, N B [ Kl e K115, 00 Kig)]

o by choosing the free data properly can be guaranteed (locally!)

S

indata “te___T -
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Summary and outlook:

Summary:

4-dimensional Riemannian and Lorentzian spaces satisfying Einstein's
equations, and some mild topological assumptions, were considered. !l [n(> 4)]

@ it was shown that the constraint expressions satisfy a FOSH system that
is linear and homogeneous = (the constraints propagate)
@ concerning the constraint equations in Einstein's theory it was shown:
e momentum constraint as a first order symmetric hyperbolic system
o the Hamiltonian constraint as a parabolic or an algebraic equation

o in either case the coupled constraint equations comprise a well-posed
evolutionary system: a parabolic-hyperbolic or a strongly hyperbolic,

o (local) existence and uniqueness of C'* solutions is guaranteed

© !!! regardless whether the primary space is Riemannian or Lorentzian

@ !!! no use of gauge conditions

Istvan Racz (University of Warsaw & Wigner RCP) 23 March 2018 27 /31



Summary and outlook:
utlook:

Analytic investigations |.:

e Joint work with Philippe LeFloch

e near Schwarzschild configurations with spherical foliations
@ the parabolic-hyperbolic, and
@ in the strongly hyperbolic

e Aims: Using energy estimates to show the global existence and proper
asymptotic decay of solutions to the constrain equations in these cases

Numerical investigations: |.

e Joint work with Anna Nakonieczna and Lukasz Nakonieczny

o Aims: to construct initial data—by integrating numerically the
parabolic-hyperbolic form of the constraints—for:

@ single boosted and rotating black holes (exact and distorted ones)
@ rotating binary black holes (without restrictions in the strong field regime)

e our first joint paper:
A. Nakonieczna, L. Nakonieczny and |. Racz: Black hole initial data by
numerical integration of the parabolic-hyperbolic form of the constraints,
arXiv:1712.00607
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Summary and outlook:
utlook:

Numerical investigations: Il.

e Joint work with Maciej Maliborski
e investigate near Kerr configurations using foliations by topological two-spheres

o strongly hyperbolic form of the constraints
@ plan to include the parabolic-hyperbolic system too

e integrating inward: singularity develops but located in the trapped region

Numerical investigations: Ill.

o Christian Schell (PhD student of Oliver Rinne at AEI, Potsdam)
investigated perturbations of Minkowski spacetime

e parabolic-hyperbolic form of the constraints in determining initial data, and
e hyperbolic form of momentum the constraint in partly constrained evolution
o the X; time-level surfaces are foliated by topological two-spheres

the playground is open: apply the new evolutionary forms of the
constraints in solving various problems of physical interest
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Summary and outlook:
The roots of the evolutionary aspects

(/\/1))

The first order symmetric hyperbolic system for (E(H‘), E,

7

@ Characteristic directions associated with the FOSH system governing the
evolution of the constraint expressions are determined as

[T — nind | ;= [g9 — 2nind | €65 = 0

The momentum constraint: first order symmetric hyperbolic system

@ with characteristic cone given as

Jii — 27l | &5 = [h — 3R] &&= 0
J J

Deriving a Lorentzian metric from a Riemannian one

@ ... given a Riemannian metric g;;, a unit form field n; and a positive real
function « == a metric of Lorentzian signature can be defined as

Eij =gij — (1 +a)mn;
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Summary and outlook:

The conformal (elliptic) method:

Lichnerowicz A (1944) and York J W (1972):

@ replace

h” = ¢4 ﬁij and Kij = %h” Kll = (1572 -[?ij

using these variables the constraints are put into a semilinear elliptic system
°

5151¢+eé1§¢+ %ffijf{ij o7 — [% (K')? - ie] ¢> =0

where Dy, R, ........ E”

| |, A
Kij = Ki[j} +Ki[j ]

, where | K1 = (DX + D X; — 2i~zij1~)le)

3
BZEIXZ T %ﬁl(ﬁle) = Eile = % ¢65i(Kll) T 6¢1Opi =0
o (his, Kig) | — | (0B K4 X3, BET)
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