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istvan.racz@fuw.edu.pl & racz.istvan@wigner.mta.hu

Faculty of Physics, University of Warsaw, Warsaw, Poland
Wigner Research Center for Physics, Budapest, Hungary

Supported by the POLONEZ programme of the National Science Centre of Poland which
has received funding from the European Union‘s Horizon 2020 research and innovation

programme under the Marie Sk lodowska-Curie grant agreement No. 665778.

Seminar of Theory of Relativity and Gravitation,
Warsaw, 23 March 2018
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The main message:

some of the arguments and techniques developed originally and applied so far
exclusively only in the Lorentzian case do also apply to Riemannian spaces

Based on some recent works;

I. Rácz: Is the Bianchi identity always hyperbolic?, CQG 31 155004 (2014)
I. Rácz: Cauchy problem as a two-surface based ‘geometrodynamics’, Class. Quantum Grav. 32 (2015) 015006

I. Rácz: Dynamical determination of the gravitational degrees of freedom, arXiv:1412.0667 (2015)

I. Rácz: Constraints as evolutionary systems, CQG 33 015014 (2016)
I. Rácz and J. Winicour: Black hole initial data without elliptic equations, Phys. Rev. D 91, 124013 (2015)

I. Rácz and J. Winicour: On solving the constraints by integrating a strongly hyperbolic system, arXiv:1601.05386

I. Rácz: A simple method of constructing binary black hole initial data, arXiv:1605.01669

I. Rácz: On the ADM charges of multiple black holes, arXiv:1608.02283

A. Nakonieczna, L. Nakonieczny and I. Rácz: Black hole initial data by numerical integration of the parabolic-hyperbolic form of the constraints,
arXiv:1712.00607

I. Rácz and J. Winicour: On computing black hole initial data without elliptic solvers, arXiv:1712.03294

All the involved results are valid for arbitrary dimension: i.e. for dim(M) = n (≥ 4).
Nevertheless, for the sake simplicity attention will be restricted to the case of n = 4.
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Outline:

Einsteinian spaces: (M, gab)

First part

Second part

ΣσΣσ

ρS

in both cases metrics of Euclidean signature will be involved

no gauge condition
... arbitrary choice of foliations & “evolutionary” vector field
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The generic framework:

Einsteinian spaces: (M, gab)

M : 4-dimensional, smooth, paracompact, connected, orientable manifold
gab: smooth Lorentzian(−,+,+,+) or Riemannian(+,+,+,+) metric

Einstein’s equations:

Gab − Gab = 0 with source term: ∇aGab = 0

in a more familiar setup: Einstein’s equations with cosmological constant Λ

[Rab − 1
2
gabR] + Λ gab = 8π Tab

with matter fields satisfying their Euler-Lagrange equations

Gab = 8π Tab − Λ gab
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PART I:

PART I:

The primary splitting

Assume: M is foliated by a one-parameter family of homologous
hypersurfaces, i.e. M ' R× Σ, for some three-dimensional manifold Σ.

known to hold for globally hyperbolic spacetimes (Lorentzian case)
equivalent to the existence of a smooth function σ : M → R with
non-vanishing gradient ∇aσ such that the σ = const level surfaces
Σσ = {σ} × Σ comprise the one-parameter foliation of M .

na ∼ ∇aσ . . . & . . . gab −→ na = gabnb

Σσ
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PART I:

Projections:

The projection operator:

na the ‘unit norm’ vector field that is normal to the Σσ level surfaces

nana = ε

the sign is not fixed: ε takes the value −1 or +1 for Lorentzian or Riemannian
metric gab, respectively.

the projection operator

hab = δab − ε nanb

to the level surfaces of σ : M → R.

the induced metric on the σ = const level surfaces

hab = heah
f
b gef

Da denotes the covariant derivative operator associated with hab.
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PART I:

Decompositions of various fields:

Examples:

a form field: La = δea Le = (hea + ε nena)Le = La + λna

where La = heaLe and λ = ε neLe

“time evolution vector field”

σa : σe∇eσ = 1

σa = σa⊥ + σa‖ = N na +Na

n
a n

a

n
a

n
a

n
a n

a

n
a

na

na

n
a

n
a

na

n
a

σσ

σ

σ
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a

σ

σa
a

σ
a

σ
a

N
an

a
N

where N and Na denotes the ‘lapse’ and ‘shift’ of σa = (∂σ)a:

N = ε (σene) and Na = hae σ
e
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PART I:

Decompositions of various fields:

Any symmetric tensor field Pab can be decomposed

in terms of na and fields living on the σ = const level surfaces as

Pab = π nanb + [na pb + nb pa] + Pab

where π = nenf Pef , pa = ε hean
f Pef , Pab = heah

f
b Pef

It is also rewarding to inspect the decomposition of the contraction ∇aPab:

ε (∇aPae)ne = Lnπ +Depe + [π (Ke
e)− εPefKef − 2 ε ṅepe]

(∇aPae)heb = Lnpb +DePeb + [(Ke
e)pb + ṅb π − ε ṅePeb]

Kab = hea∇enb = 1
2 Lnhab ṅa := ne∇ena = −εDa lnN

back
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PART I:

Decompositions of various fields:

Examples:

the metric
gab = ε nanb + hab

the “source term”

Gab = nanb e + [na pb + nb pa] + Sab

where e = nenf Gef , pa = ε hean
f Gef , Sab = heah

f
b Gef

r.h.s. of Einstein’s equation: Eab = Gab − Gab

Eab = nanbE
(H)

+ [naE
(M)

b + nbE
(M)

a ] + (E
(EVOL)

ab + habE
(H)

)

E
(H)

= nenf Eef , E
(M)

a = ε hean
f Eef , E

(EVOL)

ab = heah
f
bEef − habE

(H)
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PART I:

The decomposition of the covariant divergence ∇aEab = 0 of Eab = Gab − Gab:

LnE
(H)

+DeE
(M)

e + [E
(H)

(Ke
e)− 2 ε (ṅeE

(M)

e ) Div

− εKae (E
(EVOL)

ae + haeE
(H)

) ] = 0

LnE
(M)

b +Da(E
(EVOL)

ab + habE
(H)

) + [ (Ke
e)E

(M)

b + E
(H)

ṅb

− ε (E
(EVOL)

ab + habE
(H)

) ṅa ] = 0

1st order symmetric hyperbolic system: linear and homogeneous in (E
(H)

, E
(M)

i )T :

N × ”(1)” and Nhij × ”(2)” in local coordinates (σ, x1, x2, x3) adopted to the

vector field σa = N na +Na: σe∇eσ = 1 and the foliation {Σσ}, read as

{(
1 0

0 hij

)
∂σ +

(
−Nk N hik

N hjk −Nk hij

)
∂k

}(
E

(H)

E
(M)

i

)
=

(
E
E j

)

where the source terms E and E j are linear and homogeneous in E
(H)

and E
(M)

i !!! ε

Aµ ∂µv + B v = 0 with v = (E
(H)

, E
(M)

i )T FOSH !!! v ≡ 0
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PART I:

The main result of the first part:

Theorem

Let (M, gab) be an Einsteinian space as specified and assume that the
metric hab induced on the σ = const level surfaces is Riemannian.
Then, regardless whether gab is of Lorentzian or Euclidean
signature, any solution to the reduced equations E

(EVOL)

ab = 0 is also a
solution to the full set of field equations Gab − Gab = 0 provided that
the constraint expressions E

(H)
and E

(M)

a vanish on one of the
σ = const level surfaces.

no gauge condition was used anywhere in the above analyze !

it applies regardless of the choice of the foliation, Σσ , of M

and for any choice of the evolution vector field, σa (N,Na) .
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PART II:

PART II: The explicit form of the constraints

The constraint expressions are projections of Eab = Gab − Gab:

E
(H)

= nenfEef = 1
2 {−ε

(3)

R+ (Ke
e)

2 −KefK
ef − 2 e} = 0

E
(M)

a = ε hean
fEef = ε [DeK

e
a −DaK

e
e − ε pa] = 0

where Da denotes the covariant derivative operator associated with hab and

e = nenf Gef , pa = ε hean
f Gef

it is an underdetermined system: 4 equations for 12 variables

(hij ,Kij)
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PART II:

A simple example:

Consider the underdetermined equation on Σ ≈ R2 with some coordinates (χ, ξ)

(∂2χ + ∂2ξ )u + (∂χ − ∂ξ)v + (a ∂χ − ∂2ξ )w + z = 0

it is an equation for the four variables u, v, w and z on Σ

in advance of solving it three of these variables have to be fixed on Σ

Σ
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PART II:

A simple example:

It is an elliptic equation for u on Σ ≈ R2 :

(∂2χ + ∂2ξ )u + (∂χ − ∂ξ)v + (a ∂χ − ∂2ξ )w + z = 0

in solving this equation the variables v, w and z have to be specified on R2

the variable u has also to be fixed at the boundaries Sout and Sin

ΣΣ

Sout

u|Sout

Σ

Sout

Sin

u|Sout

u|S
in

Σ

Sout

Sin

u|Sout

u|S
in
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PART II:

A simple example:

It is a hyperbolic equation for v on Σ ≈ R2 :

(∂2χ + ∂2ξ )u + (∂χ − ∂ξ)v + (a ∂χ − ∂2ξ )w + z = 0

in solving this equation the variables u, w and z have to be specified on R2

the variable v has also to be fixed at the initial data surface Sin.data

ΣΣ

Sin.data

v|Sin.data

Σ

Sin.data

v|Sin.data

Σ

Sin.data

v|Sin.data
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PART II:

A simple example:

It is a parabolic equation for w on Σ ≈ R2 :

(∂2χ + ∂2ξ )u + (∂χ − ∂ξ)v + (a ∂χ − ∂2ξ )w + z = 0

in solving this equation the variables u, v and z have to be fixed on R2 : a > 0

the variable w has also to be fixed at the initial data surface Sin.data

ΣΣ

Sin.data

w|
Sin.data

Σ

Sin.data

w|
Sin.data

Σ

Sin.data

w|
Sin.data
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PART II:

A simple example:

It is a parabolic equation for w on Σ ≈ R2 :

(∂2χ + ∂2ξ )u + (∂χ − ∂ξ)v + (a ∂χ − ∂2ξ )w + z = 0

in solving this equation the variables u, v and z have to be fixed on R2 : a < 0

the variable w has also to be fixed at the initial data surface Sin.data

Σ

Sin.data

w|
Sin.data

Σ

Sin.data

w|
Sin.data

Σ

Sin.data

w|
Sin.data
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PART II:

A simple example:

It is an algebraic equation for z :

(∂2χ + ∂2ξ )u + (∂2χ − ∂2ξ )v + (a ∂χ − ∂2ξ )w + z = 0

once the variables u, v, w are specified on R2 the solution is determined as

z = −
[
(∂2χ + ∂2ξ )u + (∂2χ − ∂2ξ )v + (a ∂χ − ∂2ξ )w

]
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PART II:

New variables by applying 2 + 1 decompositions:
Splitting of the metric hij :

assume: Σ ≈ R×S

Σ is smoothly foliated by a one-parameter family of two-surfaces Sρ :
ρ = const level surfaces of a smooth real function ρ : Σ→ R with ∂iρ 6= 0

=⇒ n̂i = N̂ ∂iρ . . . & . . . hij −→ n̂i = hij n̂j −→ γ̂ij = δij − n̂in̂j

choose ρi to be a vector field on Σ : the integral curves. . . & ρi∂iρ = 1

‘lapse’ and ‘shift’ of ρi

ρi = N̂ n̂i + N̂ i , where N̂ = ρj n̂j and N̂ i = γ̂ij ρ
j

induced metric, extrinsic curvature and acceleration of the Sρ level surfaces:

γ̂ij = γ̂ki γ̂
l
j hkl K̂ij = 1

2 Ln̂γ̂ij ˙̂ni := n̂lDln̂i = −D̂i ln N̂

the metric hij can then be given as

hij = γ̂ij + n̂in̂j ⇐⇒ {N̂ , N̂ i, γ̂ij}
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PART II:

2 + 1 decompositions:
Splitting of the symmetric tensor field Kij :

Kij = κ n̂in̂j + [n̂i kj + n̂j ki] + Kij

where

κ = n̂kn̂lKkl , ki = γ̂kin̂
lKkl and Kij = γ̂kiγ̂

l
j Kkl

the trace and trace free parts of Kij

Kl
l = γ̂klKkl and

◦
Kij = Kij − 1

2 γ̂ijK
l
l

The new variables:

(hij ,Kij) ⇐⇒ (N̂ , N̂ i, γ̂ij ;κ,ki,K
l
l,
◦
Kij)

these variables retain the physically distinguished nature of hij and Kij
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PART II:

The momentum constraint:

DeK
e
a −DaK

e
e − ε pa = 0˙̂ni := n̂lDln̂i = −D̂i ln N̂ K̂ij = 1

2
Ln̂γ̂ij ; K̂ll = γ̂ijK̂ij

Ln̂ki − 1
2 D̂i(K

l
l)− D̂iκ + D̂l ◦Kli + (K̂l

l)ki + κ ˙̂ni − ˙̂nlKli − ε pl γ̂li = 0

back: str.hyp.sys. Ln̂(Kl
l)− D̂lkl − κ (K̂l

l) + KklK̂
kl + 2 ˙̂nl kl + ε pl n̂

l = 0

First order symmetric hyperbolic system:

contract (1) with 2 N̂ γ̂ij and mult. (2) by N̂ , when writing them out in
coordinates (ρ, x2, x3), adopted to the foliation Sρ and the vector field ρi,{(

2 γ̂AB 0
0 1

)
∂ρ +

(
−2 N̂K γ̂AB −N̂ γ̂AK

−N̂ γ̂BK −N̂K

)
∂K

} kB

KE
E

+

(
BA

(k)

B(K)

)
= 0

a first order symmetric hyperbolic system for the vector valued variable

(kB ,K
E
E)T

!!! ρ plays the role of ‘time’ regardless of the value of ε = ±1
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PART II:

The Hamiltonian constraint:

The Hamiltonian constraint in terms of the new variables:

E
(H)

= nenfEef = 1
2
{−ε

(3)

R+ (Ke
e)

2 −KefK
ef − 2 e} = 0

using
(3)

R = R̂−
{

2 Ln̂(K̂l
l) + (K̂l

l)
2 + K̂klK̂

kl + 2 N̂−1D̂lD̂lN̂
}

R̂ and K̂kl denote the scalar and extrinsic curvature of γ̂kl, respectively

−ε R̂+ ε
{

2 Ln̂(K̂l
l) + (K̂l

l)
2 + K̂kl K̂

kl + 2 N̂−1D̂lD̂lN̂
}

+ 2κKl
l + 1

2
(Kl

l)
2 − 2klkl −

◦
Kkl

◦
Kkl − 2 e = 0

Alternative choices yielding evolutionary systems:

it is a parabolic equation for N̂ (the sign of K̂l
l plays a role)

it is an algebraic equation for κ (what is if Kl
l vanishes somewhere?)
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PART II:

The parabolic-hyperbolic system:

The Hamiltonian constraint as a parabolic equation for N̂ :

−ε R̂+ ε

{
2 Ln̂(K̂

l
l) +(K̂l

l)
2 + K̂kl K̂

kl + 2 N̂−1 D̂lD̂lN̂

}
+ 2κKl

l +
1
2
(Kl

l)
2 − 2klkl −

◦
Kkl

◦
Kkl − 2 e = 0

K̂l
l = γ̂ij K̂ij = N̂−1[ 1

2
γ̂ijLργ̂ij − D̂jN̂j ] = N̂−1

?
K as n̂i = N̂−1[ ρi − N̂ i ]

Ln̂(K̂
l
l) = −N̂−3

?
K [ (∂ρN̂)− (N̂ lD̂lN̂) ] + N̂−2[ (∂ρ

?
K)− (N̂ lD̂l

?
K) ]

using
A = 2 [ (∂ρ

?
K)− N̂ l(D̂l

?
K) ] +

?
K

2
+

?
Kkl

?
Kkl

B = − R̂+ ε
[
2κ (Kl

l) +
1
2
(Kl

l)
2 − 2klkl −

◦
Kkl

◦
Kkl − 2 e

]
it gets to be a Bernoulli-type parabolic partial differential equation provided that

?
K ...

2
?
K [ (∂ρN̂)− N̂ l(D̂lN̂) ] = 2 N̂2(D̂lD̂lN̂) +A N̂ + B N̂3 & momentum constr.

in highly specialized cases of “quasi-spherical” foliations with γ̂ij = r2 ◦γij and with time
symmetric initial data Kij ≡ 0 R. Bartnik (1993), G. Weinstein & B. Smith (2004)
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PART II:

Constraints as evolutionary systems I.

The parabolic-hyperbolic system:

(hij ,Kij) represented by the variables (N̂ , N̂ i, γ̂ij ;κ,ki,K
l
l,
◦
Kij)

the constraints comprise a parabolic-hyperbolic system for (N̂ ,ki,K
l
l)

with freely specifiable variables on Σ and on Sin.data :

(N̂ |Sin.data , N̂
i, γ̂ij ;κ,ki|Sin.data ,K

l
l|Sin.data ,

◦
Kij)

a fixed (+/−) sign of
?
K = 1

2
γ̂ijLργ̂ij − D̂jN̂j can be guaranteed

ΣΣ

Sin.data

Σ

Sin.data

Σ

Sin.data

Σ

Sin.data

Σ

Sin.data

Σ

Sin.data
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PART II:

The strongly hyperbolic system:

The Hamiltonian constraint as an algebraic equation for κ:

−ε R̂+ ε
{
2Ln̂(K̂

l
l) +(K̂l

l)
2 + K̂kl K̂

kl + 2 N̂−1 D̂lD̂lN̂
}

+ 2 κ Kl
l +

1
2
(Kl

l)
2 − 2klkl −

◦
Kkl

◦
Kkl − 2 e = 0

whence κ = (2Kl
l)
−1[ 2klkl − 1

2
(Kl

l)
2 − κ0 ] , κ0 = −ε(3)R−

◦
Kkl

◦
Kkl − 2 e

by eliminating D̂iκ from the momentum constraint mom. constr. one gets

Ln̂ki + (Kl
l)
−1[κ D̂i(K

l
l)− 2klD̂ikl ] + (2Kl

l)
−1D̂iκ0

+(K̂l
l)ki + [κ− 1

2
(Kl

l) ] ˙̂ni − ˙̂nl
◦
Kli + D̂l

◦
Kli − ε pl γ̂li = 0 ,

Ln̂(K
l
l)− D̂lkl − κ (K̂l

l) +KklK̂
kl + 2 ˙̂nl kl + ε pl n̂

l = 0

the above system is a strongly hyperbolic one for (ki,K
l
l)
T provided that κ ·Kl

l < 0

κ is determined algebraically once ki and Kl
l are known !!!

the entire three-metric hij = γ̂ij + n̂in̂j is freely specifiable. !!!
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PART II:

Constraints as evolutionary systems II:

The strongly hyperbolic system:

(hij ,Kij) represented by the variables (N̂ , N̂ i, γ̂ij ;κ,ki,K
l
l,
◦
Kij)

the constraints form a strongly hyperbolic system for (ki,K
l
l) (alg.for κ )

with freely specifiable variables on Σ and on Sin.data :

(N̂ , N̂ i, γ̂ij ; κ ,ki|Sin.data ,K
l
l|Sin.data ,

◦
Kij)

by choosing the free data properly κ ·Kl
l < 0 can be guaranteed (locally!)

ΣΣ

Sin.data

Σ

Sin.data

Σ

Sin.data
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Summary and outlook:

Summary:

4-dimensional Riemannian and Lorentzian spaces satisfying Einstein’s
equations, and some mild topological assumptions, were considered. !!! [n(≥ 4)]

1 it was shown that the constraint expressions satisfy a FOSH system that
is linear and homogeneous =⇒ (the constraints propagate)

2 concerning the constraint equations in Einstein’s theory it was shown:

momentum constraint as a first order symmetric hyperbolic system

the Hamiltonian constraint as a parabolic or an algebraic equation

in either case the coupled constraint equations comprise a well-posed
evolutionary system: a parabolic-hyperbolic or a strongly hyperbolic,

(local) existence and uniqueness of C∞ solutions is guaranteed

3 !!! regardless whether the primary space is Riemannian or Lorentzian

4 !!! no use of gauge conditions
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Summary and outlook:

Outlook:

Analytic investigations I.:

Joint work with Philippe LeFloch
near Schwarzschild configurations with spherical foliations

the parabolic-hyperbolic, and
in the strongly hyperbolic

Aims: Using energy estimates to show the global existence and proper
asymptotic decay of solutions to the constrain equations in these cases

Numerical investigations: I.

Joint work with Anna Nakonieczna and Lukasz Nakonieczny
Aims: to construct initial data—by integrating numerically the
parabolic-hyperbolic form of the constraints—for:

single boosted and rotating black holes (exact and distorted ones)
rotating binary black holes (without restrictions in the strong field regime)

our first joint paper:
A. Nakonieczna, L. Nakonieczny and I. Rácz: Black hole initial data by
numerical integration of the parabolic-hyperbolic form of the constraints,
arXiv:1712.00607
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Summary and outlook:

Outlook:

Numerical investigations: II.

Joint work with Maciej Maliborski
investigate near Kerr configurations using foliations by topological two-spheres

strongly hyperbolic form of the constraints
plan to include the parabolic-hyperbolic system too

integrating inward: singularity develops but located in the trapped region

Numerical investigations: III.

Christian Schell (PhD student of Oliver Rinne at AEI, Potsdam)
investigated perturbations of Minkowski spacetime

parabolic-hyperbolic form of the constraints in determining initial data, and
hyperbolic form of momentum the constraint in partly constrained evolution
the Σt time-level surfaces are foliated by topological two-spheres

the playground is open: apply the new evolutionary forms of the
constraints in solving various problems of physical interest
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Summary and outlook:

The roots of the evolutionary aspects

The first order symmetric hyperbolic system for (E
(H)
, E

(M)

i )T

Characteristic directions associated with the FOSH system governing the
evolution of the constraint expressions are determined as

[hij − ninj ] ξiξj = [ gij − 2ninj ] ξiξj = 0

The momentum constraint: first order symmetric hyperbolic system

with characteristic cone given as[
γ̂ij − 2 n̂in̂j

]
ξiξj =

[
hij − 3 n̂in̂j

]
ξiξj = 0

Deriving a Lorentzian metric from a Riemannian one

... given a Riemannian metric gij , a unit form field ni and a positive real
function α =⇒ a metric of Lorentzian signature can be defined as

g

∧

ij = gij − (1 + α) ninj
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Summary and outlook:

The conformal (elliptic) method:

Lichnerowicz A (1944) and York J W (1972):

replace

hij = φ4 h̃ij and Kij − 1
3 hij K

l
l = φ−2 K̃ij

using these variables the constraints are put into a semilinear elliptic system

D̃lD̃lφ+ ε 1
8 R̃ φ+ 1

8 K̃ijK̃
ij φ−7 −

[
1
12 (Kl

l)
2 − 1

4 e
]
φ5 = 0

where D̃l, R̃, ........ h̃ij

K̃ij = K̃
[L]
ij + K̃

[TT ]
ij , where K̃

[L]
ij =

(
D̃iXj + D̃jXi − 2

3 h̃ijD̃
lXl

)
D̃lD̃lXi + 1

3 D̃i(D̃
lXl) + R̃ i

lXl − 2
3 φ

6D̃i(K
l
l) + ε φ10pi = 0

(hij ,Kij) ←→
(
φ, h̃ij ;K

l
l, Xi, K̃

[TT ]
ij

)
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