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Chapter 1

Basics of the estimation
theory

1.1 Introduction

The goal of this manuscript is to introduce the basic notions of the estimation
theory and discuss its applications to quantum interferometry. To begin, as-
sume that some properties of a system (either classical or quantum) depend
on a parameter which we will denote by θ. This parameter could stand, for
instance, for a temperature T of a state at thermal equilibrium, a mass m or a
position of a particle r. For a quantum system, θ could also be a relative phase
between two sub-systems, and the estimation of this parameter lies at the heart
of quantum interferometry. Nevertheless, we now present some general results
of the esitmation theory without actually specifying what θ could be.

The aim of the estimation procedure is to learn about the unknown parame-
ter θ with the highest precission possible. Let us assume that the experimental
sequence consists of m measurements of some quantity x. A central object is

the estimator, which is some function which utilizes the results x
(1)
1 . . . x

(1)
m to

provide the value of the parameter, namely

θ
(1)
est = θest(x

(1)
1 . . . x(1)m ). (1.1)

The upper index (1) indicates that a first block ofm outcomes was used to obtain

θ
(1)
est . Note that in order to tell what is the estimation error, one must repeat the

sequence many times, to obtain many values of θ
(i)
est. They differ from shot to

shot because the outcomes of the measurements xi inevitably fluctuate (either
due to the experimental imperfections or – more fundamentally – quantum

fluctuations), thus another set of x
(2)
1 . . . x

(2)
m will provide a different value of

θ
(2)
est .

After M repetitions of the whole estimation sequence, one can plot a his-
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Figure 1.1: A histogram of θ
(i)
est, which for large m tends to a Gaussian. The

average of this histogram is our estimated value of the parameter, while its
width is the “sensitivity” of the metrological devie.

togram of θ
(i)
est, as shown in Fig. 1.1 1 and say that the estimated parameter is

the averege value of this distribution, namely

〈θest〉 =
1

M

M
∑

k=1

θ
(k)
est . (1.2)

This averaging over the blocks can be formally replaced by the averaging over all
the possible outcomes of the measured values of the parameters xi. We introduce
P (x1 . . . xm|θ), which is a joinded probability distributions of these outcomes.
It conditionally depends on the true value of the parameter θ. Clearly, if that
would not be the case, no relation between 〈θest〉 and θ could be established.
Equation (1.2) can be thus written as

〈θest〉 =
∫

dx1 . . . dxm θest(x1 . . . xm)P (x1 . . . xm|θ). (1.3)

Let us now mention two important properties of the estimators. One is called
consistency which is defined by

lim
m→∞

θ
(i)
est(x

(i)
1 . . . x(i)m ) = θ for all i. (1.4)

Another definition, which is crucial for us at the moment states that an estimator
is called unbiased if its average value tends to the true value of the parameter,

1which by the way will tend to a Gaussian for large m – a consequence of the Central Limit
Theorem discussed later
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namely
〈θest〉 = θ. (1.5)

From now on we will focus only on such unbiased estimators.

1.2 Cramer-Rao Lower Bound

We will now manipulate the Eq. (1.5) to derive the final expression for the
sensitivity of the parameter estimation. First note, that it can be trivially
rewritten as

∫

dx1 . . . dxm
(

θest − θ
)

P (x1 . . . xm|θ) = 0, (1.6)

where we dropped the explicit dependence of θest on the measurement outcomes
for simplicity. By taking the derivative of this equation with respect to θ we
obtain that

∫

d~x
(

θest − θ
) ∂P (~x|θ)

∂θ
= 1, (1.7)

with ~x = x1 . . . xm.
In the next step, a Cauchy-Schwartz inequality can be used, which says that

if f and g are two functions of ~x, then

∣

∣

∣

∫

d~x f(~x)g(~x)
∣

∣

∣

2

6

∫

d~x
∣

∣

∣
f(~x)

∣

∣

∣

2
∫

d~x
∣

∣

∣
g(~x)

∣

∣

∣

2

. (1.8)

By setting

f(~x) =
1

√

P (~x|θ)
∂P (~x|θ)
∂θ

and g(x) =
√

P (~x|θ)
(

θest − θ
)

(1.9)

and by combining Eq. (5.43) and (1.8) we obtain that

∫

d~x
(

θest − θ
)2
P (~x|θ)

∫

d~x
1

P (~x|θ)

(

∂P (~x|θ)
∂θ

)2

> 1. (1.10)

The first term in the left-hand-side is the variance of the estimator

∆2θest ≡
∫

d~x
(

θest − θ
)2
P (~x|θ) (1.11)

and is the central object in the estimation theory. In the remaining part of this
manuscript we will focus solely on the properties of this variance and show how
it can be minimalized. Note that ∆θest is often called the estimation precision or
the sensitivity of the estimation protocol. The second term in the left-hand-side
is called the Fisher information which is denoted by Fm, namely

Fm ≡
∫

d~x
1

P (~x|θ)

(

∂P (~x|θ)
∂θ

)2

. (1.12)
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With the help of the above definitions, equation (1.10) can be written in a
particularly simple form

∆θest >
1√
Fm

. (1.13)

This inequality is called the Cramer-Rao Lower Bound [1, 2] and it says that the
precision of any estimator which uses the results distributed with the probability
P (~x|θ) is bounded by the square root of the inverse of the Fisher information.
In a particular case, when x1 . . . xm are all the same single object measered in
the m independent repetitions of the experiment (for instance this could the
population imbalance between the two arms of an interferometer measured m
times), the joint probability becomes a simple product

P (~x|θ) = p(x1|θ) . . . p(xm|θ). (1.14)

By plugging this probability into Eq. (1.13) we obtain

∆θest >
1√
m

1√
F

(1.15)

where the Fisher information now reads

F =

∫

dx
1

p(x|θ)

(

∂p(x|θ)
∂θ

)2

. (1.16)

Note that according to the CRLB (5.10), the higher the value of the Fisher
information, the less restrictive is the lower bound for the estimation precision.

Also, we can identify for which kind probability P , the bound is saturated.
To this end we note that the Cauchy-Schwartz relation becomes an equality
when f(x) = αg(x), where α is a constant. Using the definitions from Eq. (1.9),
we obtain that

1
√

P (~x|θ)
∂P (~x|θ)
∂θ

= α
√

P (~x|θ)
(

θest − θ
)

. (1.17)

This is a simple differential equation, which has a solution

P (~x|θ) ∝ e−
1
2 |α|(θ−θest)

2

, (1.18)

where the proportionality sign stands for the normalization. In other words,
when the probability is gaussian in the estimator, it automatically saturates
the CRLB. But what happens when P is not gaussian? Can the CRLB be
nevertheless saturated?

1.3 Maximum-Likelihood Estimator

The answer is positive and it turns out that the correct choice is the Maximum-
Likelihood Estimator (MLE). The construction of this estimator is following.
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Let us assume again that a quantity x is measured m times and that the prob-
ability p(x|θ) is known 2. With the measurement outcomes x1 . . . xm at hand,
a likelihood function is defined in a following way

L(ϕ) = ln

(

m
∏

i=1

p(xi|ϕ)
)

=
m
∑

i=1

ln (p(xi|ϕ)) . (1.19)

It is a function of a single variable ϕ, with the other variables fixed by the
measurement outcomes. The MLE is now defined as the value of ϕ, at which L
reaches its maximal value,

θ
(m)
MLE :

∂L(ϕ)
∂ϕ

∣

∣

∣

ϕ=θ
(m)
MLE

= 0. (1.20)

The uppper index m is to underline that the MLE estimator is obtained from
a series of m experiments. We will now show that such chosen estimator is
consistent, unbiased and its variance saturates the CRLB.

• consistency of the MLE To demonstate that the MLE is consistent, let
us calculate the following difference

L(ϕ)− L(θ) =
m
∑

i=1

ln

(

p(xi|ϕ)
p(xi|θ)

)

m→∞−−−−→ m

∫

dx p(x|θ) ln
(

p(x|ϕ)
p(x|θ)

)

. (1.21)

This last expression can be easily bounded from above using ln(y) 6 y − 1 to
give

m

∫

dx p(x|θ) ln
(

p(x|ϕ)
p(x|θ)

)

6 m

∫

dx p(x|θ)
(

p(x|ϕ)
p(x|θ) − 1

)

= 0. (1.22)

This inequality says that the maximal value of the left-hand-side is zero, and

by definition it is reached when ϕ = θ
(m)
MLE. But in this case L(θ(m)

MLE) = L(θ),
which proves consistency, i.e.

lim
m→∞

θ
(m)
MLE = θ. � (1.23)

• MLE is unbiased In the next step we demonstate, that the MLE is
unbiased. To this end, we calculate the derivative of the likelihood function and
expand it in ϕ around the true value of the parameter,

L′(ϕ) = L′(θ) + L′′(θ)(ϕ− θ) + . . . . (1.24)

We now set ϕ = θ
(m)
MLE, which gives the R.H.S. equal to zero (by definition), and

assuming m≫ 1 we make use of the consistency of the MLE. Namely, for large

2In true experiments it is usually very difficult to find out what this probability actually
looks like. One does it in the calibration stage, where for a given known value of θ the
probability is measured, and then θ is changed to another value and the whole procedure is
repeated. This way, a two-dimensional function is sampled p(x|θ). Clearly, to calibrate the
device requires much experimental effort.
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m, θ
(m)
MLE is close to θ, so the above expansion can be safely truncated at the

first order, giving

θ
(m)
MLE − θ ≃ − L′(θ)

L′′(θ)
. (1.25)

We now concentrate for a moment on the denominator of this equation and
notice that according to the definition of the likelihood function from Eq. (1.19),
its second derivative reads

L′′(θ) =
m
∑

i=1

[

− 1

p2(xi|θ)

(

∂p(xi|ϕ)
∂ϕ

∣

∣

∣

ϕ=θ

)2

+
1

p(xi|θ)
∂2p(xi|ϕ)
∂ϕ2

∣

∣

∣

ϕ=θ

]

(1.26)

For large m, summation over individual events can be replaced by the averaging
with the probability p(x|θ) and we obtain

L′′(θ)
m→∞−−−−→ m

∫

dx

[

− 1

p(x|θ)

(

∂p(x|ϕ)
∂ϕ

∣

∣

∣

ϕ=θ

)2

+
∂2p(x|ϕ)
∂ϕ2

∣

∣

∣

ϕ=θ

]

= −mF,

(1.27)
since the second term vanishes due to the normalization of the probability. We
now plug this expression into Eq. (1.25) and obtain

θ
(m)
MLE − θ ≃ 1

m

m
∑

i=1

[

1

F

1

p(xi|θ)
∂p(xi|ϕ)
∂ϕ

∣

∣

∣

ϕ=θ

]

. (1.28)

Note that the object in the square parenthesis, which we will denote by si is a
random variable, since the outcomes of the measurements are random by itself.
Therefore, the upper equation which can be written as

θ
(m)
MLE − θ ≃ 1

m

m
∑

i=1

si (1.29)

tells that the L.H.S. is an average value of m random variables. At this point,
we can invoke the Cental Limit Theorem (CLT), which says that if an object
is an average value of m random variables, then when m → ∞, this object is
governed by the Gaussian (normal) distribution, with a mean equal to the mean
of the random variable, 〈s〉, and the fluctuations proportional to the fluctuations
of the random variable and equal to 1

m∆s. In other words, we can now easily
calculate both the average value and the variance of the difference between the
MLE and the true value of the estimator. According to the CLT, we thus have
that

〈

θ
(m)
MLE − θ

〉

m→∞−−−−→
∫

dx p(x|θ)
[

1

F

1

p(x|θ)
∂p(x|ϕ)
∂ϕ

∣

∣

∣

ϕ=θ

]

= (1.30a)

=
1

F

∫

dx
∂p(x|ϕ)
∂ϕ

∣

∣

∣

ϕ=θ
= 0. � (1.30b)

Therefore, according to the definition from Eq. (1.5), the MLE estimator is
unbiased.
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• Variance of the MLE saturates the CRLB. According to the CRLB
we obtain that

∆2θ
(m)
MLE

m→∞−−−−→ 1

m

∫

dx p(x|θ)
[

1

F

1

p(x|θ)
∂p(x|ϕ)
∂ϕ

∣

∣

∣

ϕ=θ

]2

(1.31a)

=
1

m

1

F 2

∫

dx
1

p(x|θ)

(

∂p(x|ϕ)
∂ϕ

∣

∣

∣

ϕ=θ

)2

=
1

m

1

F
. � (1.31b)

This shows that indeed the MLE saturates the CRLB, according to Eq. (5.10).
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Chapter 2

De revolutionibus

In this chapter we wish to introduce the algebra of the two-mode angular mo-
mentum operators. As will become evident in the following chapters, these
operators are particularly useful in the description of two-mode interferometers.
In order to gain some deeper insight into the physics behind these operators
and their eigen-states, we will first concentrate on the rotations in the three-
dimensional space. Further on, we will show the link between the generators of
these transformations and the two-mode operators.

2.1 Rotations in 3D space

2.1.1 SO(3) group

Rotation in three-dimensional space transforms a vector ~r into ~r′ as follows

r′j =
∑

i

Rij(~ϕ)rj . (2.1)

The vector ~ϕ determines the direction of the rotation, while R̂ is the rotation
matrix. One important property of the rotiations is that they conserve the
scalar product. Formally, this can be written as

~a′~b′ =
∑

i

a′ib
′
i =

∑

ijk

Rij(~ϕ)Rik(~ϕ)ajbk =
∑

j

ajbj . (2.2)

This is true, when R̂T R̂ = R̂R̂T = 1̂. Since detÂB̂ = detBdetA and detÂT =
detÂ, then we imediatelly obtain that det R̂ = ±1. It can be shown that the
minus sign is obtained for the transformations, which are not only rotations,
but also inversions of the coordinate system. Pure rotations require det R̂ = 1.

The above considerations allow us to define the set of rotation matrices in
the 3D space, named as SO(3), and having the following properties

SO(3) = {real 3× 3 matrices R̂; R̂T R̂ = R̂R̂T = 1̂; det R̂ = 1}. (2.3)

13
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It turns out that this set has the properties of the group G, namely

1. For any R̂1 ∈ G and R̂2 ∈ G, also R̂1 · R̂2 ∈ G.

2. There exists R̂e ∈ G, for which R̂ · R̂e = R̂e · R̂ = R̂ for all R̂ ∈ G

3. For all R̂ ∈ G, there exists R̂−1, for which R̂ · R̂−1 = R̂−1 · R̂ = R̂e

4. An associative law holds for a product of three elements, namely R̂1 · (R̂2 ·
R̂3) = (R̂1 · R̂2) · R̂3

It can be easily demonstrated that all these properties hold for the rotation
matrices in 3D space.

2.1.2 Generators of rotations

We now wish to express the rotation matrices R̂(~ϕ) in the most convenient and
compact way. Our claim is that these matrices can be represented in a following
way

R̂(~ϕ) = e−
i
~
~ϕ
~̂
J . (2.4)

Let us assume for a moment, that indeed this representation is valid. We will
now demomnstrate an property of the operators

L̂k = − i

~
Ĵk. (2.5)

Namely, we will show that these operator must be antisymmetric. To this end,
note that intuitively it should hold that

R̂−1(ϕk) = R̂(−ϕk) = e−ϕkL̂k . (2.6)

Using a simple relation for operator functions f(Ô)T = f(ÔT ), and since R̂−1 =
R̂T , we obtain that

R̂−1(ϕk) = R̂T (ϕk) = eϕkL̂
T
k . (2.7)

Combining this result with Eq. (2.6), we arrive at the antisymmetry condition

L̂T
k = −L̂k. (2.8)

Therefore, these matrices can be written in a quite general form

L̂k =





0 a b
−a 0 c
−b −c 0



 . (2.9)

Since there are only three independent numbers, which deterime the matrices
L̂k, one can expect that there should be three matrices generating the rotations.
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For instance, since from geometric arguments we know that the rotation matrix
around the z axis has a form

R̂(ϕz) =





cosϕz − sinϕz 0
sinϕz cosϕz 0

0 0 1



 (2.10)

then using Eq. (2.4) we obtain that

L̂z = lim
ϕz→0

1

ϕz

(

R̂(ϕz)− 1̂

)

=





0 −1 0
1 0 0
0 0 0



 . (2.11)

In a similar way, one can show that

L̂x = lim
ϕx→0

1

ϕx

(

R̂(ϕx)− 1̂

)

=





0 0 0
0 0 −1
0 1 0



 . (2.12)

and

L̂y = lim
ϕy→0

1

ϕy

(

R̂(ϕy)− 1̂

)

=





0 0 1
0 0 0
−1 0 0



 . (2.13)

Now that the explicit form the rotation generators is known, one can easily
demonstrate that

[

L̂j , L̂k

]

= εjklL̂l. (2.14)

Groups, which elemnts can be written is a form (2.4) and their generators form
a closed algebra (2.14) are called Lie groups, while their elements form the Lie
algebra. Note that one can equally well use the Ĵk generators to arrive at

[

Ĵj , Ĵk

]

= i~εjklĴl. (2.15)

2.1.3 Spatial form of the generators

We would like now to see how the rotations appear in quantum mechanics.
Consider a single-particle wave-function ψ(r). We can, rather then considering
a rotation matrix R̂(~ϕ), which maps R3 → R3, introduce a rotation operator
R̂(~ϕ), which maps the set of complex valued functions over R3 onto itself, i.e.
C∞(3) → C∞(3). This rotation operators should be defined as follows

R̂(~ϕ)ψ(r) ≡ ψ(R̂−1(~ϕ)r). (2.16)

It can be expected, that in analogy to Eq. (2.4) also the operators R̂(~ϕ) should
form a Lie group, namely they should be representable in a form

R̂(~ϕ) = e−
i
~
~ϕ
~̂J . (2.17)
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The generators can be determined in a similar way as in the case of generators
Ĵk. For instance

− i

~
Ĵz = lim

ϕz→0

1

ϕz

(

R̂(ϕz)− 1̂

)

. (2.18)

We can now act with the above equation onto the wave-function ψ(r) to obtain

− i

~
Ĵzψ(r) = lim

ϕz→0

1

ϕz

(

R̂(ϕz)− 1̂

)

ψ(r) = lim
ϕz→0

1

ϕz

(

ψ(R̂(−ϕz)r)− ψ(r)
)

.

(2.19)
Using Eq. (2.11) we obtain that for small angles

R̂(−ϕz)r =





1 ϕz 0
−ϕz 1 0
0 0 0









x
y
z



 =





x+ ϕzy
y − ϕzx

z



 . (2.20)

Therefore, using the Taylor expansion we end up with an expression

ψ(R̂(−ϕz)r) ≃ ψ(r) + y∂xψ(r)− x∂yψ(r). (2.21)

Plugging this expression into Eq. (2.19) we get

− i

~
Ĵz = y∂x − x∂y. (2.22)

Similarly for x and y we have that

− i

~
Ĵx = z∂y − y∂z (2.23a)

− i

~
Ĵy = x∂z − z∂x. (2.23b)

Cleraly, the generators of rotations are the angular momentum operators, or in
other words

~̂J = r× p ≡ r× ~

i
~∇. (2.24)

It can be easily checked, that the elements of the angular momentum vector
form the Lie algebra

[

Ĵj , Ĵk

]

= i~εjklĴl. (2.25)

2.1.4 Eigen-states of Ĵz

We now briefly recall the basic properties of the most commonly used basis
for the angular momentum operators. Note, that since the three components
do not commute, as underlined by the relation (2.25), then there is no signle
eigen-basis common for all of them. Nevertheless, one can construct the total
angular momentum operator as follows

Ĵ 2 = Ĵ 2
x + Ĵ 2

y + Ĵ 2
z . (2.26)
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It can be trivially demonstrated, that this operator commutes with all three
components, i.e. [Ĵ 2, Ĵi] = 0 for i = x, y, z. Therefore, one can seek for the
eigen-states of Ĵ 2 and one of the three components – traditionally the z one.

To introduce this basis it is convenient to change the basis and express the
angular momentum operators in the spherical coordinates. A simple change of
variables gives

− i

~
Ĵx = sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ
(2.27a)

− i

~
Ĵy = − cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ
(2.27b)

− i

~
Ĵz = − ∂

∂φ
. (2.27c)

Using this representation and the commutation relations (2.25), a set of eigen-
vectors of Ĵz and Ĵ 2 can be found. These functions of φ and θ are labelled by
two quantum numbers l and m, where m ∈ [−l,−l + 1 . . . l − 1, l] and have the
following properties

Ĵ 2Ylm(φ, θ) = ~
2l(l + 1)Ylm(φ, θ) (2.28a)

ĴzYlm(φ, θ) = ~mYlm(φ, θ). (2.28b)

They are orthonormal, i.e.

∫ 2π

0

dφ

∫ π

0

dθ sin θ Y ∗
lm(φ, θ)Yl′m′(φ, θ) = δll′δmm′ . (2.29)

They form a complete basis, thus any function of θ and φ can be represented
as a combination of spherical harmonics. Another important property is the
recursion relation, which reads

Ĵ+Ylm(φ, θ) = ~

√

(l +m+ 1)(l −m)Ylm+1(φ, θ) (2.30a)

Ĵ−Ylm(φ, θ) = ~

√

(l +m+ 1)(l +m)Ylm−1(φ, θ), (2.30b)

where the rising/lowering operators are defined as Ĵ± = Ĵx ± iĴy. Finally, the
functional form of the spherical harmonics is

Ylm(φ, θ) =

√

2l + 1

4π

(l −m)!

(l +m)!

(−1)m

2ll!
sinm(θ)

(

∂

∂θ

)m

Pl(cos θ)e
imφ (2.31)

for m ≥ 0 and Yl−m(φ, θ) = (−1)mY ∗
lm(φ, θ). Here Pl(x) are the Legendre

polynomials defined by the recursion relation

P0(x) = 1, P1(x) = x, Pl+1(x) =
1

l + 1
((2l + 1)xPl(x)− lPl−1(x)) . (2.32)
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2.1.5 Irreducible representations

Let us now stop for a moment and write down how the rotation operators act on
any function f(φ, θ) ∈ C∞(S2), i.e. complex functions over a two-dimensional
unit sphere. We have introduce the image of the rotation operator

f̃(φ, θ) = e−
i
~
~ϕ
~̂J f(φ, θ). (2.33)

We now use the basis of the spherical harmonics to expand the image function
as follows

f̃(φ, θ) =
∑

lm

ClmYlm(φ, θ), (2.34)

where the expansion coefficient simply reads

Clm =

∫

dΩ′Y ∗
lm(φ′, θ′)e−

i
~
~ϕ
~̂J f(φ′, θ′). (2.35)

Clearly, the rotations can be fully characterized by the following rotation matrix

Dl′m′;lm =

∫

dΩY ∗
l′m′(φ, θ)e−

i
~
~ϕ
~̂J Ylm(φ, θ) (2.36)

or in other words, since the spherical harmonics span the whole space C∞(S2)

C∞(S2) = {Ylm, l = 0, 1 . . .∞, m = −l . . . l}, (2.37)

then it is sufficient to tell how these functions transform under rotations. If we
now define a set Xl as

Xl = {Ylm, m = −l . . . l} with fixed l, (2.38)

then the whole space can be represented as a sum of these sets

C∞(S2) =

∞
⋃

l=1

Xl. (2.39)

This choice of Xl is not random. Since rotations do not change the l quantum
number of spherical harmonics, then the set Xl with some fixed l is invariant
under rotations. In other words, Xl’s with different l’s do not communicate
under rotations. This representation of the rotation operations is called the
irreducible representation, because the sets Xl form the smallest possible sub-
spaces of C∞(S2).

2.1.6 Wigner rotation matrix

We now make a stup further, and determine the matrix elemnts of D. To this
end, we introduce the Euler parametrization of rotations. What we have used
so far is the rotation operator in a form

R̂(~ϕ) = e−
i
~
~ϕ
~̂J , (2.40)
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so – in general – a simultaneous rotation around all three carthesian axes. It
turns out however, that any such rotation can be expressed in another form,
namely

R̂(~ϕ) = e−
i
~
γĴ ′′

z e−
i
~
βĴ ′

ye−
i
~
αĴz . (2.41)

Here, the angles α, β and γ are uniquely determined by ~ϕ. So, the first rotation
is around the z-axis of the initial unprimed axis. The second one, is around
the primed y-axis, which is rotated with respect to the initial one by the first
z-rotation. Finally, the last rotation is around the z-axis of the coordinate
system rotated twice by the previous rotations. The representation (2.41) migh
seem an unnecessary complication with respect to (2.40), however we will now
demonstrate that it actually allows to write down the D matrix in a particularly
simple form. We will now demonstrate, that Eq. (2.41) can be re-written in
terms of three rotations around the axes of the initial unprimed system. To this
end, we note that

e−
i
~
βĴ ′

y = e−
i
~
αĴze−

i
~
βĴye

i
~
αĴz . (2.42)

Thus the first two rotations actually can be written as

e−
i
~
βĴ ′

ye−
i
~
αĴz = e−

i
~
αĴze−

i
~
βĴye

i
~
αĴze−

i
~
αĴz = e−

i
~
αĴze−

i
~
βĴy . (2.43)

Now, the last rotation is similarly

e−
i
~
γĴ ′′

z = e−
i
~
αĴze−

i
~
βĴ ′

ye−
i
~
γĴze

i
~
βĴ ′

ye
i
~
αĴz . (2.44)

We can now plugg in the expression for e−
i
~
βĴ ′

y from Eq. (2.42) and finally we
obtain that

R̂(~ϕ) = e−
i
~
αĴze−

i
~
βĴye−

i
~
γĴz . (2.45)

So clearly to express the rotation in the unprimed coordinate system, it is just
necessary to invert the rotiation order and remove all the primes. Now, we
insert the above result into the definition of the D matrix from Eq. (2.36) and
obtain that

Dl′m′;lm =

∫

dΩY ∗
l′m′(φ, θ)e−

i
~
αĴze−

i
~
βĴye−

i
~
γĴzYlm(φ, θ). (2.46)

We now know how the rotations around the z axis act on the spherical harmonics
– they produce the m-dependent phase, so finally we obtain that

Dl′m′;lm = e−iαm′

∫

dΩY ∗
l′m′(φ, θ)e−

i
~
βĴyYlm(φ, θ)e−iγmδll′ . (2.47)

So to determine the full rotation properties, it is sufficient to find the matrix
elemnt of the rotation around y-axis calculated in the basis of the spherical
harmonics. We will provide the final expression for that in the following section.
At this stage, we only introduce the Wigner matrix, which is defined as

d
(l)
mm′(β) =

∫

dΩY ∗
l′m′(φ, θ)e−

i
~
βĴyYlm(φ, θ). (2.48)
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2.2 Two-mode angular momentum operators

So what does this whole story have to do with quantum interferometry? We have
been discussing here the general properties of the angular momentum operators
and rotations in quantum mechanics. Now it is the right moment to demonstrate
the link between the rotation operators and two-mode interferometry.

In general, any two mode pure quantum state consisting N indistinguishable
bosons can be written as

|ψ〉 =
N
∑

n=0

Cn|n,N − n〉. (2.49)

Here, the ket |n,N − n〉 denotes a state, where n particles occupy the first
mode a and N − n occupy the mode b. The amplitudes Cn are normalized, i.e.
∑N

n=0 |Cn|2 = 1. Note that any such ket can be generated from the vacuum, by
acting n times with the operator â†, which creates a particle in the mode a and
N − n times with b̂†, which creates a particle in the mode b, namely

|n,N − n〉 = 1
√

n!(N − n)!

(

â†
)n
(

b̂†
)N−n

|0, 0〉. (2.50)

To demonstrate a close relation between the two-mode algebra and the theory of
angular momentum, let us construct a family of “angular momentum” operators
from the creation/anihilation operators of the two modes. The definition is
following

Ĵx =
1

2

(

â†b̂+ b̂†â
)

(2.51a)

Ĵy =
1

2i

(

â†b̂− b̂†â
)

(2.51b)

Ĵz =
1

2

(

â†â− b̂†b̂
)

. (2.51c)

These three hemritian operators form a closed Lie algebra, because their com-
mutation relation is

[

Ĵj , Ĵk

]

= iεjklL̂l. (2.52)

Now, due to the aforementioned algebraic properties, one can again construct a
common eigen-basis for the Ĵz and the total angular momentum operator

Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z . (2.53)

So let us take a ket |n,N−n〉 and act on it with the operators Ĵz and Ĵ2. What
do we get is following

Ĵz|n,N−n〉 =
(

n− N

2

)

|n,N−n〉 and Ĵ2|n,N−n〉 = N

2

(

N

2
+ 1

)

|n,N−n〉.
(2.54)



2.2. TWO-MODE ANGULAR MOMENTUM OPERATORS 21

So these kets form indeed the eigen-basis of the angular momentum operators.
From the eigen-value of the Ĵ2 operator we can deduce the value of l, while from
the eigen-value of Ĵz – about the m. So, the ket with n particles in one mode
and N − n in the other can be alternatively written as

|n,N − n〉 →
∣

∣

∣l =
N

2
,m = n− N

2

〉

. (2.55)

Obviously,m ∈ [−N
2 ,−N

2 +1 . . . N2 −1, N2 ]. Therefore, it is reasonable to say that
N indistinguishable bosons in two well can be regarded as a single quasi-particle
with the angular momentum equal to N

2 .
To summarize, the angular momentum operators (3.31) form the same alge-

bra as the operators Ĵk. The analogy also concerns the eigen-basis. The kets
|l,m〉 are equivalent to the spherical harmonics Ylm(φ, θ). Consequently, the
Wigner rotation matrix calculated can now be written as

d
(l)
mm′(β) = 〈l,m|e−iβĴy |l,m′〉. (2.56)

It can be now shown (we skip the proof here), that the elemnts of this matrix
have a following analytical form

d
(l)
mm′(β) =

√

m!(2l −m)!

m′!(2l −m′)!

[

sin

(

θ

2

)]m−m′
[

cos

(

θ

2

)]m+m′−N

×

× Pm−m′,m+m′−2l
2l−m (cos θ), (2.57)

where Pα,β
µ (x) is the Jacobi polynomial.
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Chapter 3

Quantum Fisher
Information

3.1 Derivation of the Quantum Fisher informa-
tion

Our discussion so far was quite general. We have derived the Cramer-Rao
Lower Bound, which provides the lower limit for the precision of the estimation
of the parameter θ from a series of m measurements of a physical quantity x
performed on some system. The only important object, which entered the final
expression for the Fisher information, is the conditional probability for obtaining
the measurement outcome x given the value of the parameter θ.

From now on we will focus on such case, when the information about the
parameter θ is imprinted on a quantum system through some specific unitary
transformation. Although our choice might seem very restrictive, we will ar-
gue later on that most interferometric transformations can be described in this
manner. Consider an “initial” quantum state ˆ̺in, which undergoes a following
unitary transformation

ˆ̺in → ˆ̺(θ) = e−iθĥ ˆ̺ine
iθĥ. (3.1)

Here, ĥ is a hermitian generator of the evolution.
The goal, as in the general scheme outlined in the previous chapter is to

perform a series of measurements on the output state ˆ̺(θ) in order to deduce the
value of the parameter. According to the CRLB from Eq. (5.10), the precision
of the parameter estimation is bounded by

∆θest >
1√
m

1√
F
, (3.2)

where F is the Fisher information. As we already know, what enters the Fisher
information is the conditional probability of obtaining the outcome x given θ.

23
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Quantum mechanics provides the most general expression for this probability,
in terms of the so-called Positive-Operator Valued Measures (POVMs) – a set
of non-negative operators Êx which add up to unity, i.e.

∫

dx Êx = 1̂. (3.3)

These operators form the widest possible family of measurement operations
allowed by quantum mechanics – a step behind the commonly used projection
operators. With help of these operators, the conditional probability necessary
for the evaluation of the Fisher information can be written as

p(x|θ) = Tr
[

Êx ˆ̺(θ)
]

= Tr
[

Êxe
−iθĥ ˆ̺ine

iθĥ
]

. (3.4)

It is particularly instructive to give a closer look to the conditional probability
expressed in this last form. It is now clear that there are three key ingredients
which determine the conditional probability and in consequence the value of
the Fisher information. These are the input state ˆ̺in, the type of measurement
chosen to infer the value of the parameter, here represented by the operator Êx

and finally ĥ – the generator of the interferometric transformation.
Usually, the interferometric sequence is determined by the experimental

setup, which means that the form of ĥ is fixed. Nevertheless, it is interest-
ing to ask what is the maximal value of the Fisher information – optimized over
all possible input states and measurements performed.

In the first step we calculate what is known as the Quantum Fisher Informa-
tion (QFI) – the value of F for a given input state maximized over all possible
measurements. In other words, our aim is to calculate the maximum of the
expression

F =

∫

dx
1

Tr
[

Êx ˆ̺(θ)
]

(

∂θTr
[

Êx ˆ̺(θ)
])2

(3.5)

with respect to all Êx. The proof begins with an introduction of a superoperator

R̂ ˆ̺(Ô) ≡ 1

2

(

ˆ̺Ô + Ô ˆ̺
)

=
∑

j,k

1

2
(pj + pk)Ojk|j〉〈k|. (3.6)

The last form is obtained using the eigen-basis of the density matrix operator,
i.e. ˆ̺ =

∑

j pj |j〉〈j|. Naturally, as can be quickly verified, the inverse of this
operator is

R̂−1
ˆ̺ (Ô) =

∑

j,k

2
Ojk

pj + pk
|j〉〈k|. (3.7)

This last expression is especially useful, because it allows to write down a trace
of a product of two hermitian operators Â·B̂ in a form, which will be particularly
useful to us in the next few steps, i.e.

Tr
[

Â · B̂
]

= ReTr
[

̺ · Â · R̂−1
ˆ̺ (B̂)

]

. (3.8)
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To check this above equality, first, note that

̺·Â·R̂−1
ˆ̺ (B̂) =

∑

jklmn

pj |j〉〈j|Akl|k〉〈l|2
Bmn

pm + pn
|m〉〈n| =

∑

jmn

pj
2AjmBmn

pm + pn
|j〉〈n|.

(3.9)
The trace of this product of three operators is simply equal to

Tr
[

̺ · Â · R̂−1
ˆ̺ (B̂)

]

=
∑

jm

pj
2AjmBmj

pm + pj
. (3.10)

Now the realis is given by one-half of the sum of this expression plus the complex
conjugate, i.e.

ReTr
[

̺ · Â · R̂−1
ˆ̺ (B̂)

]

=
∑

jm

[

pj
AjmBmj

pm + pj
+ pj

A∗
jmB

∗
mj

pm + pj

]

. (3.11)

But since the operator Â and B̂ are hermitian, then obviously A∗
jm = Amj . So

we have

ReTr
[

̺ · Â · R̂−1
ˆ̺ (B̂)

]

=
∑

jm

[

pj
AjmBmj

pm + pj
+ pj

AmjBjm

pm + pj

]

= (3.12)

=
∑

jm

[

pj
AjmBmj

pm + pj
+ pm

AjmBmj

pm + pj

]

=
∑

jm

AjmBmj = Tr
[

Â · B̂
]

.

In particular, we can make use of this identity, to express the nominator of the
Fisher information in a more useful way, namely

Tr
[

Êx̺
′
]

= ReTr
[

̺ · Êx · R̂−1
ˆ̺ (ˆ̺′)

]

. (3.13)

We now insert this expression into (3.5) and obtain that

F =

∫

dx

(

ReTr
[

̺ · Êx · R̂−1
ˆ̺ (ˆ̺′)

])2

Tr
[

Êx ˆ̺(θ)
] 6

∫

dx

∣

∣

∣
Tr
[

̺ · Êx · R̂−1
ˆ̺ (ˆ̺′)

] ∣

∣

∣

2

Tr
[

Êx ˆ̺(θ)
] . (3.14)

Now, we introduce

Ô1 ≡ ˆ̺1/2Ê
1/2
x

√

Êx̺

and Ô2 = Ê1/2
x R̂−1

ˆ̺ (ˆ̺′)ˆ̺1/2 (3.15)

and make use of the Cauchy-Schwartz inequality

∣

∣

∣Tr
[

Ô†
1Ô2

] ∣

∣

∣

2

≤ Tr
[

Ô†
1Ô1

]

Tr
[

Ô†
2Ô2

]

(3.16)

and finally arrive at an expression

F 6 Tr
[

R̂−1
ˆ̺ (ˆ̺′)ˆ̺R̂−1

ˆ̺ (ˆ̺′)
]

. (3.17)
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Let us now comment, under which conditions inequalities (3.14) and (3.17) are
saturated. The first one becomes an equality when

ImTr
[

̺ · Êx · R̂−1
ˆ̺ (ˆ̺′)

]

= 0 for all x. (3.18)

On the other hand, the Cauchy-Schwartz inequality (3.17) is satisfied, when the
two operators are proportional to each other, and this condition can be written
down in a compact form

Ê1/2
x ˆ̺1/2 = λxÊ

1/2
x R̂−1

ˆ̺ (ˆ̺′)ˆ̺1/2. (3.19)

The coefficient λX must be found and can be for instance evaluated by tracing
the above condition by sides. This way we obtain that

λx =
Tr
[

Êx ˆ̺
]

Tr
[

ÊxR̂−1
ˆ̺ (ˆ̺′)ˆ̺

] . (3.20)

Note that since the nominator of this expression is real (because it is the prob-
ability for measuring x), then Eq. (5.17a) boils down to requirement that λx
is real. Since the Fisher informaltion on the R.H.S. of inequality (3.17) does
not depend on Êx anymore, conditions (5.17a) and (5.17b) can be regarded
as maximalization of F with respect to all possible measurements. Therefore,
the resulting object, which we call the Quantum Fisher Information (QFI) and
denote by FQ is a result of optimalization of F with respect to all Êx.

To make the last step, and provide a simple expression for the QFI, we
still need to calculate the derivative of the density matrix with respect to the
parameter θ. To this end, we assume that the dependence of the system on the
parameter is a result of some (not necessarily unitary) evolution in the Hilbert

space, governed by the operator ĥ. Therefore, we obtain that

ˆ̺+dθ ˆ̺′ =
∑

j

(pj+dpj)e
idθĥ|j〉〈j|e−idθĥ ≃

∑

j

dpj |j〉〈j|+
∑

j

pje
idθĥ|j〉〈j|e−idθĥ.

(3.21)
By expanding the exponents to the lowest order we get that

dθ̺′ =
∑

j

dpj |j〉〈j|+ idθ
∑

jk

(pj − pk)hkj |k〉〈j|, (3.22)

where hkj = 〈k|ĥ|j〉. Now we manipulate the expression for the QFI, i.e.

FQ = Tr
[

R̂−1
ˆ̺ (ˆ̺′)ˆ̺R̂−1

ˆ̺ (ˆ̺′)
]

= Tr

[

(

R̂−1
ˆ̺ (ˆ̺′)

)2

ˆ̺

]

= Tr
[

R̂−1
ˆ̺ (ˆ̺′)ˆ̺′

]

. (3.23)

Using the expression for R̂−1 from equation (3.7), we obtain that

FQ =
∑

jk

̺′jk̺
′
kj

2

pj + pk
(3.24)
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and finally plugging (3.22) we end up with

FQ =
∑

j

1

pj

(

∂pj
∂θ

)2

+ 2
∑

j 6=k

(pj − pk)
2

pj + pk

∣

∣hjk
∣

∣

2
. (3.25)

If the θ-dependence is introduced via some unitary transformation as for in-
stance in Eq. (3.4), then the probabilities pj do not change and the first term
of the QFI can be dropped, giving

FQ = 2
∑

j 6=k

(pj − pk)
2

pj + pk

∣

∣hjk
∣

∣

2
. (3.26)

Although it is difficult to provide a simple physical interpretation of the above
expression, one can easily provide the higher bound for FQ. To this end, note
that

FQ = 2
∑

j 6=k

(pj − pk)
2

pj + pk

∣

∣hjk
∣

∣

2
6 2

∑

j 6=k

(pj + pk)
2

pj + pk

∣

∣hjk
∣

∣

2
= (3.27a)

= 2
∑

j 6=k

(pj + pk)
∣

∣hjk
∣

∣

2
= 4

∑

j 6=k

pj〈j|ĥ|k〉〈k|ĥ|j〉 = 4〈(∆ĥ)2〉.(3.27b)

Here, ∆ĥ = ĥ − 〈ĥ〉. This inequality becomes an equality only if pjpk = 0 for
all j 6= k, which is satisfied only for pure states, so let us underline this very
important result, that when the input state is pure, then

F pure
Q = 4〈(∆ĥ)2〉. (3.28)

3.2 Entanglement and the sub shot-noise sensi-
tivity

We will now show, that the QFI does not solely provie a mathematical expression
for the Fisher information optimized over all possible measurements. From our
point of view, the most important gain from the inequality

F 6 FQ 6 4〈(∆ĥ)2〉 (3.29)

is that it provides a powerful tool which discrimanates more from less useful

states from the parameter estimation point of view. To demonstrate this prop-
erty of the QFI, we will follow the arguments of Smerzi and Pezzé, see [5]. Before
we present their line of reasoning however, we need to finally focus our attention
on the particular example of parameter estimation, which is two-mode quantum
interferometry.
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3.2.1 Two-mode interferometers

As underlined from the very beggining, our main point of interest is the op-
timalization of the performance of a device, which we should refer two as a
two-mode quantum interferometer. It is an instrument, which imprints a rela-
tive phase θ between two input ports and subsequently recombines the signal to
provide some kind of interference pattern. At the output, some measurement is
performed in order to estimate what the value of the phase was. The word quan-

tum underlines, that the inteferometer might be fed with a non-classical state.
In this chapter we will explain what the non-classicality refers to and argue that
in some cases it might be useful for improving the sensitivity of the device. Fi-
nally, before we continue, we should mention that probably the most well-known
such two-mode instrument is the Mach-Zehdner Interferometer, which we will
introduce and discuss its properties in detail in the next chapter.

As stated above, the quantum interferometer operates on two modes. In
order to describe such a device, we introduce two operators âin and b̂in, which
determine the incoming field. An interferometer can be now modelled as an
instrument, which transforms these input fields into some output ones. Here,
we will focus on linear interferometers, where the output field is a linear com-
bination of the input, i.e.

(

âout
b̂out

)

= Û(θ)

(

âin
b̂in

)

=

(

U11âin + U12b̂in
U21âin + U22b̂in

)

. (3.30)

The operator Û(θ) fully determines the properties of the interferometer. The
above transformation is unitary for as long as it preserves the commutation

relations,
[

â†out, âout
]

=
[

b̂†out, b̂out
]

= 1 and other equal to zero. This means

that, for instance |U11|2 + |U12|2 = 1 and the same for the bottom row of the
evolution matrix. Clearly, to satisfy this relation, the elements of the evolution
matrix can be written in a form Ukl = eiϕf(α), where f is either a sine or a
cosine function.

It will be argued here in more detail, that such transformations can be
generated by means of three objects, called angular momentum operators

Ĵx =
1

2

(

â†inb̂in + âinb̂
†
in

)

(3.31a)

Ĵy =
1

2i

(

â†inb̂in − âinb̂
†
in

)

(3.31b)

Ĵy =
1

2

(

â†inâin − b̂†inb̂in
)

. (3.31c)

Any linear interferometric transformation can now be represented by

Û(θ) = e−i~v(θ) ~̂J . (3.32)

Here, ~v(θ) is a three-dimensional vector, which components depend on θ, while

~̂J stands for a vector of operators (3.31). Note by the way, that these hermi-
tian operators form a closed algebra, i.e. their commutation relation is cyclic



3.2. ENTANGLEMENT AND THE SUB SHOT-NOISE SENSITIVITY 29

[

Ĵk, Ĵl

]

= iεklmĴm. This expression closely resembles the relation between

the angular momentum operators generating rotations in the three-dimensional
space R3. In this latter case, the rotations form a SO(3) group. In analogy, the
transformations (3.32), which act on a two-mode space, form an SU(2) group.
Therefore, the linear interferometers defined in Eq. (3.30) are sometimes referred
to as SU(2) interferometers.

A particularly important group of inerferometers, which includes the Mach-
Zehnder and the time-of-flight interferometers is a sub-set of (3.32) and can be
written in a form

Û(θ) = e−iθ~n ~̂J , (3.33)

where n̂ is a unit, θ-independent vector. Obviously, some devices, like the
Rabi interferometer which will be discussed in chapter ..., cannot be written
in the form (3.33). Nevertheless, to prove the relation between the particle
entanglement and the sub shot-noise interferometry, we focus on interferometers
which can be represented in the form (3.33).

3.2.2 Role of entanglement in quantum interferometry

We will now argue, following the reference [5], that particle entanglement is
a necessary resource for the better-then-classical precision of the parameter
estimation in quantum interferometry. To this end, we define a non-entangled
or separable state of N particles as such which can be written as a convex
combination of product states, i.e.

ˆ̺sep =
∑

k

pk ˆ̺
(1)
k ⊗ . . .⊗ ˆ̺

(N)
k . (3.34)

It is crucial to note, that a linear interferometer (3.30) does not introduce par-
ticle entanglement by itself, i.e.

ˆ̺insep
Û(θ)−−−→ ˆ̺outsep(θ). (3.35)

To see this, we note that the angular momentum operators are sums of the Pauli
matrices acting on each particle separately, namely

Ĵk =
1

2

N
∑

i=1

σ̂
(i)
k . (3.36)

Therefore, the generic interferometric transformations (3.32) and consequently
also (3.33) can be written as

Û(θ) =

N
∏

i=1

Û (i)(θ). (3.37)

Such an operator, which acts on each particle independently, cannot correlate
them, which justifies Eq. (3.35).
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Note now that according to the CRLB, the ultimate lower bound for the
phase sensitivity is provided by the inverse of the QFI, i.e.

∆θest >
1√
m

1
√

FQ

. (3.38)

We now combine Equations (3.1) and (3.29) with (3.33), we obtain that

FQ 6 4〈(∆Ĵ~n)2〉, (3.39)

where Ĵ~n = ~n · ~̂J . Consider first a separable state in a simple form

ˆ̺sep = ˆ̺
(1)
k ⊗ . . .⊗ ˆ̺

(N)
k . (3.40)

For this state, and using Eq. (3.36) we have that

F
(sep)
Q 6 4〈(∆Ĵ~n)2〉 =

〈(

N
∑

i=1

σ̂
(i)
~n

)2〉

−
〈

N
∑

i=1

σ̂
(i)
~n

〉2

(3.41a)

= N −





〈

N
∑

i=1

σ̂
(i)
~n

〉2

−
∑

i6=j

〈σ̂(i)
~n 〉〈σ̂(j)

~n 〉



 = N −
∑

i

〈σ̂(i)
~n 〉2 6 N.(3.41b)

Since the QFI is convex, then for an arbitrary separable state of the form (3.34)
we obtain that

F
(sep)
Q 6 N. (3.42)

This is a very important result – for separable states the sensitivy of an inter-
ferometer is bounded by the shot-noise limit

∆θest >
1√
m

1√
N
. (3.43)

On the other hand, quite generally we can tell that

FQ 6 4〈(∆Ĵ~n)2〉 6
〈(

N
∑

i=1

σ̂
(i)
~n

)2〉

6 N2. (3.44)

This limiting value
FQ = N2 (3.45)

is called the Heisenber limit. According to the above considerations, the preci-
sion of any linear interferometer like in Eq. (3.33) is therefore bounded by

∆θest >
1√
m

1

N
. (3.46)

Any values from the range

1√
m

1√
N

> ∆θest >
1√
m

1

N
(3.47)

are atteinable only with particle-entangled input states. The conclusion of this
chapter is that the particle entanglement is the necessary resource for the sub
shot-noise interferometry.



Chapter 4

Example: Mach-Zehdner
Interferometer

In the previous chapters, we have introduced the basic theoretical tools of quan-
tum interferometry. We are now prepared to analyze in detail the performance
of the Mach-Zehnder Interferometer (MZI) – an archetype of all two-mode in-
terferometers.

The MZI is realized in three separate stages, schematically shown in Fig. 4.1.
At the beggining, two-mode state enters the interferometer and the signal from
the modes is mixed on a 50/50 beam-splitter, denoted here by BS1. Then, a
relative phase θ is imprinted between the arms and finally another beam-splitter
BS2 mixes the modes again to produce the θ-dependent output signal1. We will
first verify, how this whole sequence can be represented in terms of evolution
operator like in Eq. (3.33), the identify the usefully entangled states and finally
discuss the performance of different estimation strategies.

4.1 Evolution operator

To write down the action of the MZI in a concise form like in Eq. (3.33), we need
to represent each of its three forming steps in terms of the two-mode language.
The first beam-splitter takes the input operators âin and b̂in and produces a
pair of mixed modes with equal weights, which is why it is actually refered to
as a 50/50 device. It can be easily checked that one good choice for such a
beam-splitter is

â1 =
1√
2

(

âin − i b̂in

)

(4.1a)

b̂1 =
1√
2

(

b̂in − i âin

)

. (4.1b)

1An optical MZI requires also two mirrors M1 and M2 in order to focus the light beams
on the second beam-splitter.

31
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BS

BS

1

2

M
1

M
2

Figure 4.1: Schematic representation of the MZI. The two incoming modes are
mixed on the first beam-splitter BS1, and later a relative phase is imprinted
beetween the arms. Finally, BS2 produces an interferometric signal, which is
measured by two detectors, represented here by two dark blue half-circles

It is “good” in a sence that it preserves the commutation relations, including
the vanishing cross-commutator [â1, b̂

†
1] = 0. It is “one” of good choices, because

the global phases can be taken arbitrary, according to the convention taken. In
the next stage, a relative phase is imprinted between the arms, i.e.

â2 = e−i θ
2 â1 (4.2a)

b̂2 = ei
θ
2 b̂1. (4.2b)

Finally, another beam-splitter recombines the signal again, giving

âout =
1√
2

(

b̂2 − i â2

)

(4.3a)

b̂out =
1√
2

(

â2 − i b̂2

)

. (4.3b)

We can now express the output operators in terms of the input ones and arrive
at2

(

âout
b̂out

)

=

(

cos
(

θ
2

)

− sin
(

θ
2

)

sin
(

θ
2

)

cos
(

θ
2

)

)

=

(

âin
b̂in

)

. (4.4)

The MZI is therefore a rotation of the initial basis by the angle θ
2 . But around

which axis is the rotation performed? To answer this question we make use
of the Baker-Campbell-Hausdorff formula, which says that if X̂ and Ŷ do not
commute, than

eX̂Y e−X̂ = Ŷ + [X̂, Ŷ ] +
1

2!
[X̂, [X̂, Ŷ ]] +

1

3!
[X̂, [X̂, [X̂, Ŷ ]]] + . . . (4.5)

2up to an irrelevant phase-factor
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With help of this equality, we finally obtain that

(

âout
b̂out

)

= e−iθĴy

(

âin
b̂in

)

eiθĴy . (4.6)

Therefore, the evolution operator of the MZI is simply

Ûmzi(θ) = e−iθĴy . (4.7)

This expression allows for further analysis of the properties of the MZI.

4.2 Usefully entangled states

We have found the evolution operator for the MZI, thus we can proceed and
check which types of states are usefully entangled for this interferometer. First
of all, note that since the generator ĥ, which is necessary for the evaluation of
the QFI, is ĥ = Ĵy, then according to the inequality (3.29), the QFI itself can
be bounded by

F
(mzi)
Q 6 4

〈

∆2Ĵy

〉

. (4.8)

In order to provide the upper bound for the preformance of the MZI, we will
now focus on pure states, for which the above inequality is saturated.

First, let us identify the ultimately entangled state, which provides the
Heisenberg limit sensitivity. It is such a state, which must provide the max-
imal variance of the Ĵy operator. To find this state, first note that the NOON
state

|ψz〉 =
1√
2
(|N, 0〉+ |0, N〉) (4.9)

is a state, where all the particles are either in the a or in the b mode. There-
fore, such a superposition leads to the maximal fluctuations of the population
imbalance between the two arms of the interferometer. This can be formally
stated by noting that the variance of the angular momentum operator, which is
related to the population imbalance, i.e. Ĵz is maximal in the NOON state

4
〈

∆2Ĵz

〉

NOON
= N2. (4.10)

However, when we calculate the variance of the operator Ĵy in this state, we
obtain the QFI to be limited to the shot-noise level, i.e.

F
(mzi)
Q = 4

〈

∆2Ĵy

〉

= N. (4.11)

However, we can now utilize the algebraic properties of the angular momentum
operators. Namely, note that when we rotate the Ĵy operator around the x axis

by the angle equal to π
2 we obtain the Ĵz operator, or formally

e−iπ
2 Ĵx Ĵye

iπ
2 Ĵx = Ĵz. (4.12)
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This is a crucial observation, since we can now write down Eq. (4.10) as

N2 = 4
〈

∆2Ĵz

〉

NOON
= 4

〈

∆2
(

e−iπ
2 Ĵx Ĵye

iπ
2 Ĵx

)〉

NOON
(4.13)

Now, the x-rotation operators can be pulled out to act on the state itself. There-
fore, if we define the “y-NOON state” as

|ψy〉 = ei
π
2 Ĵx

1√
2
(|N, 0〉+ |0, N〉) , (4.14)

we find that

4
〈

∆2Ĵz

〉

y−NOON
= N2. (4.15)

We conclude that the state (4.14) is an ultimately entangled state which im-
proves the performance of the MZI up to the Heisenberg level.

The remaining question is, how one could find a broader family of usefully
entangled states for the MZI. To identify these states, we repeat that the NOON
state has extreme site-to-site population imbalance fluctuations. The rotation
around the x axis, as in Eq. (4.14) maps these fluctuations onto maximal phase
fluctuations between the two modes. However, the relative phase and the popu-
lation imbalance between the modes are two conjugate variables. Therefore, in
order to produce an entangled state, which has large phase fluctuations (useful
for the MZI), one can consider a family of number squeezed states. Now we need
to formalize this statement.

First, consider what is called a Coherent Spin State (CSS), which has a
following form

|ψ〉 = 1√
N !

(

â† + b̂†√
2

)N

|0, 0〉. (4.16)

It is a state, where each particle is in a coherent superposition of being in the
left and in the right arm. Since it is a product state of N particles, naturally it
is not entangled, and indeed we imediatelly obtain that

4
〈

∆2Ĵz

〉

CSS
= N. (4.17)

Note that the CSS can be written in the basis of mode occupations, and then
the coefficients of the expansion have binomial form

|ψ〉 =
N
∑

n=0

Cn|n,N − n〉 = 1

2
N
2

N
∑

n=0

√

(

N

n

)

|n,N − n〉. (4.18)

For large N , such binomial distribution can be approximated with a Gaussian,
i.e.

1

2
N
2

√

(

N

n

)

≃ 1
(

Nπ
2

)
1
4

e−
(n−

N
2 )

2

N . (4.19)
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The width of this Gaussian is equal to σ =
√
N . This width is what governs the

fluctuations between the two modes. And so, if σ → 0, these fluctuations will
we supressed down to zero. This is because the Gaussian will tend to the delta
function, and the whole sum over all possible occupations labeled by n will boil
down to a single term with n = N

2 . Such state is called a twin-Fock state and
reads

|ψ〉 =
∣

∣

∣

N

2
,
N

2

〉

. (4.20)

Indeed, for this ultimately numbers-squeezed state, where there are no popula-
tion imbalance fluctuations between the arms of the interferometer, we obtain
that

4
〈

∆2Ĵz

〉

TF
=
N

2
(N + 1) , (4.21)

which is almost at the Heisenberg level. Also, all the states with the coefficients
represented in a Gaussian form

Cn =
1

(

σ2π
2

)

1
4

e−
(n−

N
2 )

2

σ2 (4.22)

with the fluctuations below the CSS level, i.e. σ < N , the sensitivity of the MZI
is sub shot-noise, i.e.

F
(mzi)
Q > N. (4.23)

This way, we have identified the usefully entangled states for the MZI – these
are the number-squeezed states.

4.3 Estimation from the population imbalance

We are now prepared to inestigate the performance of different estimation strate-
gies at the output of the MZI. We will focus on the estimation from the mea-
surements of the population imbalance between two arms of the MZI. We will
demonstrate that the estimation from the full population imbalance probability
is optimal (i.e. it saturates the QFI). Also, we will introduce the commonly used
notion of spin-squeezing and show how it naturally appears in the estimation
theory in the context of the MZI.

As stated above, typically the estimation of the parameter θ at the output of
the MZI is based on the measurement of the population imbalance between the
two arms of an interferometer. We will now provide some general results for this
measurement and then focus on a particular estimator – the average population
imbalance. To provide the upper bounds for the parameter precision, we will
focus on pure input states.

We argued in Chapter 1 that the central object for the evaluation of the
precision of the parameter estimation from a measurement of a quantity x is
the conditional probability for obtaining x at the output of an interferometer
given the value of the parameter θ. When the phase is estimated from the
population imbalance, this probability is equal to the squared modulus of the
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projection of the output state onto the Fock state with n particles in one and
N − n particles in the other arm, which formally reads

p(n|θ) =
∣

∣

∣

〈

n,N − n
∣

∣e−iθĴy
∣

∣ψ0

〉 ∣

∣

∣

2

. (4.24)

Decomposing the two-mode state |ψ0〉 in the basis of mode occupations, we
obtain that

p(n|θ) =
∣

∣

∣

N
∑

n′=0

C
(0)
n′

〈

n,N − n
∣

∣e−iθĴy
∣

∣n′, N − n′
〉 ∣

∣

∣

2

. (4.25)

The expression
〈

n,N − n
∣

∣e−iθĴy

∣

∣n′, N − n′
〉

is real and is an element of what is

called the Wigner rotation matrix [8]. As we argue in Chapter ..., these elements
can be expressed analytically as follows

djk(θ) =

√

k!(N − k)!

j!(N − j)!

[

sin

(

θ

2

)]j−k [

cos

(

θ

2

)]j+k−N

P j−k,j+k−N
N−j (cos θ),

(4.26)
where Pα,β

µ (x) is the Jacobi polynomial and j = n − N
2 , k = n′ − N

2 . In order
to calculate the CRLB, which is the lower limit for the parameter uncertainty,
one should calculate the Fisher information related to the population imbalance
measurement

Fimb =

N
∑

n=0

1

p(n|θ)

(

∂

∂θ
p(n|θ)

)2

. (4.27)

The question now is, how this Fisher information is related to the QFI. In
general, we know that

Fimb 6 4
〈

∆2Ĵy

〉

. (4.28)

Note that once the interferometer (MZI) and the measurement (population im-
balance) are fixed, the value of the Fisher information depends only on the
phase θ and the input state |ψ〉. Our aim now is to verify if the above inequality
is saturated for any input states |ψ〉, and if so, can we identify the family of
such defined optimal states. Unfortunatelly, the Fisher information in the form
of Eq. (4.27) cannot be calculated analytically, because the expression for the
elements of the Wigner matrix (4.26) are complicated. Nevertheless, one can
approach the whole problem of the CRLB for the population imbalance mea-
surement from a different site. To this end, however, we must go back to the
definition of the QFI and express it in a different manner than in Eq. (5.13).

4.3.1 QFI and the statistical distance

In the paper, where the QFI is introduced for the first time [6], Braunstein and
Caves show how the QFI from Eq. (5.13) is related to the statistical distance
between two neighboring states. Although this general result is valid whenever
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Figure 4.2: Schematic representation of the two steps performed to calculate
the QFI. The input state |ψ0〉, which enters the interferometer, is transformed
by a unitary evolution operator Û(θ), giving the output state |ψ〉. To calculate
the speed at which the state changes, and thus the statistical distance, we make

a further infinitesimal rotation Û(θ) to obtain
∣

∣

∣ψ̃
〉

.

a parameter is estimated from measurements performed on a θ-dependent state
|ψ〉, below we present this formalism in context of quantum interferometry.

To this end, we follow the scheme pictured in Fig. 5.2. First, consider a pure
two-mode input state |ψ0〉, which is transformed by a unitary evolution operator

of the MZI, i.e. Û(θ) = e−iθĴy , As a result, we obtain a θ-dependent output

state, which when expanded in the basis of mode occupations reads

|ψ〉 = e−iθĴy |ψ0〉 =
N
∑

j=0

√
pje

iϕj |j〉 ≡
N
∑

j=0

Cj |j〉 . (4.29)

Here for the simplicity of notation we replaced the |j,N − j〉 with |j〉. The
neighboring state is found by applying a further infinitesimal transformation

e−idθĴy , which gives

∣

∣

∣ψ̃
〉

= e−idθĴy |ψ〉 ≃
N
∑

j=0

(1− idθĴy)Cj |j〉 =
N
∑

j=0

(1− idθηj)Cj |j〉 ≡
N
∑

j=0

C̃j |j〉 .

(4.30)
The coefficient ηj is a result of acting with Ĵy on a ket |j〉 and is equal to

ηj =
1

2i

αjCj+1 − αj−1Cj−1

Cj
. (4.31)

where αj =
√

(j + 1)(N − j). Note that the state The state (5.34) can be
alternatively written as

∣

∣

∣ψ̃
〉

=

N
∑

j=0

√

pj + dpje
i(ϕj+dϕj) |j〉 . (4.32)

where the probability- and phase-increments are

dpj = |C̃j |2 − |Cj |2 = 2 Im ηj |Cj |2dθ (4.33a)

eidϕj =
C̃j

|C̃j |
|Cj |
Cj

= e−iRe ηjdθ. (4.33b)
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We are now ready to calculate the crucial object, necessary for the QFI, which
is the distance between two neighboring states and which is equal to

ds2ps = 1− |〈ψ|ψ̃〉|2 =
N
∑

j=0

dp2j
pj

+ 4







N
∑

j=0

pjdϕ
2
j −





N
∑

j=0

pjdϕj





2






≡
N
∑

j=0

dp2j
pj

+ 4∆2dϕ. (4.34a)

According to [6], the QFI can be interpreted as the speed at which the state
changes upon the infinitesimal increment of the parameter θ and reads

FQ =
ds2ps
dθ2

. (4.35)

Substituting the expressions for the phase- and probability increments from
Eq. (4.33) into (5.38), we obtain that

FQ = 4

N
∑

j=0

|Cj |2 (Im ηj)
2
+ (4.36a)

4

N
∑

j=0

|Cj |2 (Re ηj)2 − 4





N
∑

j=0

|Cj |2Re ηj





2

. (4.36b)

It can be easily demonstrated that when the phase is acquired through a unitary
transformation like in Eq. (5.33), the above expression simplifies to the well

known result FQ = 4
〈

∆2Ĵy

〉

. However, as we argue below, for the purpose of

finding the optimal measurements, it is more convenient to keep the QFI in the
form of Equations (5.39), i.e. as a sum of two non-negative parts – the change of
the probability pj and the variance of the phase increment dϕj . Namely, if the
latter term is zero, then the CFI calculated using the probability pj = |〈j|ψ〉|2 of
finding the system in state |j〉 is equal to QFI. This means that no information
about θ is carried by the phases ϕj , which by definition are not witnessed by
the projection measurement |j〉 〈j| and thus do not contribute to probabilities
pj .

4.3.2 When CRLB saturates the QFI

With help of Equations (5.39) we are now ready to identify the family of states,
for which the estimation from the population imbalance is optimal for the MZI.
The conditional probability from Eq. (4.24) can be alternatively to Eq. (4.25)
expressed using the formalism from the previous paragraph as

p(j|θ) = |〈j|e−iθĴy |ψ0〉 |2 = |〈j|ψ〉|2 = |Cj |2. (4.37)
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The derivative of this expression, which is needed for the calculation of the
CRLB, reads

∂θp(j|θ) = 2|Cj |2Im ηj . (4.38)

Therefore, the CFI calculated with (5.47) is equal to

Fimb =

N
∑

j=0

1

p(j|θ)

(

∂ p(j|θ)
∂θ

)2

= 4

N
∑

j=0

|Cj |2 (Im ηj)
2

(4.39)

By comparing this expression to the QFI from Eq. (5.39), we conclude that the
estimation from the population imbalance is optimal only if the other terms in
line (5.39b) vanish, which requires Re ηj ≡ 0 for all j. This is equivalent to the
condition Cj = eiφaj , where aj ∈ R and φ is a common phase. In particular for
φ = 0, the measurement is optimal, when all Cj ’s are real. Since the elements of
the Wigner rotation matrix (4.26) are all real, we conclude that if the input state
of the MZI has real coefficients, the estimation from the population imbalance
is optimal.

4.3.3 Estimation from the average population imbalance

What we have considered so far, is the CRLB for the estimation from the pop-
ulation imbalance. We know from Chapter 1.3, that the precision ∆θest =
1√
m

1√
Fimb

can be acheived when one uses the MLE constructed on the proba-

bility p(j|θ). However, as we already pointed out, usually it is very difficult to
calibrate the interferometer and acquire precise information about this proba-
bility. Therefore, it is reasonable to construct a much simpler estimator based
on the population imbalance measurement.

Here we will consider a case, when the phase is estimated from the average

population imbalance, rather than from the full probability. In order to decide,
how such estimator should be constructed, first we calculate the average popu-
lation imbalance at the output of the MZI. We know that it is governed by the
Ĵz operator. And so, we have that

〈n〉 = 〈ψ(θ)|Ĵz|ψ(θ)〉 = 〈ψ0|eiθĴy Ĵze
−iθĴy |ψ0〉 = 〈Ĵz〉 cos θ + 〈Ĵx〉 sin θ, (4.40)

where the averages in the last expression are calculated in the input state.
For simplicity, let us consider path symmetric states, for which the expansion

coefficents posses the symmetry C
(0)
n = C

(0)
N−n. For these states, 〈Ĵz〉 = 0, so we

obtain a simple expression
〈n〉 = 〈Ĵx〉 sin θ. (4.41)

Now, imagine this function is used to estimate the relative phase θ. Let’s assume,
that in a first experiment, some population imbalance is measured, say n1. We
can now put this result in the R.H.S. of Eq. (4.41) and invert the function to
obtain the first estimated value of θ, i.e.

θ
(1)
est = arcsin(n1). (4.42)
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Now, the measurement is repeated m times and the resulting estimated θ’s are
averaged, to give

〈θest〉 =
1

m

m
∑

i=1

arcsin(ni) 6= arcsin(〈n〉) = θ. (4.43)

Clearly, such naively constructed estimator is biased! As we will now argue, a
proper construction of the estimator based on the average population imbalance,
goes through – not surprisingly – the C.L.T.

Assume that instead we average the measured outcomes over first m repeti-
tions and get a single number

n
(m)
1 =

1

m

m
∑

i=1

ni (4.44)

before utilizing this data to obtain the value of the parameter in a manner
analogue to Eq. (4.43), which is

θ
(m)
est,1 = arcsin(n

(m)
1 ). (4.45)

Now, imagine that this value of the parameter is averaged over many (say M)

mean results n
(m)
k . In this way we obtain

〈θ(m)
est 〉 = 1

M

M
∑

k=1

arcsin(n
(m)
k )

M→∞−−−−→
∫

dn(m) P(n(m)|θ) arcsin(n(m)). (4.46)

Now, according to the CLT, since n(m) is an average of a random variable over
m≫ 1 repetitions, the probability P will tend to a Gaussian in a form

P(n(m)|θ) = 1
√

2π σ2

m

exp

(

− (n(m) − 〈n〉)2
2σ2

m

)

. (4.47)

Here, 〈n〉 is the true average value defined in Eq. (4.41), while the widht is the
true variance of the population imbalance operator, which for path-symmetric
states is

σ2 ≡ 〈ψ(θ)|Ĵ2
z |ψ(θ)〉−〈ψ(θ)|Ĵz|ψ(θ)〉2 =

〈

∆2Ĵx

〉

sin2(θ)+
〈

Ĵ2
z

〉

cos2(θ). (4.48)

Now, when m → ∞ in Eq. (4.49), then the probability P tends to the Dirac
delta peaked around the true average value and the integral gives

〈θ(m)
est 〉 m→∞−−−−→

∫

dn(m) δ
(

n(m) − 〈n〉
)

arcsin(n(m)) = arcsin(〈n〉) = θ. (4.49)

So in this case, careful choice provided an unbiased estimator. If it is so, we can
derive the CRLB for the probability P, i.e. calculate the Fisher information

F =

∫

dn(m) 1

P(n(m)|θ)

(

∂

∂θ
P(n(m)|θ)

)2

. (4.50)
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Since the probability is Gaussian, then this integral can be evaluated analyti-
cally. Conistently using the fact that m≫ 1 we obtain

∆θ
(m)
est =

1√
m

σ
∣

∣

∣

∂〈n〉
∂θ

∣

∣

∣

2 . (4.51)

This the well-known error propagation formula, often quoted with no explana-
tion as the bound for the parameter estimation. We now see, that it appears,
when the parameter θ is estimated from some average, and when the CLT is
satisfied. We now plug in the above equation the expressions for the average
(4.41) and the variance (4.48) and obtain

∆θ
(m)
est =

1√
m

√

〈

∆2Ĵx

〉

sin2(θ) +
〈

Ĵ2
z

〉

cos2(θ)
∣

∣

∣

〈

Ĵx

〉

cos(θ)
∣

∣

∣

. (4.52)

In particular, for θ ≃ 0 we obtain the final equation for the squared phase
sensitivity

∆2θ
(m)
est =

1

m

〈

Ĵ2
z

〉

〈

Ĵx

〉2 ≡ 1

m

1

N
ξ2N . (4.53)

The object, which appears on the R.H.S. is called the spin squeezing parameter

and is defined as

ξ2N ≡ N

〈

Ĵ2
z

〉

〈

Ĵx

〉2 . (4.54)

Clearly, when ξ2N < 1, then

∆θ
(m)
est <

1√
m

1√
N
, (4.55)

so we obtain the sub shot-noise sensitivity. On the other hand, from Chapter
3.2 we know that it means, that the input state of the MZI was entanglement.
To summarize, if one can demonstrate ξ2N < 1, it is equivalent to showing that
the system is particle-entangled. This motivates the current effort to generate
and detect the spin-squeezing in two-mode systems created from Bose-Einstein
Condensates.
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Chapter 5

Optimal measurements

In this chapter, we show how optimal measurements can be determined in var-
ious two-mode interferometric systems. Our aim is to show, that optimal mea-
surements in estimation theory are, in general, “subtle objects”. To this end,
we start with the simplest possible two-mode object, which is a single qubit.
We find the optimal measurements, when the interferometric transformation is
a rotation of the state on the Bloch sphere by an unknown angle θ. While for
pure states ρ̂0, there is a whole continuity of optimal estimation strategies, they
boil down to only two possibilities when ρ̂0 is mixed. For two qubits such general
considerations are not possible anymore, so we will use a particular example,
namely the symmetrized Werner state. We find the optimal measurement and
discuss the precision which can be reached when the phase is estimated from
the population imbalance between the two modes. We will then show under
which conditions the estimation from the population imbalance or the N -th
order correlation function is optimal, using N -qubit pure state at the input.

Finally, in order to show how mixing the input state makes things less triv-
ial, we introduce some phase noise into the evolution of the state inside the
interferometer. We show what is the impact of the noise on the precision of
different, commonly employed estimation protocols which use the measurement
of the population imbalance at the output ports.

5.1 Single qubit

We begin our analysis of the optimal estimation strategies with a most basic
two-mode object, namely a single qubit, which is rotated on the Bloch sphere
by an unknown angle θ. As will be shown below, in this case a full family of
optimal measurements can be identified, both for pure and mixed states.

43



44 CHAPTER 5. OPTIMAL MEASUREMENTS

5.1.1 General formulation

The density operator of a single qubit is a 2x2 matrix. Typically, it is convenient
to represent the general density matrix of a qubit using the set of three Pauli
matrices

σ̂x =

(

0 1
1 0

)

, σ̂y =

(

0 −i
i 0

)

, σ̂z =

(

1 0
0 −1

)

. (5.1)

These three trace-less matrices, together with a unit matrix form a basis, so not
surprisingly the density matrix of a qubit can be represented as a combination
of a scalar and three Pauli matrices

ρ̂in =
1

2
(1̂+ ~sin · ~̂σ) (5.2)

Depending on the length sin of the vector ~sin, the state is either pure (sin = 1)
or mixed (sin < 1).

In the scenario considered here, this generic initial state ρ̂in undergoes a
unitary phase-dependent interferometric transformation Û(θ). To establish the
analogy between the N -qubit Mach-Zehner Interferometer considered in detail
in Chapter 4 and a single-qubit operation, we notice that the former case is
represented by a unitary transformation

Ûmzi(θ) = e−iθĴy . (5.3)

Here Ĵy =
∑N

i=1

σ̂(i)
y

2 is a sum of y-component Pauli matrices acting on the i-th
particle. Clearly, a single-qubit analogy of the MZI is

Û(θ) = exp

[

−iθ σ̂y
2

]

(5.4)

which transforms the initial density matrix into

ρ̂ = Û(θ) ρ̂in Û
†(θ) =

1

2
(1̂+ ~s · ~̂σ), (5.5)

where the three components of the rotated vector are

sx = sin,x cos θ + sin,z sin θ (5.6a)

sy = sin,y (5.6b)

sz = sin,z cos θ − sin,x sin θ. (5.6c)

Note that we have omitted the explicit dependence of ρ̂ on the phase θ – in
order to clarify the notation.

5.1.2 Classical and quantum Fisher information

To establish a direct correspondence with the formalism of the QFI introduced
in Chapter 3 we will look for the optimal phase estimation strategies by con-
sidering the broadest set of measurements allowed by quantum mechanics. The
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elements of this set are described in terms of the POVMs (Positive-Operator
Valued Measures) [1], which are self-adjoint and have non-negative eigenvalues.
However, since for a single qubit any 2x2 matrix can be represented using the
unity and the three Pauli matrices, then naturally any POVM can be repre-
sented by the following operator

Ê~q = γ~q (1̂ + ~q · ~̂σ), (5.7)

where |~q| 6 1 and furthermore the normalization of the set of POVM’s requires
that

∫

d~q γ~q = 1 and

∫

d~q γ~q ~q = 0. (5.8)

The trace of the product of the POVM (5.7) and the density matrix gives the
probability for finding the qubit alligned along ~q on the Bloch sphere,

p(~q |θ) = Tr
[

ρ̂ Ê~q

]

. (5.9)

Recall again, that the precision of the phase estimation from a series of m
measurements is limited by the Cramer-Rao Lower Bound [1, 2]

∆θ >
1√
m

1√
F
, (5.10)

where F is called the Classical Fisher Information and is equal to

F =

∫

d~q
1

p(~q |θ)

(

∂ p(~q |θ)
∂θ

)2

. (5.11)

The CFI, which is a measure of information about θ contained in ρ̂, depends on
the particular choice of measurement – some methods of estimating θ are better
than other. The optimal measurements are those which give the maximal value
of F , called the Quantum Fisher Information (QFI) [6] – and through Eq. (5.10)
maximal precision of phase estimation.

The maximization procedure of (5.11) gives the QFI, which for unitary trans-
formations is

FQ = 2
∑

j,k

(pj − pk)
2

pj + pk

∣

∣〈j|ĥ|k〉
∣

∣

2
. (5.12)

Here ĥ is a generator of the phase transformation, which according to Eq. (5.4)

is ĥ =
σ̂y

2 . The ket |k〉 denotes the k-th eigen-vector of the density matrix ρ̂
from Eq. (5.6) with a corresponding eigen-value pk. For this 2×2 matrix, the
eigen-problem is easily solved and we obtain

FQ = s2x + s2z. (5.13)

Using the expressions from Eq. (5.6), we note that the QFI does not depend on
θ and the maximum FQ = 1 is achieved with pure states with sy = 0. This is
a clear result – the y-component of the density matrix is not affected by the σ̂y
rotation, and so there is no information encoded in it. It is thus better to have
a qubit state with no y component, in order to maximize the information input.
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5.1.3 Optimal measurements

Next, we determine which are the optimal measurements, which give (5.13).
Remember, that they are given by the expression

Ê~q ρ̂ = λ~q Ê~q L̂ρ̂ ρ̂ (5.14)

with λ~q ∈ R. The super-operator L̂ρ̂ is called the symmetric logarithmic deriva-
tive and is defined by a relation

1

2

(

ρ̂L̂ρ̂ + L̂ρ̂ρ̂
)

= ∂θρ̂. (5.15)

The optimal measuerements are found in two steps. First, by declaring the
general form of the symmetric logarithmic derivative

L̂ρ̂ = α1̂+ ~s⊥~̂σ (5.16)

and using the definition (5.15) we get that α = 0 and ~s⊥ = sz~ex − sx~ez. This
result justifies the notation, since ~s · ~s⊥ = 0.

In the second step we insert L̂ρ̂ into (5.14), and use the general parametriza-
tion of the POVM (5.7). By comparing the scalar and vector parts and then
the real and imaginary parts we obtain a set of equations

~q · (~s⊥ × ~s) = 0 (5.17a)

λ~q =
1 + ~q · ~s
~q · ~s⊥

(5.17b)

~q + ~s = λ~q [~s⊥ − ~q × (~s⊥ × ~s)] (5.17c)

~q × ~s = λ~q [~s⊥ × ~s+ ~q × ~s⊥] . (5.17d)

From (5.17a) we deduce that ~q lies in the plane spanned by vectors ~s and ~s⊥, so
it can be written as ~q = q1~es+q2~es⊥ . Here, ~es and ~es⊥ are unit vectors pointing
into directions ~s and ~s⊥. This observation reduces the set of eight equations
(5.17) to

λ~q =
1 + s q1
s⊥q2

(5.18a)

q1 + s = λ~q s s⊥ q2 (5.18b)

q2s = λ~qs⊥(s− q1) (5.18c)

q2 = λ~qs⊥(1− sq1). (5.18d)

This set of four equations for three variables q1, q2 and λ~q is non-condradictory
when two of these equations are linearly dependent. When the state is pure
(s = 1), the last two equations (5.18c) and (5.18d) are equivalent and the
solution is q21 + q

2
2 = 1. Thus for pure states there is a continuous set of optimal

POVMs (5.7) parametrized by a vector ~q which lies on a circle of unit radius. If
the state is mixed (s < 1), the last two equations are non-contradictory only if
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q1 = 0 and the other two equations give q2 = ±1. This is a dramatic difference
when compared to the pure state case – a continuous set of POVMs reduces to
just two possibile projection operators.

Finally, we point that when the logarythmic derivative is known, some subset
of optimal measurements is given by the projection operators onto the eigen-
states of L̂ρ̂. In the case of a single qubit, this procedure gives only the q1 = 0,
q2 = ±1 projectors, even for pure states.

5.1.4 Estimation from the population imbalance

In an N -qubit MZI, usually the phase is estimated from the population imbal-
ance between the two arms of the interferometer. Here we show under which
conditions this estimation strategy is optimal in the simplest one-qubit case.

The population imbalance POVMs are two operators

Ê+ = |+〉〈+| and Ê− = |−〉〈−|. (5.19)

which project the state ρ̂ on either of the two modes. The corresponding prob-
abilities of detecting the qubit in one of the arms are

p± = Tr
[

ρ̂ Ê±
]

=
1

2
(1± sz) (5.20)

According to Eq. (5.11) and using the θ-dependence of the vector ~s from Eq. (5.6),
we obtain that the CFI for the estimation from the population imbalance is

Fimb =
1

p+

(

∂p+
∂θ

)2

+
1

p−

(

∂p−
∂θ

)2

=
s2x

1− s2z
. (5.21)

This CFI saturates the bound of the QFI from Eq. (5.13) when either (a) s2x +
s2z = 1 or (b) sz = 0. When (a) is true, the state is pure, and the CFI does
not depend on θ. In other words, for any initial pure state ρ̂in lying in the
x − z plane, the population imbalance measurement is optimal for the phase
estimation. When the state is mixed only (b) can be true and then for every θ
there is only one orientation of the initial state ρ̂in, which gives sz = 0.

This once again shows how the optimal estimation strategies change abruptly
as soon as the state is mixed. While there is a continuum of pure states, which
when used for the phase estimation from the population imbalance give maximal
value of the CFI, there is only one such mixed state for each θ.

5.2 Two qubits

In this section, we extend the analysis of the optimal estimation strategies to
two spin- 12 bosons. A general density matrix of such system with its eight
independent parameters, it too difficult to investigate. However there is a set
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of “Werner” states, which are described with a single real coefficient α. These
states have a particularly simple form

ρ̂w =
1− α

3
1̂+ α Π̂TF, (5.22)

where Π̂TF =
∣

∣1, 1
〉〈

1, 1
∣

∣ is a projection over the Twin-Fock state. When α
varies from 0 to 1, ρ̂ changes from a complete mixture, which is useless for the
parameter estimation, to a strongly entangled pure Twin-Fock state. Werner
states are a narrow subset of all possible two spin- 12 bosonic states, nevertheless
– as we show below – they provide valuable insight into the optimal estimation
strategies in quantum metrology.

In analogy to the previous section, we use a generic linear interferometric
transformation

Û(θ) = exp
[

−iθ ~n · ~̂J
]

. (5.23)

The “composite” angular momentum operators are a sum of corresponding

single-particle Pauli matrices, i.e. Ĵi = 1
2 σ̂

(1)
i + 1

2 σ̂
(2)
i , where i = x, y, z and

the upper index labels the particles.

First, we calculate the QFI, using the expression from Eq. (5.12). The
Werner state written in the mode occupation basis is already diagonal, i.e.

ρ̂w =





1−α
3 0 0
0 1+2α

3 0
0 0 1−α

3



 (5.24)

Since the generator of the phase transformation from Eq. (5.23) is ĥ = ~n · ~̂J ,
evaluation of the QFI is straightforward and we obtain

FQ(α) =
12α2

2 + α

(

n2x + n2y
)

(5.25)

Note that the z-component of the generator does not contribute to the QFI,
because ρ̂w is invariant upon rotation around the z axis. Therefore, it is rea-
sonable to consider only such transformations, which lie in the x-y plane. In
this case, the value of the Fisher information depends only on the length of the
vector ~n. Thus, without any loss of generality in the remaining of this Section

we can restrict to the MZI transformation Û(θ) = exp
[

−iθĴy
]

. If so, the QFI

is simply equal to

FQ(α) =
12α2

2 + α
. (5.26)

As anticipated at the beginning of this section, FQ(0) = 0. The Werner state is
usefully entangled, when FQ(α) > 2, which gives α > 2

3 . For a Twin-Fock state
we obtain the Heisenberg scaling, i.e. FQ(1) = 4.
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5.2.1 Optimal measurements

In the next step, we find the optimal measurements, which saturate the bound
set by the QFI (5.26). To this end, we determine the logarithmic derivative
using Eq. (5.15). A simple calculation gives that

L̂ρ̂ = − 6i

2 + α

[

Ĵy, ρ̂w(θ)
]

, (5.27)

where ρ̂w(θ) = e−iθĴy ρ̂w(θ)e
iθĴy . In analogy to the single-qubit case, we should

now parametrize the POVMs similarly as in Eq. (5.7) and find the parame-
ters from the condition Eq. (5.14). However, this procedure gives equations,
which cannot be solved in a simple way. Therefore, we restrict to those op-
timal POVMs, which can be found by the diagonalization of the logarithmic
derivative. We write down L̂ρ̂ in the matrix form

L̂ρ̂ =
6α√

2(2 + α)







1√
2
sin 2θ − cos 2θ − 1√

2
sin 2θ

− cos 2θ −
√
2 sin 2θ cos 2θ

− 1√
2
sin 2θ cos 2θ 1√

2
sin 2θ







and obtain a set of three eigen-states

|Ψ1〉 =
(cos θ − sin θ)√

2
|ψ−〉 −

(cos θ + sin θ)√
2

|1, 1〉 (5.28a)

|Ψ2〉 =
(cos θ + sin θ)√

2
|ψ−〉+

(cos θ − sin θ)√
2

|1, 1〉 (5.28b)

|Ψ3〉 = |ψ+〉, (5.28c)

where |ψ±〉 = |2,0〉±|0,2〉√
2

. The optimal measurements depend on θ, have a com-

plicated form and it is difficult to tell how to realize them in the laboratory.
Note however, that when θ = 0 a following transformation

V̂ = exp

(

i
π

2

ĴxĴy + ĴyĴx
2

)

exp
(

i
π

4
Ĵy

)

. (5.29)

is applied to Equations (5.28), it results in V̂ |Ψ1〉 = |0, 2〉, V̂ |Ψ2〉 = |1, 1〉 and
V̂ |Ψ3〉 = |2, 0〉. In this way, we obtain the eigen-states of the Ĵz operator, and
the optimal measurement is based on the simple determination of the population
imbalance. Nevertheless, to accomplish this we needed an additional operation
(5.29) on the state. This transformation is non-local – it correlates the particles,
since the product of two angular-momentum operators cannot be written as a
sum of operators acting on each qubit independently.

5.2.2 Estimation from the population imbalance

We now consider a common estimation strategy based on the measurement of
the imbalance of the population of the two modes. The CFI defined in Eq. (5.11)
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is a sum of three terms,

Fimb =
2
∑

n=0

1

p(n|θ)

(

∂p(n|θ)
∂θ

)2

, (5.30)

where p(n|θ) is a probability for finding n particles in one of the modes and
2− n in the other and is given by

p(n|θ) = Tr [|n,N − n〉〈n,N − n|ρ̂w(θ)] . (5.31)

Using the density matrix of the Werner states from Eq. (5.22) we obtain that
p(0|θ) = p(2|θ) = 1−α

3 + α
2 sin2 θ and p(1|θ) = 1−α

3 + α cos2 θ, which when put
into (5.30) gives

Fimb =
36α2 sin2(2θ)

[4− α(1 + 3 cos(2θ))][2 + α(1 + 3 cos(2θ))]
. (5.32)

Only for α = 1, when the Werner state is pure, Fimb = 4, so it does not depend
on θ and saturates the bound of the QFI. As shown in Fig. 5.1, for other values
of α the estimation from the population imbalance is non-optimal for all values
of θ.
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Figure 5.1: The CFI given by Eq. (5.32) for α = 0.5 (solid red), α = 0.95 (dotted
blue) and α = 1 (dashed green) as a function of θ. The dashed lines denote the
corresponding values of the QFI (Eq. (5.26)), which for α = 1 coincides with
the CFI.

This is another example, after the single qubit case, of how the estimation
strategy, which is optimal for a pure state, immediately deteriorates as soon as
the state becomes mixed.
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5.3 N qubits – pure states

So far, we have identified the optimal measurements for one and two qubits.
It is natural to generalize these results and ask which are the optimal measure-
ments for N qubits undergoing a linear interferometric transformation. How-
ever, the methods used in the previous two sections, which employed the log-
arithmic derivative L̂ρ̂, cannot be extended to higher N . This is because the

mere analytical determination of L̂ρ̂ becomes impossible. Nevertheless, as we
show below, for pure N -qubit states, some optimal estimation strategies can be
found using the notion of the statistical distance.

5.3.1 QFI and the statistical distance

In [6] it is shown how the QFI from Eq. (5.12) is related to the statistical distance
between two neighboring states. Although this general result is valid whenever
a parameter is estimated from measurements performed on a θ-dependent state
|ψ〉, below we present this formalism in context of quantum interferometry.

Figure 5.2: Schematic representation of the two steps performed to calculate
the QFI. The input state |ψ0〉, which enters the interferometer, is transformed
by a unitary evolution operator Û(θ), giving the output state |ψ〉. To calculate
the speed at which the state changes, and thus the statistical distance, we make

a further infinitesimal rotation Û(θ) to obtain
∣

∣

∣
ψ̃
〉

.

To this end, we follow the scheme pictured in Fig. 5.2. First, consider a pure
two-mode input state |ψ0〉, which is transformed by a unitary evolution operator

Û(θ) = e−iθĴk , where k = x, y, z. As a result, we obtain a θ-dependent output

state, which when expanded in the basis of mode occupations reads

|ψ〉 = e−iθĴk |ψ0〉 =
N
∑

j=0

√
pje

iϕj |j〉 ≡
N
∑

j=0

Cj |j〉 . (5.33)

Here |j〉 is a Fock state with j particles in the left and N − j in the right arm.
The neighboring state is found by applying a further infinitesimal transformation
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e−idθĴk , which gives

∣

∣

∣ψ̃
〉

= e−idθĴk |ψ〉 ≃
N
∑

j=0

(1− idθĴk)Cj |j〉 (5.34a)

=

N
∑

j=0

(1− idθη
(k)
j )Cj |j〉 ≡

N
∑

j=0

C̃j |j〉 , (5.34b)

The coefficient η
(k)
j is a result of acting with Ĵk on a ket |j〉 and is equal to

η
(x)
j =

1

2

αjCj+1 + αj−1Cj−1

Cj
(5.35a)

η
(y)
j =

1

2i

αjCj+1 − αj−1Cj−1

Cj
(5.35b)

η
(z)
j = j − N

2
, (5.35c)

where αj =
√

(j + 1)(N − j). The state (5.34b) can be alternatively written as

∣

∣

∣ψ̃
〉

=

N
∑

j=0

√

pj + dpje
i(ϕj+dϕj) |j〉 . (5.36)

where the probability- and phase-increments are

dpj = |C̃j |2 − |Cj |2 = 2 Im η
(k)
j |Cj |2dθ (5.37a)

eidϕj =
C̃j

|C̃j |
|Cj |
Cj

= e−iRe η
(k)
j dθ. (5.37b)

The distance between two neighboring states is equal to

ds2ps = 1− |〈ψ|ψ̃〉|2 (5.38a)

=

N
∑

j=0

dp2j
pj

+ 4







N
∑

j=0

pjdϕ
2
j −





N
∑

j=0

pjdϕj





2





(5.38b)

≡
N
∑

j=0

dp2j
pj

+ 4∆2dϕ. (5.38c)

Finally, the QFI can be interpreted as the speed at which the state changes
upon the infinitesimal increment of the parameter θ and therefore it reads

FQ =
ds2ps
dθ2

= 4

N
∑

j=0

|Cj |2
(

Im η
(k)
j

)2

+ (5.39a)

4

N
∑

j=0

|Cj |2
(

Re η
(k)
j

)2

− 4





N
∑

j=0

|Cj |2Re η(k)j





2

. (5.39b)
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When the phase is acquired through a unitary transformation like in Eq. (5.33),
the above expression simplifies to the well known result FQ = 4∆2Ĵk. However,
as we argue below, for the purpose of finding the optimal measurements, it is
more convenient to keep the QFI in the form of Equations (5.39), i.e. as a sum
of two non-negative parts – the change of the probability pj and the variance
of the phase increment dϕj . Namely, if the latter term is zero, then the CFI
calculated using the probability pj = |〈j|ψ〉|2 of finding the system in state |j〉 is
equal to QFI. This means that no information about θ is carried by the phases
ϕj , which by definition are not witnessed by the projection measurement |j〉 〈j|
and thus do not contribute to probabilities pj .

5.3.2 “In-situ” measurements – localized modes

In this section, by referring to Eq. (5.39), we identify two optimal measurements
performed “in-situ”, when the particles remain trapped in the two arms of the
interferometer and their mode functions do not overlap.

Estimation from the full correlation

As a first example, we consider the phase estimation from the full N -body
probability

pN (r|θ) =
1

N !
〈ψ|Ψ̂†(x1) . . . Ψ̂

†(xN )Ψ̂(xN ) . . . Ψ̂(x1) |ψ〉

≡ 〈ψ|Ĝ(r) |ψ〉 . (5.40)

of finding particles at positions r = (x1 . . . xN ). The two-mode field operator

is Ψ̂(x) = ψa(x)â + ψb(x)b̂ and the wave-packets are separated in two arms of
the interferometer, for instance by imposing ψa(x) = 0 for x < 0 and ψb(x) = 0
for x > 0. The θ-dependence of the probability pN (r|θ) comes from the state
|ψ〉 from Eq. (5.33), which is used to calculate the average value of the operator
Ĝ(r).

The estimation sequence relies upon detecting positions of N atoms in m≫
1 experiments. If the phase is then deduced using the maximum likelihood
estimator, then according to the Fisher theorem, its sensitivity is given by

∆2θ =
1

m

1

FN
, (5.41)

where FN is the CFI which is equal to

FN =

∫

dr
1

pN (r|θ)

(

∂pN (r|θ)
∂θ

)2

. (5.42)

In order to calculate FN we first evaluate the derivative of the probability (5.40),

∂θpN (r|θ) = i〈ψ|ĴkĜ(r) |ψ〉 − i〈ψ|Ĝ(r)Ĵk |ψ〉 = (5.43)

2 Im 〈ψ|Ĝ(r)Ĵk |ψ〉 = 2 Im
N
∑

j,j′=0

C∗
jCj′η

(k)
j′ 〈j|Ĝ(r) |j′〉 .
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The CFI is therefore equal to

FN = 4

∫

dr

[

Im
N
∑

j,j′=0

C∗
jCj′η

(k)
j′ 〈j|Ĝ(r) |j′〉

]2

Im
N
∑

j,j′=0

C∗
jCj′〈j|Ĝ(r) |j′〉

. (5.44)

We now define Ωµ by saying that r ∈ Ωµ when x1 . . . xµ < 0 and xµ+1 . . . xN > 0.
Using this definition we obtain

FN =4

N
∑

µ=0

(

N

µ

) ∫

r∈Ωµ

dr

[

Im
N
∑

j,j′=0

C∗
jCj′η

(k)
j′ 〈j|Ĝ(r) |j′〉

]2

Im
N
∑

j,j′=0

C∗
jCj′〈j|Ĝ(r) |j′〉

(5.45)

where the combinatory factor is due to indistiguishability of particles and stands
for all possible choices of µ particles out of a set of N . When r ∈ Ωµ, then for

separated wave-packets Ĝ(r) |n〉 ∝ µ!(N−µ)!
N ! |n〉 δnµ and the above integral gives

FN = 4

N
∑

j=0

|Cj |2
(

Im η
(k)
j

)2

. (5.46)

We notice that this expression is equal to the first line of the QFI, see (5.39a).
Therefore, estimation from the N -body probability of trapped particles is

optimal only if the other terms in line (5.39b) vanish, which requires Re η
(k)
j ≡ 0

for all j. According to Equations (5.35), this condition can be satisfied only for

the rotations around x and y axes. In the other case, Im η
(z)
j = 0 and thus

FN = 0, because the simple phase imprint e−iθJz requires further mode mixing
to provide information about θ.

For the rotation around x-axis, Re η
(x)
j = 0 if Cj = ijaj , while for the y-

axis the condition is Cj = eiφaj , where aj ∈ R and φ is a common phase. In
particular for φ = 0, the measurement is optimal, when all Cj ’s are real. Since
the elements of the Wigner rotation matrix – which transforms the input state
|ψ0〉 into the output state |ψ〉 – are all real [8], we conclude that if the input
state of the MZI has real coefficients, the estimation from pN is optimal.

Estimation from the population imbalance

Although phase estimation from the N -body probability is optimal for a wide
class of states and rotations around x and y, it has one major flaw – it is
unpractical, since it requires sampling of a vast configurational space. We now
show, that the same value of the CFI as in Eq. (5.46) can be obtained, when
the phase is estimated from a simple population imbalance measurement.



5.3. N QUBITS – PURE STATES 55

The probability of having j atoms in the mode a and N − j in b is

p(j|θ) = |〈j|ψ〉|2 = |Cj |2. (5.47)

Similarly as in Eq. (5.43), its derivative reads

∂θp(j|θ) = 2|Cj |2Im η
(k)
j . (5.48)

Therefore, the CFI calculated with (5.47)

Fimb =

N
∑

j=0

1

p(j|θ)

(

∂ p(j|θ)
∂θ

)2

= 4

N
∑

j=0

|Cj |2
(

Im η
(k)
j

)2

(5.49)

is equal to (5.46). In consequence, the QFI from Eq. (5.39) is saturated with the
same family of states for the x and y rotations as in the case of the estimation
from pN (r|θ). This is a step forward with respect to the work of Hofmann [9],
where the saturation of the QFI bound with the population imbalance measure-
ment was reported for the MZI and symmetric states with Cj = CN−j .

5.3.3 Measurement after expansion

As argued above, when the interferometer rotates the state around the z-axis,
giving a sole phase-imprint, further manipulation is necessary to exchange the
information about the phase between the two modes. Here we assume, that
this operation is realized by letting the two mode functions ψa(x) and ψb(x)
expand and form an interference pattern. In such situation, the two modes
cannot be distinguished anymore, and it is not possible to define a proper pop-
ulation imbalance operator. Instead, one must estimate θ in some different way.
For instance, estimation from the least-squares fit of the one-body probability
p1(x|θ) = 1

N 〈ψ|Ψ̂†(x)Ψ̂(x) |ψ〉 to the interference pattern, although gives sub
shot-noise sensitivity when the input state |ψ0〉 is phase-squeezed [17], is never
optimal [18].

Nevertheless, the optimal measurement can be identified and it is the N -
body CFI from Eq. (5.42) which saturates the bound of the QFI under following
additional assumptions [19]. First, the information between the two modes must
be fully exchanged. This means, that the envelopes of ψa(x) and ψb(x) fully
overlap and the functions only differ by the phase. This is true if initially ψa(x)
and ψb(x) are of the same shape but are separated in space and then expand
to reach the far-field regime. Another requirement is that the coefficients of the
initial state

|ψ0〉 =
N
∑

j=0

C
(0)
j |j〉 (5.50)

are real and posses the symmetry C
(0)
j = C

(0)
N−j . States having these properties

naturally appear in the context of quantum interferometry with ultra-cold gas
trapped in the double-well potential. Namely, the ground state of the symmetric
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two-mode Bose-Hubbard Hamiltonian for every ratio of the interaction strength

U to the tunneling rate J has real and symmetric coefficients C
(0)
j .

According to Eq. (5.33), the rotation around the z axis transforms the state
into

|ψ〉 = e−iθĴz |ψ0〉 =
N
∑

j=0

Cj |j〉 , (5.51)

where Cj = C
(0)
j e−iθ(j−N

2 ). As argued in detial in [19], the CFI from Eq. (5.42)
can be calculated under the aforementioned assumptions and the outcome is

F = 4
∑

j

|Cj |2η(z)2j = 4∆2Ĵz = FQ, (5.52)

where η
(z)
j was defined in Eq. (5.35c). This shows that the estimation from the

N -th body correlation in the far field is optimal.

5.4 Estimation from population imbalance with
mixed states

In the previous Section we have identified the set of pure states for which esti-
mation from the population imbalance is optimal. Here we show, how various
methods of estimation from the measured population-imbalance are affected by
the presence of noise during the interferometric sequence.

To this end, we focus on the MZI transformation as in Eq. (5.3). For sim-
plicity, we assume that the interferometer is fed with a pure state

|ψin〉 =
N
∑

n=0

Cn |n,N − n〉 . (5.53)

We now incorporate the noise in the MZI transformation by assuming that
the imprinted phase fluctuates from shot to shot around the true value θ. In
consequence, the output state is not pure anymore and reads

ρ̂ =

∫ π

−π

dϕP (ϕ) |ψϕ〉 〈ψϕ|, (5.54)

where |ψ(ϕ)〉 = e−i(θ+ϕ)Ĵy |ψin〉 is a pure state after a “single” transformation.
We assume that the probability that the acquired phase differs from θ by ϕ is
Gaussian, i.e.

P (ϕ) =
1√
2πσ

exp

[

− ϕ2

2σ2

]

. (5.55)

It is normalized when σ ≪ 2π, which is a reasonable assumption in the context
of phase estimation.

We focus on states |ψin〉, which are the usefully entangled for the Ĵy inter-
ferometer. These are the spin-squeezed states [10, 11], where the squeezing is
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Figure 5.3: “Fisher information” normalized to the number of particles with
N = 10. Solid black line – QFI, dotted red line – CFI, dashed blue line – spin
squeezing, dot-dashed green line – second moment. (a) w = 0.4, σ = 0.09, (b)
w = 0.4, σ = 0.12, (c) w = 0.036, σ = 0.09, (d) w = 0.036, σ = 0.12,

related to the reduced fluctuations of the population imbalance between the two
modes. Such entangled multi-particle states have been recently generated in a
number of experiments [12, 13, 14, 15, 16]. The spin-squeezed states can be
modeled by a Gaussian as follows

Cn =

√
2√

πwN
exp

[

− (n− N
2 )

2

wN

]

. (5.56)

In such case, the spin-squeezing parameter is equal to

ξ2s = N
〈Ĵ2

z 〉in
〈Ĵx〉2in

, (5.57)

where the average values are calculated with |ψin〉 and using coefficients (5.56).
When w < 1, we obtain ξ2s < 1 so the state is spin-squeezed and entangled.

To picture what is the relation between spin-squeezing and the MZI, let us

for a moment consider a noise-less case, when the output state is e−iθĴy |ψin〉. In
such scenario, if the phase is estimated from the average population imbalance,
then the sensitivity is given by the error propagation formula

∆2θ =
1

m

∆2Ĵz
∣

∣

∣

∂〈Ĵz〉
∂θ

∣

∣

∣

2 >
1

m

ξ2s
N
. (5.58)
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Here, the variance and the average value of the Ĵz operator are calculated with

the θ-dependent state e−iθĴy |ψin〉 and the above inequality is saturated only
around θ = 0. Therefore, in the absence of noise, spin-squeezed input states are
usefully entangled.

0

0.5

1

1.5

2

0 0.5 10
1
2
3
4
5

0 0.5 1

(a) (b)

σσ

(c) (d)

Figure 5.4: “Fisher information” normalized to the number of particles with
N = 10. Solid black line – QFI, dotted red line – CFI, dashed blue line – spin
squeezing, dot-dashed green line – second moment. (a) w = 0.4, θ = 0, (b)
w = 0.4, θ = π/4, (c) w = 0.036, θ = 0, (d) w = 0.036, θ = π/4.

It is interesting to check, if these states are still useful, when the interfer-
ometer is noisy. To this end, we proceed as follows. We take |ψin〉 with various
w and generate the output mixed states (5.54) for different values of the noise
width σ and θ. We then numerically calculate the QFI and the CFI for the
population imbalance measurement

Fimb =
N
∑

n=0

1

p(n|θ)

(

∂p(n|θ)
∂θ

)2

, (5.59)

where the probability of having n atoms in one mode and N − n in the other is
equal to

p(n|θ) = Tr
[[

ρ̂|n,N − n〉〈n,N − n|
]]

(5.60)

We compare these two results with the sensitivity obtained from the average
population imbalance as in Eq. (5.58). Finally, we calculate the sensitivity of
the estimation from the second moment of the population imbalance

∆2θ =
1

m

∆2
(

Ĵ2
z

)

∣

∣

∣

∂〈Ĵ2
z 〉

∂θ

∣

∣

∣

2 . (5.61)
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This last estimation method was recently used to prove the entanglement of the
twin-Fock state generated in the experiment [7].
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Figure 5.5: “Fisher information” normalized to the number of particles with
N = 10. Solid black line – QFI, dotted red line – CFI, dashed blue line – spin
squeezing, dot-dashed green line – second moment. (a) σ = 0.09, θ = 0, (b)
σ = 0.09, θ = π/4, (c) σ = 0.12, θ = 0, (d) σ = 0.12, θ = π/4.

In all the following figures, we plot the inverse sensitivity squared, normalized
to mN , i.e. 1

∆2θmN with N = 10 particles. In case of the CFI and the QFI this
gives the corresponding Fisher informations normalized to the shot-noise. In
Fig. 5.3 we plot these four quantities as a function of θ for two different values
of σ and w. The QFI does not depend on θ and exceeds the shot-noise limit
in all cases. Note however, that even a small amount of noise (σ = 0.09) has a
dramatic impact on other three sensitivities. When the input state is close to
coherent (w = 0.4), the CFI is optimal only for small angles and develops some
complicated oscillatory structure for other values of θ. The estimation from
the average population imbalance works well also only for small angles and the
sensitivity smoothly deteriorates as θ → π

2 . To contrary, estimation from the
second moment gives best sensitivity far from θ = 0. The situation changes
abruptly for a strongly squeezed state (w = 0.036). In this case, the CFI is not
optimal at θ = 0 and reaches a value close to the bound set by the QFI at some
intermediate angles.

In Fig. 5.4 we plot the normalized inverse of the squared sensitivity as a
function of the noise width σ for two values of θ and w. For θ = 0 the estimation
from the second moment gives no sensitivity whatsoever, so it is not displayed.
We observe that for θ = 0 and w = 0.4, both the CFI and the first moment
saturate the QFI, which is consistent with Fig. 5.3. For other values of w the
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CFI (and consequently other estimation methods) are far from optimal as soon
as the noise enters the system.

In Fig. 5.5 we plot the normalized inverse of the squared sensitivity as a
function of the squeezing of the initial state w for two values of θ and σ. We
observe, that although the QFI gets better as w drops, the other sensitivities
have some optimal squeezing point, after which either drop (estimation from
two lowest moments for θ = 0 and θ = π

4 and the CFI for θ = 0) or saturate
(CFI for θ = π

4 ).
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Figure 5.6: Density plots of the difference between the QFI and inverse sen-
sitivities calculated with various estimation methods as a function of w and
θ. The brighter the color, the bigger the difference is. The top left shows the
difference between FQ and the CFI calculated from the population imbalance
Fimb from Eq. (5.59) with σ = 0.03. Top right and bottom left – the difference
between the same two quantities, but calculated with σ = 0.09 and σ = 0.27
(correspondingly). Bottom right – the difference between the FQ and the inverse
sensitivity square obtain from the lowest moment of the population imbalance
using Eq. (5.61) with σ = 0.09.

Finally in Fig. 5.6 we use the density plots to show how the inverse of the
sensitivity calculated with various estimation protocols differ from the QFI. We
display these results as a function of squeezing of the initial state w and the
phase θ. The brighter the color is, the bigger the difference between the QFI
and a given inverse sensitivity. The black color stands for a zero difference, and
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thus denotes optimal estimation strategy.
The top left plot of Fig. 5.6 shows the difference between FQ and the CFI

calculated from the population imbalance Fimb) with σ = 0.03. Clearly, apart
from small regions, the CFI is optimal for most phases and values of the squeez-
ing w. When the amount of noise is increased to σ = 0.09, these region of
optimality shrinks substantially (top right). For even larger σ = 0.27, the area
where the CFI is not optimal anymore starts to dominate (bottom left). In the
bottom right plot we show the analogous difference between the FQ and the
inverse sensitivity square obtain from the lowest moment of the population im-
balance and for σ = 0.09. We see how this estimation method is outperformed
by the full Fisher information calculated with the same amount of noise (top
right).
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Chapter 6

Entanglement with
ultra-cold atoms

In this chapter we review some recent experiments, which demonstrate multi-
particle entanglement in cold-atomic systems using entanglement measures bor-
rowed from quantum interferometry. Before we focus on some particular results,
we need however to understand, what is the way to describe such ultra-cold gas
in a two-mode setup. Typically such bi-partite configuration is introduced by
means of a double well potential, and we will now demonstrate that a state of a
Bose-Einstein Condensate (BEC) trapped in this external field can be treated as
an input to an interferometer (hopefully) operating below the shot noise limit.

To begin the detailed analyzis, note that when talking about BECs, we are
dealing with a system of N idistinguishable bosons. Therefore, it is convenient
to use the language of the second quantization, where the central object is the
field operator Ψ̂(r, t). This object, when acting on some state |ψ〉, anihilates a
single particle located at position x. The key property of the field operator is
the commutation relation, which in case of bosons reads

[

Ψ̂(r, t), Ψ̂†(r′, t)
]

= δ(3)(r− r′). (6.1)

In order to create a complete quantum theory, we now need to express the 1st

quantization Hamiltonian ofN particles, which (say) interact via some two-body
potential

H =

N
∑

i=1

(

−~
2∇2

i

2m
+ V1(ri)

)

+
1

2

∑

i6=j

V2(ri − rj) (6.2)

in terms of the field operators. In turns out that the proper transition from the
1st to the 2nd quantization gives

Ĥ =

∫

dr Ψ̂†(r, t)

(

−~
2∇2

2m
+ V1(r)

)

Ψ̂(r, t) (6.3a)

+
1

2

∫∫

dr dr′ Ψ̂†(r, t)Ψ̂†(r′, t)Ψ̂(r′, t)Ψ̂(r, t)V2(r− r′). (6.3b)

63
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This Hamiltonian together with the Heisenberg equation of motion

i~∂tΨ̂(r, t) =
[

Ĥ, Ψ̂(r, t)
]

(6.4)

and the quantum state of the system |ψ〉 form a full quantum theory. For
instance, a one-body density, which can be deduced from the symmetrized N -
body wave-function Φ(r1 . . . rN ; t) as follows

ρ(r; t) = N

∫

dr2 . . . drN |Φ(r1 . . . rN ; t)|2 (6.5)

can be equivalently calculated in the second quantization as

ρ(r; t) = 〈ψ|Ψ̂†(r, t)Ψ̂(r, t) |ψ〉 . (6.6)

In an alagous way, one can reproduce all the moments of the symmetrized many-
body wave function, thus prooving the equivalence of both the languages.

Our aim now is to employ this formalism to describe an ultra-cold gas in a
double-well potential Vdw(r). One property of an ultra-cold gas is that atoms
collide with very low mutual velocity. Therefore the whole two-body potential
can be approximated with an effective contact interaction potential, i.e. V2(r−
r′) ≃ gδ(3)(r−r′). Here, g is the strength of the coupling. The reason, why this
approximation might be valid is that when the mutual energy of the colliding
pair is low, they cannot probe the details of the interaction. All they can feel is
some effective force, which in the crudest approximation is modelled by the delta
potential. The only point, where the contact interaction is somehow linked with
the true two-body force is through the coupling strength g, which is deduced
from the full V2(r − r′) in such a way that the effective potential reproduces
the low-energetical scattering properties of the true force. It turns out, that the
correct expression for the coupling constant is g = 4π~2as/m, where as is the s-
wave scattering length derived from the full force [20]. With this approximation,
the Hamiltonain (6.3) with the one-body trapping potential Vdw(r) reads

Ĥ =

∫

dr Ψ̂†(r, t)

(

−~
2∇2

2m
+ Vdw(r)

)

Ψ̂(r, t) (6.7a)

+
g

2

∫

dr Ψ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t). (6.7b)

Now, it is important to assume that the inter-well barrier of Vdw(r) is sufficiently
steep, so that the states with lowest energy are localized in one of the wells. If
this is the case, then the bosonic field operator can be written in a following
form

Ψ̂(r) =
∑

i

ψ(i)
a (r)âi +

∑

i

ψ
(i)
b (r)b̂i, (6.8)

where ψ
(i)
a/b(r) is a wave-packet localized in the left/right well with a correspond-

ing anihilation operator âi/b̂i. When the trapped gas is very cold, one can in the
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crudest approximaton assume, that only the lowest pair of modes is occupied,
so the above field operator simplifies to

Ψ̂(r) = ψa(r)â+ ψb(r)b̂. (6.9)

This is what is called the two-mode approximation, and our point now is to
derive the Hamiltonian for the operators â and b̂. The open question remains
what particular shape of the wave-packets ψa/b(r). In the simplest approach, we
will assume that these are the two lowest eigen-functions of the one-body part of
the Hamiltonian. From elementary quantum mechanics we know, that the two
lowest-lying states of a double-well Hamiltonian are ψsym(r), which is symmetric
with respect to reflection around the center of the trap, while the other ψasym(r)
is asymmetric. We construct the localized wave-packets as follows

ψa/b(r) =
ψs(r)± ψasym(r)√

2
(6.10)

We will now substitute this decomposition into the Hamiltonian (6.7a) and
evaluate the spatial integrals. First, let us concentrate on the one-body part.
We have that

Ĥ1 =

∫

dr Ψ̂†(r, t)

(

−~
2∇2

2m
+ Vdw(r)

)

Ψ̂(r, t) = (6.11a)

=

∫

drψ∗
a(r)

(

−~
2∇2

2m
+ Vdw(r)

)

ψa(r) â
†â (6.11b)

+

∫

drψ∗
b (r)

(

−~
2∇2

2m
+ Vdw(r)

)

ψb(r) b̂
†b̂ (6.11c)

+

∫

drψ∗
b (r)

(

−~
2∇2

2m
+ Vdw(r)

)

ψa(r) b̂
†â (6.11d)

+

∫

drψ∗
a(r)

(

−~
2∇2

2m
+ Vdw(r)

)

ψb(r) â
†b̂. (6.11e)

The first two terms, due to symmetry, are equal to
(

â†â+ b̂†b̂
)

E = N̂ · E. If

we consider only the states with fixed number of atoms, N̂ is a constant and
therefore it can be safely removed from the Hamiltonian. The other two spatial
integrals are equal, thanks to the symmetry between a and b. So let us analyze
one of these integrals. It reads

∫

drψ∗
a(r)

(

−~
2∇2

2m
+ Vdw(r)

)

ψb(r) = (6.12a)

∫

dr
ψ∗
s (r) + ψ∗

asym(r)√
2

(

−~
2∇2

2m
+ Vdw(r)

)

ψs(r)− ψasym(r)√
2

(6.12b)

=
1

2
(Es − Easym) = −1

2
EJ , (6.12c)



66 CHAPTER 6. ENTANGLEMENT WITH ULTRA-COLD ATOMS

where EJ > 0 is called the Josephson energy. Therefore, we obtain that the
one-body part of the Hamiltonian (6.3) reads

Ĥ1 = −1

2
EJ(â

†b̂+ b̂†â) = −Ej Ĵx. (6.13)

Now, we just need to identify the two-body part of the Hamiltonian. Note that
since the wave-packets ψa/b are separated in space (they are localized in the
opposite wells of the potential), then after substituting the field operator in
the form (6.9) into the two-body part, we can neglect the overlaps between the
wave-packets and obtain that

Ĥ2 =
g

2

∫

dr Ψ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t) ≃ (6.14a)

≃ g

8

∫

dr
(

|ψa(r)|2â†â†ââ+ |ψb(r)|2b̂†b̂†b̂b̂
)

(6.14b)

=
g

8

∫

dr|ψa(r)|2
(

â†â†ââ+ b̂†b̂†b̂b̂
)

. (6.14c)

We now note, that this above expression can be written in terms of the Ĵ2
z

operator to give (after neglecting the constant terms proportional to N or N2)

Ĥ2 = UĴ2
z , with U =

g

4

∫

dr|ψa(r)|2 =
g

4

∫

dr|ψb(r)|2. (6.15)

This way we have derived what is called the two-mode Bose-Hubbard Hamilto-
nian, which reads

Ĥ = −EJ Ĵx + UĴ2
z . (6.16)

In order to understand how useful entanglement is created in recent experiments
with ultra-cold atoms, we will now focus on the family of ground states of this
Hamiltonian. Since for whatever the values of the parameters EJ and U , the
state of N particles in two modes can always be written as

|ψ〉 =
N
∑

n=0

Cn |n,N − n〉 . (6.17)

Obviously, the amplitudes Cn fully determine the state. Note that the crucial
quantity which characterizes the Hamiltonian (6.16) is actually the ratio between
the two energies EJ and U . It is convinient to introduce a parameter α =
NU/EJ and use the Hamiltonian in a form

Ĥbh = −Ĵx +
α

N
Ĵ2
z . (6.18)

The N in the denominator is introduced in order to accomodate for different
spectra of Ĵx and Ĵ2

z . While the first one has a spectrum varying from −N
2 to

N
2 , the other naturally has a spectrum contained in the range from −N2

4 to N2

4 .



67

Therefore this N in denominator somehow makes the two spectra “compatible”.
We are now prepared to analyze the ground states of the Hamiltonian (6.18) in
terms of the coefficient α.

First, we will begin with the case of an non-interacting gas, having g = 0 and
so U = 0 and in consequence α = 0. In this situation, the Hamiltonian consists
only of the Ĵx state and the ground state is particularly simple to identify.
Namely, since the Hamiltonian is −EJ Ĵx, and EJ > 0 then the ground state is
an eigen-state of Ĵx with maximal eigen-value equal to N

2 . Such state is referred
to as the Coherent Spin-State and reads

|ψ〉css =
1√
N !

(

â† + b̂†√
2

)N

|0, 0〉 . (6.19)

This state is called “cohererent” because it is a product state of N particles
in a coherent supperposition of being in the left and in the right well. Since
it is a product, naturally the particles are not entangled. This state can also
be written in a form (6.17) and by using the Newton binomial expansion we
imediatelly obtain that

Cn =

√

1

2N

(

N

n

)

. (6.20)

Since the probabilities pn = C2
n are given by the binomial distribution, we can

naturally expect that the fluctuations of the population imbalance operator Ĵz
are Poissonian. Indeed, for this state we obtain that

〈

∆2Ĵz

〉

=
N

4
. (6.21)

Also, for large N the binomial statistics can be reproduced with a gaussian.
Therefore, as one can check, the probabilites pn can be approximated with

pn = |Cn|2 =
1√
2πσ2

e−
(n−

N
2 )

2

2σ2 , with σ =

√
N

2
. (6.22)

Therefore, for the CSS, we have that σ2 =
〈

∆2Ĵz

〉

. This is not a coincidence,

because using this Gaussian model, one can calculate the variance of the Ĵz
operator for any state as follows

〈

∆2Ĵz

〉

≡ 〈ψ|Ĵ2
z |ψ〉 − 〈ψ|Ĵz |ψ〉2 =

N
∑

n=0

pn

(

n− N

2

)2

(6.23a)

≃
∫ ∞

−∞
pn

(

n− N

2

)2

dn = σ2. (6.23b)

We are now ready to anticipate what other ground states of the Hamiltonian
(6.18) with α > 0 will look like. Recall, that the sign of α is related to the
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kind of two-body interaction. Namely, when the coupling constant g is positive,
than it means that the scattering length as is also positive. This sign of the
scattering length is related to the repulsive two-body interactions between the
particles. When the value of α is positive and grows, it means that the two-body

0 15050      200100
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0.15

0.2

0 50 100 150     200

0
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0.1
Cn

2

n n

(a)

(c) (d)

(b)

Figure 6.1: Coefficients |Cn|2 (solid black line) of the ground states of the Bose-
Hubbard Hamiltonian (6.18) for different positive values of the parameter α
equal to (a) α = 0, (b) α = 25, (c) α = 125 and (d) α = 250. The dashed red
lines are the Gaussian fits, which fully overlap with the numerical results.

interactions become stronger and stronger and in particular when α ≫ 1, they
dominate over the tunneling energy. In such case, the fluctuations of the atom
number difference between the two sites, which are governed by the variance of
the operator Ĵz, should drop. This is because when the repulsion grows, it is
energetically infavorable to have large number of particles on one of the sites.
When the interaction tends to infinity, a ground state should be fully ballanced,
i.e. have equal number of particles on each site and no fluctuations (which cost
a lot of energy). Such state is called the Twin-Fock state and reads

|ψ〉tf =
∣

∣

∣

∣

N

2
,
N

2

〉

. (6.24)

This is an eigen-state of Ĵz with zero eigen-value, therefore in particular it has
vanishing variance of the population imbalance operator, i.e.

〈

∆2Ĵz

〉

tf
= 0. (6.25)

Comparing this expression with Equations (6.21) and (6.23) it seems (if the
Gaussian model is valid for the ground states of the Bose-Hubbard Hamiltonian
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for all α > 0) the that the width of the Gaussian has simply shrinked down to
zero. To check if our understanding of the ground states is correct, in Fig. 6.1
we plot the coefficients |Cn|2 of the numerically calculated ground states of the
Hamiltionian (6.18) for N = 200 particles and different values of the parameter
α. Clearly, the coefficients can be well modelled by gaussian functions for all α >
0. This analysis shows, that the ground states of the Hamiltonian (6.18) with

0 25 50 75 100 125
0

0.2

0.4

0.6

0.8

1

0 50 100

0.98

0.99

1

α

ξ 2

N

α

J2
N x

Figure 6.2: The spin-squeezing parameter defined in Eq. (6.26) calculcated with
numerically obtained ground states of the Hamiltonian (6.18) with N = 200
particles plotted as a function of α. Since it drops below unity, the system
is usefully entangled. The inset show the behavior of the denominator of ξ2N
normalized to the shot-noise level. Clearly, it hardly changes for the values of
α taken.

α > 0 are number-squeezed, because they have reduced fluctuations between the
two wells of the trap. Note however, that the number-squeezing is closely related
to another paramter, introduced in the Chapter 4, namely the spin-squeezing
parameter

ξ2N = N

〈

∆2Ĵz

〉

〈

Ĵx

〉2 . (6.26)

Recall that when ξ2N < 1, then the state is particle-entangled. Note that the
spin-squeezing parameter can be re-written in a following way

ξ2N =

4
N

〈

∆2Ĵz

〉

(

2
N

〈

Ĵx

〉)2 . (6.27)
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Let us now concentrate on the nominator. According to Eq. (6.21), for the
CSS, this nominator is equal to 1. Other ground states for α > 0 have reduced
fulctuations of the Ĵz operator, therefore the nominator drops below unity. Thus
suggests that this family of ground states has ξ2N < 1 and so it is spin-squeezed.

To prove this, however, we have to demonstrate that
〈

Ĵx

〉

remains high for these

states, so that the denominator ensures that the whole ratio in Eq. (6.26) is not
to big. For the CSS, which is an eigen-state of Ĵx with the eigen-value equal to
N
2 , the denominator is equal to 1, and so ξ2N = 1 (no entanglement). But how
does it behave for other states? We check it, by plotting in Fig. 6.2 the spin-
squeezing parameter for numerically obtained ground states of the double-well
Hamiltonian (6.18) as a function of α for N = 200. Clearly, ξ2N drops below
unity and so this family of states is usefully entangled from the metrological
point of view. This observation motivated a number seminal experiment with
ultracold atoms trapped in a double-well potential. We will now discuss how
the particle-entangled state was created by reaching (approximately) the ground
state of a double-well potential with repulsive interactions.

6.0.1 Experiment of Oberthaler

We will now explain the results of the paper [12] in much detail. The group of
Markus Oberthaler was working on a Bose-Einstein Condensate of 87Rb atoms.
Initially, the gas was prepared in a harmonic trap. In the next step, however, an
external 1-dimensional optical lattice was imprinted on the system using a set of
two counter-propagating laser beams. Apart from this, the external harmonic
trap is still present. By changing the steepness of this trap, they could control
how many sites of the lattice were occupied, see Fig. 6.3. In particular, a two-

Figure 6.3: The experimental setup used to create a double-well setup. The gas
is trapped in an optical lattice combined with an additional harmonic potential.
By changing the depth of the trap, one can control the number of occupied
lattice sites.

well setup could be prepared, as shown at the bottom of the figure.
The crucial point is, what is the state of the system after the imprint of
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the optical lattice. Since the BEC is a gas of N particles roughly in the same
quantum state, and since the optical lattice potential acts on each particle in
the same way, then we can expect that the state after the splitting of the cloud
into M sites is approximately given by the generalized CSS, i.e.

|ψ〉 = 1√
N !

(

â†1 + . . .+ â†M√
M

)N

|0〉 , (6.28)

where the operator â†i creates a particle in the i-th well. This expression for the
state of the BEC agter splitting is justified only if during the splitting, some
thermal excitations are not created in the system. Otherwise, more than a signle
state per lattice site could be populated, and the aboveM -mode approximation
would not be valid.

When the harmonic potential allows atoms to occupy only two sites of the
lattice, i.e. M = 2, then we recover the expression for the CSS from Eq. (4.16).
As we argued in the previous Section, this state is not particle entangled, because
it is equivalent to the ground state of a two-well Bose-Hubbard Hamiltonian
(6.18) with α = 0. The question is, if using our knowledge from the previous
Section, we could tell how a multi-particle entangled state could be generated
in such system? The answer is: try to prepare the system in the ground state
of (6.18) with α > 0. But how could this be done, when staring from the
CSS? The answer is simple. When the BEC is split into the two wells, the
tunneling dominates over the two-body interactions, or in other words α ≪ 1.
But this coefficient could be increased by rising the inter-well barrier. In this
way, the tunneling rate drops, simply because it is more difficult for the particles
to tunnel between the two sites. So although the strength of the two-body
interactions remains constant, α will raise, because EJ drops. If the process of
rising the inter-well barrier is adiabatical with comparison to other time-scales
of the problem, than the system will follow the ground state of the Hamiltonian
(6.18) with changing α. This way, one can create states, which are spin-squeezed,
and thus particle-entangled.



72 CHAPTER 6. ENTANGLEMENT WITH ULTRA-COLD ATOMS



Chapter 7

Time-of-flight
interferometer

73



74 CHAPTER 7. TIME-OF-FLIGHT INTERFEROMETER



Chapter 8

Multi-mode interferometer

75



76 CHAPTER 8. MULTI-MODE INTERFEROMETER



Bibliography

[1] Carl W. Helstrom, Quantum Detection and Estimation Theory, Academic
Press (1976)

[2] H. Cramér, Mathematical Methods of Statistics, (Princeton Univ. Press,
Princeton, NJ, 1946).

[3] A. Sørensen, L.-M. Duan, J. I. Cirac and P. Zoller, Nature 409, 63 (2001)

[4] V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004)
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