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Zadanie 1

Treść: Doświadczenie Rutherforda wykazało, że cząstki α zdzerzające się ze złotą folią rozpraszają
się głównie do tyłu, co sugeruje oddziaływanie z bardzo silnie rozpraszającym centrum o dodatnim
ładunku. Zakładając, że proces zderzenia zachodzi wzdłuż prostej, wykaż że zasady zachowania
pędu i energii dopuszczają rozpraszanie do tyłu. Przyjmij, że cząstki α mają masę m i prędkość
początkową v i końcową v′, zaś atomy złota mają masę M ≫ m.

Rozwiązanie: Zasady zachowania energii i pędu dają

mv2

2
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m(v′)2

2
+
Mu2

2
(1a)

mv = mv′ +mu, (1b)

gdzie u jest prędkością atomu złota po zderzeniu. Wyliczamy u z dolnego równania i dostajemy
równanie kwadratowe na v′ z dwoma rozwiązaniami

v′1 = 0, v
′
2 =
m−M
m+M

v. (2)

Pierwsze odrzucamy, gdyż opisuje ono przypadek braku oddziaływania. Drugie daje prędkość cząstki
α po rozproszeniu, która ma przeciwny zwrot to v o ile M > m (co jest spełnione).

Możemy również wyznaczyć minimalną odległość, na jaką zbliżyła się cząstka α do centrum roz-
praszania. Zasada zachowania energii daje nam

mv2

2
=
κ(Ze)2e
rmin

, κ =
1
4πε0
. (3)

Stąd

rmin =
4Zκe2

mv2
. (4)

Biorąc z danych doświadczalnych v ≃ 2×107m/s otrzymujemy rmin ≃ 3Z×10−16m, co jest znacznie
mniejsze od rozmiarów atomu. Widać zatem, że rozpraszanie zachodzi “gdzieś w środku”.

Zadanie 2

Treść: Klasyczna elektrodynamika uczy, że elektron poruszający się z przyspieszeniem a⃗ wytraca
energię w tempie

dE
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3
κe2

c3
|⃗a|2. (5)

Zakładając, że okres obrotu w ruchu orbitalnym elektronu w atomie wodoru jest znacznie krótszy od
czasu τ , po jakim elektron, zaczynający swój ruch w odległości a0 od środka, spadnie na centrum,
wyznacz τ .

Rozwiązanie:
Zaczynamy od zapisania wyrażenia na energię elektronu, czyli

E =
mv2

2
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r
. (6)



Zakładając, że elektron porusza się po okręgu (o wolno zmiennym promieniu r), przyspieszenie
radialne a, związane z prędkością liniową (co do wartości) poprzez: a = v2/r wynosi

ma =
κe2

r2
⇒ v2 =

κe2

mr
. (7)

Podstawiamy to wyrażenie do równania (6) i otrzymujemy

E = −κe
2

2r
. (8)

Następnie wyznaczamy pochodną tego wyrażenia po czasie, by móc skorzystać ze związku (5)

dE

dt
=
κe2

2r2
dr

dt
= −2
3
κe2

c3
a2 = −2

3
e2

c2

(
κe2

mr2

)2
. (9)

Otrzymujemy zatem równanie różniczkowe

dr
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= −4
3
κ2e4

m2r2c3
, (10)

które całkujemy poprzez rozdzielenie zmiennych z warunkiem początkowym r(0) = a0 i końcowym
r(τ) = 0, co daje

τ =
m2c3

4κ2e4
a30. (11)

Podstawiamy wartości dla elektronu i otrzymujemy τ ≃ 10−10s. Z kolei przybliżony okres obrotu
(na początku) wynosi

T = 2π
a0
v
= 2πa0

√
ma0
κe2
≃ 4× 10−4s. (12)

Widać zatem, że w każdym razie początkowo przybliżenie τ ≫ T jest spełnione.

Zadanie 3

Treść: Znajdź energie atomu wodoru w modelu Bohra (czyli przy założeniu, że moment pędu jest
skwantowany).

Rozwiązanie: Bohr założył, że elektron porusza się po orbitach kołowych dla których spełniony
jest warunek kwantyzacji momentu pędu

L = mvr = nℏ, n ∈ Z \ {0}. (13)

Znów korzystamy z wyrażenia na energię elektronu w polu coulombowskim
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2
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2

r
(14)

oraz na równowagę siły odśrodkowej i coulombowskiej

mv2

r
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κe2
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. (15)

Stąd otrzymujemy wyrażenie na energię

En = −
κ2e4m

2n2ℏ2
= −1
2
α2mc2

1
n2
. (16)

Zadanie 4



Treść: Wykorzystując warunek kwantyzacji Bohra-Sommerfelda znajdź energie własne jednowy-
miarowego oscylatora harmonicznego.

Rozwiązanie: Warunek kwantyzacyji zaproponowany przez Bohra, został potem uogólniony do
postaci ∮

E

dq p(q) = nh, n ∈ Z \ {0}, (17)

zachodzący dla ruchu okresowego, gdzie symbol z kółkiem oznacza całkowanie po położeniach zmie-
niających się w ramach całego jednego okresu oscylacji przy ustalonej energii E. Dla jednowymia-
rowego potencjału harmonicznego
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2m
+
1
2
mω2q2. (18)

Stąd otrzymujemy
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Ruch odbywa się miedzy −q0 a q0, gdzie

q0 =
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2E
mω2
. (20)

Zatem warunek (17) daje nam
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Proste podstawienie trygonometryczne prowadzi do

2πE
ω
= nh (22)

zatem

En = nℏ. (23)

Zauważamy złowieszczy brak 1/2.

Zadanie 5

Treść: Wykorzystując ten sam warunek (czyli kwantyzacji Bohra-Sommerfelda) znajdź energie
własne atomu wodoru. Wynik porównaj z przewidywaniami modelu Bohra.

Rozwiązanie: Dla cząstki poruszającej się z prędkością v po okręgu o promieniu r wyrażenia na
energię (6) i równowagę sił (15) dają

p =
√
2m|E|. (24)

Stąd całkowanie po zamkniętej trajektorii, czyli po okręgu o długości 2πr daje

2πr
√
2m|E| = nh. (25)

Korzystając z wyrażenia na r

r =
κe2

2|E|
(26)

otrzymujemy, tak jak poprzednio, czyli w przypadku modelu Bohra
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. (27)



Stąd promień n-tej orbity wynosi

r = a0n2, (28)

gdzie

a0 =
ℏ
αmc

≃ 0.5× 10−10m. (29)

Okres obrotu wynosi

Tn = 2π
rn
pn/m

= 2π
n3

α

a0
c
. (30)

Dla n = 1 dostajemy, tak jak poprzednio T1 ≃ 1.5× 10−16s.


