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Zadanie 1

Treść: Najprostszym układem kwantowym jest taki, który składa się tylko z dwu poziomów energe-
tycznych. Zaproponuj ogólną postać Hamiltonianu dla takiego układu, znajdź energie i stany własne.
Jak ewoluuje w czasie każdy ze stanów? Jak ewoluuje ogólna superpozycja?

Rozwiązanie: W dowolnej bazie stanów ortonormalnych |ψ1⟩ i |ψ2⟩, Hamiltonian ma postać

Ĥ =
(

a b+ ic
b− ic d

)
, a, b, c, d ∈ R. (1)

Równanie “wiekowe” ma postać

(a− λ)(d− λ)− b2 − c2 = 0. (2)

Stąd wartości oraz stany własne mają postać

λ± =
1
2

(
a+ d±

√
(a− d)2 + 4(b2 + c2)

)
(3)

|ψ±⟩ = N± (a±|ψ1⟩+ |ψ2⟩) , a± =
a− d±

√
(a− d)2 + 4(b2 + c2)
2(b− ic)

, N± = (a± + 1)−1/2. (4)

Każdy ze stanów ewoluuje zgodnie z równaniem Schrödingera , czyli

|ψ±(t)⟩ = e−i
t
ℏλ± |ψ±⟩ (5)

zatem ogólna superpozycja zmienia się w sposób następujący

|ψ(t)⟩ = c+e−i
t
ℏλ+ |ψ+⟩+ c−e−i

t
ℏλ− |ψ−⟩. (6)

Zadanie 2

Treść: Nieco bardziej złożony jest układ który ma dwa stopnie swobody i na każdy z nich przy-
padają dwie możliwe wartości. Przykładem takiego układu jest pojedynczy foton, który może być
emitowany w lewo lub prawo (wektor falowy ±k) i w stanie o polaryzacji pionowej lub poziomej
(oznaczanej przez V i H). Zaproponuj bazę opisującą taki układ. Zakładając, że dynamika fotonu
dopuszca zmianę polaryzacji, ale nie wektora falowego, jaką postać będzie miał ogólny Hamiltonian
w takim przypadku?

Rozwiązanie: Narzucającą się bazą jest zbiór wektorów, które opisują oba stopnie swobody, czyli
na przykład

|ψ1⟩ = | − k, V ⟩, |ψ2⟩ = | − k,H⟩, |ψ3⟩ = |k, V ⟩, |ψ4⟩ = |k,H⟩. (7)

Dobór takiej bazy jest o tyle wygodny, że dynamika opisana w treści zadania sprzęga ze sobą stany
|ψ1⟩ i |ψ2⟩ oraz niezależnie |ψ3⟩ i |ψ4⟩. Zatem Hamiltonian będzie miał postać blokową, bardzo
wygodną do dalszych badań

Ĥ =

 a b+ ic 0 0
b− ic d 0 0
0 0 e f + ig
0 0 f − ig h

 , a, b, c, d, e, f, g, h ∈ R. (8)



Zadanie 3

Treść: Rozwiąż stacjonarne równanie Schrödingera dla cząstki o masie m znajdującej się w jedno-
wymiarowej nieskończonej studni potencjału o szerokości 2a. W stanie podstawowym i pierwszym
wzbudzonym znajdź ⟨x̂⟩ i ⟨x̂2⟩ oraz ⟨p̂⟩ i ⟨p̂2⟩ i wyznacz ∆x̂∆p̂. Znajdź dynamikę dowolnego stanu
w tym układzie.

Rozwiązanie: Stacjonarne równanie Schrödingera we wnęce ma postać

− ℏ2

2m
d2

dx2
ψ(x) = Eψ(x). (9)

Widać, że rozwiązania można konstruować przy pomocy funkcji trygonomertycznych, na przykład

ψ(x) ∝ sin(κx), κ =
√
2mE/ℏ2. (10)

Ponieważ funkcja falowa musi znikać na brzegach, zatem

ψ(±a) ∝ sin(±κa) = 0, ⇒ κn =
nπ

a
, n ∈ N \ {0}. (11)

Energie własne to zatem:

En =
ℏ2κ2n
2m
=

ℏ2n2π2

2ma2
. (12)

Normalizacja funkcji falowej wynika z warunku∫ a
−a
ψ2n(x) = 1 ⇒ ψn(x) =

1√
a
sin(κnx). (13)

Z symetrii wynika, że zawsze ⟨x⟩ = 0 = ⟨p⟩, zaś w ogólności zachodzi

⟨x̂2⟩n =
1
2
a2
(
2
3
− 1
n2π2

)
(14)

⟨p̂2⟩n =
ℏ2n2π2

a2
. (15)

Zatem zachodzi

∆x̂n∆p̂n = ℏnπ
√
1
3
− 1
2n2π2

. (16)

Zadanie 4

Treść: Znajdź rozwiązanie stacjonarnego równania Schrödingera dla cząstki o masiem poruszającej
się w potencjale

V (x) = −v0δ(x), vo > 0.

Rozwiązanie: Zapiszmy równanie Schrödingera w zmiennych bezwymiarowych, dzieląc stronami
przez ℏ2/(2m) oraz redefiniując v0 i energię. Mamy

ψ′′(x) = −(v0δ(x) + ϵ)ψ(x). (17)

Funkcja musi być ciągła w zerze, zaś pierwsza pochodna musi mieć skok. Jego rozmiar wyliczamy
przez całkowanie powyższego równania po małym obszarze od −η do η. Otrzymujemy∫ η

−η
dxψ′′(x) = ψ′(η)− ψ′(−η) = −

∫ η
−η
dx(v0δ(x) + ϵ)ψ(x) = −v0ψ(0) + ηψ(0). (18)

W granicy η → 0 otrzymujemy

ψ′(0+)− ψ′(0−) = −v0ψ(0). (19)



Równanie w każdej z półprzestrzeni ma postać

ψ′′±(x) = |ϵ|ψ±(x). (20)

Stąd fizyczne rozwiązania, czyli takie, które zanikają w nieskończoności, wynoszą

ψ±(x) = α±e∓
√
|ϵ|x. (21)

By wyznaczyć dozwolone energie, zauważamy, że warunki ciągłości funckji i skoku pochodnej dają

α− = α+, α−
√
|ϵ|+ α+

√
|ϵ| = v0α−. (22)

Stąd, korzystając z warunku na zerowanie się wyznacznika tego liniowego jednorodnego równania,
otrzymujemy

ϵ = −v
2
0

4
, (23)

zaś stan własny, po unormowaniu, jest postaci

ψ±(x) =

√
v0
2
e∓

v0
2 x. (24)

Zadanie 5

Treść: Powtórz całe rozwiązanie zagadnienia jednowymiarowego oscylatora hamrmonicznego o
częstości ω dla cząstki o masie m metodą algebraiczną (było/będzie na wykładzie). Wyznacz ∆x̂∆p̂.

Rozwiązanie: Zauważamy, że operatory położenia i pędu, wyrażone przez operatory kreacji i ani-
hilacji, mają postać

x̂ = aho
1√
2
(â+ â†), p̂ =

ℏ
aho

1

i
√
2
(â− â†). (25)

Stąd na stanie |n⟩ średnie ⟨x̂⟩ = ⟨p̂⟩ = 0. Zaś kwadraty dają wkłady tylko dla iloczynów ââ†+ â†â =
2â†â+ 1, zatem

∆x∆p =
ℏ
2
(2n+ 1). (26)

Zadanie 6

Treść: Przyjmijmy, że maszyna dokonuje pomiaru obserwabli

Â = a1Π̂1 + a2Π̂2, Π̂i = |ψi⟩⟨ψi|, |ψ1/2⟩ =
1√
2
(|0⟩ ± |1⟩)

w układzie z poprzedniego zadania. Zakładając, że stan początkowy jest dowolną superpozycją
stanów własnych, znajdź prawdopodobieństwo otrzymania wyników a1 i a2 w chwili czasu t.

Rozwiązanie: Stan początkowy jest dowolną superpozycją, ma zatem postać

|ψ⟩ =
∞∑
n=0

cn|n⟩,
∞∑
n=0

|cn|2 = 1. (27)

Jego ewolucja czasowa polega na zastąpieniu cn przez cn(t), gdzie każdy współczynnik zależy od czasu
poprzez funkcję wykładniczą e−iωtn (skądinąd, czemu nie potrzebujemy 1/2 w wykładniku?). Teraz,
by poznać prawdopodonieństwo znalezienia układu w którymś ze stanów |ψ1/2⟩, nalezy zrzutować
układ na ten stan i policzyć | · |2 wyniku. Otrzymujemy dla stanu |ψ1⟩:

p1(t) = |⟨ψ1||ψ⟩|2 =
1
2
|c0(t) + c1(t)|2 =

1
2
|c0 + c1e−iωt|2. (28)



Dla stanu |ψ2⟩ wynik będzie analogiczny, tylko ze znakiem “-”. Dla ilustracji można na przykład
wziąć przypadek, gdy c0 = c1 = 1/

√
2.

Zadanie 7

Treść: Znajdź wszystkie stany własne operatora anihilacji. Wyznacz normalizację, znajdź iloczyn
skalarny między nimi. Wykaż, że operatory te tworzą bazę nadzupełną.

Rozwiązanie: Stanów własnych operatora anihilacji poszukujemy zapisując warunek

â|α⟩ = α|α⟩, α ∈ C. (29)

Jako że stany Focka tworzą bazę ortonormalną, poszukujemy tego stanu w postaci

|α⟩ =
∞∑
n=0

cn|n⟩. (30)

Warunek z równania (??) daje nam

â|α⟩ =
∞∑
n=0

cn
√
n|n− 1⟩ = α

∞∑
n=0

cn|n⟩. (31)

Rzutując stronami na stan o ustalonym n otrzymujemy związek rekurencyjny

cn
√
n = αcn−1. (32)

Oznacza to, że iterowanie powyższej rekurencji daj

cn =
αn√
n!
c0. (33)

Zatem stan własny ma postać

|α⟩ = c0
∞∑
n=0

αn√
n!
|n⟩. (34)

Stałą c0 wyznaczamy z normalizacji

⟨α|α⟩ = 1 = |c0|2
∞∑
n=0

|α|2n

n!
= |c0|2e|α|

2
. (35)

Zatem stan, który od tej pory nazywać będziemy koherentnym, ma postać (z dokładnością do nie-
istotnego czynnika fazowego)

|α⟩ = e− 12 |α|
2
∞∑
n=0

αn√
n!
|n⟩. (36)

Iloczyn skalarny dwu stanów koherentnych wynosi

⟨α|β⟩ = e− 12 (|α|
2+|β|2)

∞∑
n=0

α∗nβn

n!
= e−

1
2 (|α|

2+|β|2)eα
∗β , (37)

są one zatem nieortogonalne. Niemniej tworzą one bazę, gdyż

1
2π

∫
d2α|α⟩⟨α| =

∞∑
n,m=0

|n⟩⟨m|√
n!m!

1
2π

∫ ∞
0

rdr

∫ 2π
0

dϕe−r
2
rn+meiϕ(n−m). (38)

Całka po kącie daje 0, poza przypadkiem, gdy n = m, zatem działa jak 2πδnm, co daje

1
2π

∫
d2α|α⟩⟨α| =

∞∑
n=0

|n⟩⟨n|
n!

∫ ∞
0

rdre−r
2
r2n =

∞∑
n=0

|n⟩⟨n|
n!
= 1̂. (39)

Zatem, choć nie są ortogonalne, stany koherentne rozpinają przestrzeń Focka. Mówimy, że tworzą
bazę “nadzupełną”.


