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Zadanie 1
Tresé: Najprostszym ukladem kwantowym jest taki, ktory sktada sie tylko z dwu pozioméw energe-
tycznych. Zaproponuj ogolng postaé¢ Hamiltonianu dla takiego uktadu, znajdz energie i stany wtasne.

Jak ewoluuje w czasie kazdy ze stan6w? Jak ewoluuje ogblna superpozycja?

Rozwigzanie: W dowolnej bazie stanéw ortonormalnych |¢1) i |1)2), Hamiltonian ma postaé

H:(b_‘lic “dw), a.bc.deR. (1)
Rownanie “wiekowe” ma postaé
(a—=N)(d—X) —b*—c2=0. (2)

Stad wartosci oraz stany wlasne majg postaé

Ay =t (a+d= D2 T 07 + ) )

2
Ca—dE/(a—d)?+4(0? + ?)
B 2(b —ic) ’

[hs) = Ni (axlhr) + [42)), ax Ne=(az+1)7"2 (1)

Kazdy ze stanéw ewoluuje zgodnie z réwnaniem Schréodingera , czyli

e (b)) = e~ 7 |yy) (5)

zatem ogblna superpozycja zmienia sie w sposéb nastepujacy

[W(t)) = cpe TN by )+ e_e A ). (6)

Zadanie 2

Tres¢: Nieco bardziej ztozony jest uktad ktéry ma dwa stopnie swobody i na kazdy z nich przy-
padaja dwie mozliwe wartosci. Przyktadem takiego uktadu jest pojedynczy foton, ktéry moze byé
emitowany w lewo lub prawo (wektor falowy +k) i w stanie o polaryzacji pionowej lub poziomej
(oznaczanej przez V i H). Zaproponuj baze opisujaca taki uktad. Zakladajac, ze dynamika fotonu
dopuszca zmiane polaryzacji, ale nie wektora falowego, jaka posta¢ bedzie miat ogélny Hamiltonian
w takim przypadku?

Rozwigzanie: Narzucajaca sie baza jest zbior wektorow, ktore opisuja oba stopnie swobody, czyli
na przyktad

|7/}1> = ‘ — k, V>7 \¢2> = | - k’H>’ |'(/)3> = ‘kvv>7 |'(/}4> = |k7H> (7)

Doboér takiej bazy jest o tyle wygodny, ze dynamika opisana w tresci zadania sprzega ze soba stany
[th1) 1 |1p2) oraz niezalezmie |¢)3) 1 |1hy). Zatem Hamiltonian bedzie mial postaé blokows, bardzo
wygodna do dalszych badan

a b+ic O 0
S b—ic d 0 0
H= 0 0 e f+ig | a,b,ce,d;e, f,g,h € R. (8)

0 0 f—ig h



Zadanie 3

Tresé: Rozwiaz stacjonarne rownanie Schrodingera dla czastki o masie m znajdujacej sie w jedno-
wymiarowej nieskoriczonej studni potencjalu o szerokosci 2a. W stanie podstawowym i pierwszym
wzbudzonym znajdz () i (2%) oraz (p) i (p?) i wyznacz AZAP. Znajdz dynamike dowolnego stanu
w tym uktadzie.

Rozwigzanie: Stacjonarne réwnanie Schrodingera we wnece ma postaé

h? d?
 2mdz?

U(z) = EY(x). 9)
Widaé, ze rozwiazania mozna konstruowaé przy pomocy funkcji trygonomertycznych, na przyktad

P(z) xsin(kz), & =+/2mE/h2. (10)

Poniewaz funkcja falowa musi znika¢ na brzegach, zatem
. nm
Y(+a) x sin(tka) =0, = K, = —, neN\ {0} (11)
a

Energie wlasne to zatem:

h2k2  h2n2n?

E, = = —. 12
" 2m 2ma? (12)
Normalizacja funkcji falowej wynika z warunku
CU2@) =1 = (@) = - sin(na). (13)
— Va
Z symetrii wynika, ze zawsze (z) = 0 = (p), zas w ogodlnosci zachodzi
1 2 1
2y Lo
(= 50 (3 - W) 1)
R h2n2m?
< 2>7’L = ag (15)

Zatem zachodzi

Zadanie 4

Tresé: Znajdz rozwiazanie stacjonarnego rownania Schrodingera dla czastki o masie m poruszajacej
sie w potencjale

V(xz) = —vod(z), v, > 0.

Rozwigzanie: Zapiszmy rownanie Schréodingera w zmiennych bezwymiarowych, dzielac stronami
przez h?/(2m) oraz redefiniujac vg i energie. Mamy

P"(x) = —(vod(z) + €)¥ (). (17)

Funkcja musi byé ciagta w zerze, zas pierwsza pochodna musi mie¢ skok. Jego rozmiar wyliczamy
przez catkowanie powyzszego rownania po malym obszarze od —n do 1. Otrzymujemy

/n day” () = ¢’ (n) = ' (—n) = - /n da(vod(x) + €)y () = —voh(0) + 11 (0). (18)

-n -n

W granicy n — 0 otrzymujemy
¥'(04) = ¢'(0-) = —voth(0). (19)



Roéwnanie w kazdej z polprzestrzeni ma postaé
() = e[+ (). (20)
Stad fizyczne rozwigzania, czyli takie, ktore zanikajg w nieskoriczonosci, wynosza
b (@) = axeFVIe, (21)
By wyznaczy¢ dozwolone energie, zauwazamy, ze warunki ciagtosci funckji i skoku pochodnej daja

a_ =ay, a_v/I|el+ap/|e]l =wvga_. (22)

Stad, korzystajac z warunku na zerowanie si¢ wyznacznika tego liniowego jednorodnego réwnania,
otrzymujemy

2
Yo
€= ———, 23
! (23)
za$ stan wlasny, po unormowaniu, jest postaci
Vo Fg
Yi(z) = € 2 7, (24)

Zadanie 5

Tresé: Powtorz cale rozwiazanie zagadnienia jednowymiarowego oscylatora hamrmonicznego o
czestosci w dla czastki o masie m metoda algebraiczna (byto/bedzie na wyktadzie). Wyznacz AZAp.

Rozwigzanie: Zauwazamy, ze operatory potozenia i pedu, wyrazone przez operatory kreacji i ani-
hilacji, maja postaé

@+ah), p=-r Lt a—ah. (25)

B E
\/§ Gho Z\/§

Stad na stanie |n) $rednie (#) = (p) = 0. Zas kwadraty daja wktady tylko dla iloczynow aal +afa =
2ata + 1, zatem

AzxAp = g(Qn +1). (26)

Zadanie 6

Tresé: Przyjmijmy, ze maszyna dokonuje pomiaru obserwabli
1
V2

w ukladzie z poprzedniego zadania. Zakladajac, ze stan poczatkowy jest dowolna superpozycja
stanéw wlasnych, znajdz prawdopodobienistwo otrzymania wynikow aq i as w chwili czasu t.

A=aiTl +aslla, I = [piXil,  [12) = —=(0) £ 1))

Rozwigzanie: Stan poczatkowy jest dowolng superpozycja, ma zatem postac

lv) = ch|n>a Z |Cn|2 =L (27)
n=0 n=0

Jego ewolucja czasowa polega na zastapieniu ¢, przez ¢, (t), gdzie kazdy wspotczynnik zalezy od czasu
poprzez funkcje wyktadnicza e~ (skadinad, czemu nie potrzebujemy 1/2 w wyktadniku?). Teraz,
by pozna¢ prawdopodonieristwo znalezienia ukladu w ktoryms ze stanéw |1y /2), nalezy zrzutowac
uklad na ten stan i policzy¢ | - |* wyniku. Otrzymujemy dla stanu ¢y ):

pi(6) = |G W) = Zleolt) + ea(B)” = Fleo + cae™ ! (25)



Dla stanu |1o) wynik bedzie analogiczny, tylko ze znakiem ‘-”. Dla ilustracji mozna na przyklad
wziaé przypadek, gdy co = ¢; = 1/V/2.
Zadanie 7

Tres¢: Znajdz wszystkie stany wlasne operatora anihilacji. Wyznacz normalizacje, znajdz iloczyn
skalarny miedzy nimi. Wykaz, ze operatory te tworza baze nadzupelna.

Rozwigzanie: Stanéw wlasnych operatora anihilacji poszukujemy zapisujac warunek
ala) = ala), a€C. (29)

Jako ze stany Focka tworza baze ortonormalng, poszukujemy tego stanu w postaci
oo
ja) =) caln). (30)
n=0
Warunek z rownania (??) daje nam

la) = envnln—1) =a_ cyln). (31)
n=0

n=0
Rzutujac stronami na stan o ustalonym n otrzymujemy zwiazek rekurencyjny
VN = acp_1. (32)

Oznacza to, ze iterowanie powyzszej rekurencji daj

Zatem stan wlasny ma postaé

@) =co > j—;m. (34)

n=0 '
Stala ¢y wyznaczamy z normalizacji
e 2n
(alay = 1= Jeo2 3 L8 ez, (35)
n!
n=0

Zatem stan, ktory od tej pory nazywaé bedziemy koherentnym, ma postaé (z doktadnoscia do nie-
istotnego czynnika fazowego)

ja) = e~ 31 3 Oy, (36)

Tloczyn skalarny dwu stanéw koherentnych wynosi

o *1, QN
(a]B) = el +13 3 nf _ o~ HllaP+I8P) a5 (37)
n=0 ’

sa one zatem nieortogonalne. Niemniej tworza one baze, gdyz

1 2 _ = |n><m| 1 > o —r2_n+m _ip(n—m)
%/d a|a>(a\—n%;0\/m§ ; rdr ; dpe™" r" e . (38)

Calka po kacie daje 0, poza przypadkiem, gdy n = m, zatem dziala jak 27,,,, co daje

L[ B L S P e (I
27T/dozoz)(od—nz_on!/0 rdre™" r —nZ:OT—]l. (39)

Zatem, cho¢ nie sg ortogonalne, stany koherentne rozpinaja przestrzen Focka. Mowimy, Ze tworza
baze “nadzupeina’.



