
SERIA 4
ROZWIĄZANIA

MECHANIKA KWANTOWA ‘26

Uwaga: wprowadzamy oznaczenia ϵ = 2m/ℏ2E oraz v0 = 2m/ℏ2V0.

Zadanie 1

Treść: Cząstka o masie m bytuje w potencjale, który składa się z nieskończonej bariery w x = 0
oraz skończonego schodka, który można opisać wzorem

v(x) = −v0θ(a− x) + w0 [θ(x− a)− θ(x− b)] , v0, w0 > 0, b > a,

jak na rysunku. Znalejdź energie stanów związanych.

Rozwiązanie:
Numerujemy kolejne dozwolone obszary jako 1: 0 < x < a, 2: a < x < b oraz 3: x > b. W obszarach

tych, po wprowadzeniu zmiennych bezwymiarowych, mamy nastepujące równania Schrödingera :

ψ′′1 (x) = −(v0 − |ϵ|)ψ1(x) (1a)
ψ′′2 (x) = (w0 + |ϵ|)ψ2(x) (1b)
ψ′′3 (x) = |ϵ|ψ3(x). (1c)

Rozwiązania (po narzuceniu warunków ψ1(0) = 0 oraz ψ3(x)
x→∞−−−−→ 0 mają postać

ψ1(x) = A sin k1x, k1 =
√
v0 − |ϵ| (2a)

ψ2(x) = Bek2x + Ce−k2x, k2 =
√
W0 + |ϵ| (2b)

ψ3(x) = De−k3x, k3 =
√
|ϵ|. (2c)

Następnie zszywamy w punktach x = a, b narzuczając warunek na ciągłość funkcji i pierwszej po-
chodnej. Otzymujemy stąd w x = a

Bek2a + Ce−k2a = A sin k1a (3a)

Bek2a − Ce−k2a = k1
k2
A cos k1a. (3b)

oraz analogicznie w x = b

Bek2b + Ce−k2b = De−k3b (4a)

Bek2b − Ce−k2b = −k3
k2
De−k3b. (4b)

Dodajemy i odejmujemy stronami te równania, co daje nam

B =
1
2
Ae−k2a

(
sin k1a+

k1
k2
A cos k1a

)
(5a)

C =
1
2
Aek2a

(
sin k1a−

k1
k2
A cos k1a

)
(5b)

oraz

B =
1
2
De−(k3+k2)b

(
1− k3

k2

)
(6a)

C =
1
2
De−(k3−k2)b

(
1 +

k3
k2

)
. (6b)



W następnym kroku porównujemy stronami wyrażenia na B i C i dostajemy jednorodny układ dwu
równań na dwie niewiadome

Ae−k2a
(
sin k1a+

k1
k2
A cos k1a

)
= De−(k3+k2)b

(
1− k3

k2

)
(7a)

Aek2a
(
sin k1a−

k1
k2
A cos k1a

)
= De−(k3−k2)b

(
1 +

k3
k2

)
. (7b)

Wyznacznik przyrównujemy do zera, co daje równanie

e−k2a
(
sin k1a+

k1
k2
A cos k1a

)
e−(k3−k2)b

(
1 +

k3
k2

)
= ek2a

(
sin k1a−

k1
k2
A cos k1a

)
e−(k3+k2)b

(
1− k3

k2

)
(8)

Następnie wymnażamy nawiasy tak, by powstały funkcje hiperboliczne. Efektem jest wyrażenie

tg(k1a) = −
k1
k2

1 + k3k2 tanh(k2(b− a))
tanh(k2(b− a)) + k3k2

(9)

Wprowadzamy zmienne x = k1a, zatem |ϵ| = V 20 − (x/a)2, czyli x ⩽ x0 ≡
√
a
√
v0 oraz x1 =

a
√
v0 + w0 i ∆ = b/a− 1 > 0, by otrzymać

tg(x) = − x√
x21 − x2

√
x21 − x2 +

√
x20 − x2 tanh(∆

√
x21 − x2)√

x20 − x2 +
√
x21 − x2 tanh(∆

√
x21 − x2)

≡ g(x). (10)

Funkcja g(x) zeruje się w x = 0 zaś w x0 przyjmuje wartość

g(x0) = −
v0
w0

1

tanh(∆
√
x21 − x20)

. (11)

Żeby istniało rozwiązanie równania (10), musi zachodzić x ∈]π/2, π]. Ponadto, jako że funkcja g(x)
jest monotonicznie malejąca, musi zachodzić tg(x0) ⩾ g(x0). Wtedy jest jedno przecięcie (jeden stan
związany).

Zadanie 2

Treść: Tym razem cząstka o masie m bytuje w potencjale “schodkowym”, czyli

v(x) = V0θ(x).

Opisz ruch klasycznej cząstki o pędzie p zbliżającej się do schodka z lewej strony. Rozważ dwa
przypadki:

a) V0 < E

b) 0 < E < V0.

Następnie przejdź do opisu kwantowego. Znajdź współczynniki odbicia i przejścia dla obu przypad-
ków.

Rozwiązanie:
Klasycznie:

Jeżeli cząstka ma energię E > V0, po przejściu do obszaru z niezorowym potencjałem jej prędkość
spada z v do v′ =

√
v2 − 2mV0. Jeżeli E < V0, to cząstka sprężyście się odbija i wraca do x→ −∞.

Kwantowo: E > V0
W opisie kwantowym rozważamy osobno równanie Schrödingera po obu stronach x = 0. Zakła-

damy też osobno przypadek, gdy cząstka pada z lewej (+) i z prawej (-) strony. Mamy zatem w obu
przypadkach odpowiednio

ψ+(x) =
{
α<e

ikx + β<e−ikx

α>e
iKx ψ−(x) =

{
β<e

−ikx

α>e
iKx + β>e−iKx

x < 0
x ⩾ 0 . (12)



Wprowadziliśmy następujące wektory falowe k2 = 2m/ℏ2E oraz K2 = 2m/ℏ2(E − V0). Następnie
zszywamy parami te rozwiązania (równość funkcji i pierwszych pochodnych), otrzymując

ψ+(x) =
{
eikx +A(k,K)e−ikx

B(k,K)eiKx
ψ−(x) =

{
B(K, k)e−ikx

A(K, k)eiKx + e−iKx
x < 0
x ⩾ 0 , (13)

gdzie podzieliliśmy stronami przez współczynnik przy fali padającej oraz wprowadziliśmy funkcje k
i K w postaci

A(k,K) =
k −K
k +K

, A(k,K) =
2k

k +K
. (14)

W kolejnym kroku wyznaczamy prąd związany z falą padającą (i), odbitą (r) i przechodzącą (t),
zgodnie ze wzorem

j =
ℏ
2mi

[
ψ∗ψ′ − ψψ∗

′
]
. (15)

Otzrymujemy trzy wielkości (tu dla przykładu pokazane dla przypadku “+”)

ji =
ℏk
m
, jr = −

ℏk
m
|A(k,K)|2, jt =

ℏk
m
|B(k,K)|2. (16)

Zauważamy, że zachodzi

|ji| = |jr|+ |jt|, (17)

zatem dzieląc stronami przez prąd padający dostajemy współczynniki odbicia i transmisji

R = |A(k,K)|2, T =
k

K
|B(k,K)|2, R+ T = 1. (18)

Kwantowo: E < V0
W tym przypadku mamy tylko padanie z lewej strony i rozwiązanie postaci

ψ(x) =
{
α<e

ikx + β<e−ikx

β>e
−κx

x < 0
x ⩾ 0 , (19)

gdzie κ2 = 2m/ℏ2(V0 − E). Warunki zszycia dają

ψ(x) =
{
Ceikx + e−ikx

De−κx
x < 0
x ⩾ 0 , (20)

gdzie

C =
k − iκ
k + iκ

, D =
2k

k + iκ
(21)

Prąd przejścia znika (bo funkcja jest rzeczywista z dokładnością do stałej multiplikatywnej), zatem
mamy współczynnik odbica R = |C|2 = 1. Niemniej, prawdopodobieństwo znalezienia cząstki dla
x ⩾ 0 jest niezerowe i ∝ e−2κx.

Zadanie 3

Treść: Znajdź prawdopodobieństwo przejścia przez barierę o wysokości V0 i szerokości a.

V (x) = V0 [θ(x)− θ(x− a)] .

Rozważ przypadki

a) 0 < E < V0

b) E > V0.



Rozwiązanie:

E > V0
Mamy w obszarach I (x < 0), II (0 ⩽ x ⩽ a) oraz III x > 0 i zakładając padanie z lewej strony:

ψI(x) = eikx +Ae−ikx, ψII(x) = C cosh(κx) +D sinh(κx), ψIII(x) = Beik(x−a). (22)

gdzie wektory falowe mają postać

k2 = ϵ > 0, κ2 = v0 − ϵ > 0. (23)

Warunki zszycia dają 
1 +A = C
1−A = −iκkD
B = C cosh(κa) +D sinh(κa)
i kκB = C sinh(κa) +D cosh(κa).

(24)

Stąd otrzymujemy

B =
2

2 cosh(κa) + i
(
κ
k −

k
κ

)
sinh(κa)

(25)

czyli współczynnik przejścia

T = |B|2 = 4

4 cosh(κa)2 +
(
κ
k −

k
κ

)2
sinh(κa)2

(26)

Łatwo się przekonać, że T (ϵ = 0) = 0, zaś

lim
ϵ→v0

T (ϵ) =
1

1 + v0 a
2

4

. (27)

E < V0
W tym przypadku należy dokonać zamiany κ → iK, gdzie K2 = ϵ − v0. Daje to współczynnik

przejścia

T =
4ϵ(ϵ− v0)

4ϵ(ϵ− v0) + v20 sin(
√
ϵ− v0a)2

. (28)

W szczególności rezonans T = 1 zachodzi, gdy

ϵ = v0 +
n2π2

a2
. (29)

Zadanie 4

Treść: Na koniec rozważamy przypadek, gdy cząstka o masie m porusza się w potencjale

V (x) = v0δ(x) + v0δ(x− a), v0 > 0. (30)

Znajdź współczynniki odbica i przejścia i wyznacz, dla jakich a występuje rezonans (czyli transmisja
jest pełna).

Rozwiązanie: Zapisujemy równanie Schrödingera w trzech przedziałach, zakładając, że cząstka
pada od lewej, i mamy rozwiązania

ψ1(x) = eikx +Ae−ikx, ψ2(x) = Beikx + Ce−ikx, ψ2(x) = Deikx. (31)

Następnie zszywamy wartości i wyliczamy skok pierwszej pochodnej, co daje równanie niejednorodne

A−B − C = −1 (32a)(
1 + i

v0
k

)
A+B − C = 1− iv0

k
(32b)

B + e−2ikaC −D = 0 (32c)

−B + e−2ikaC +
(
1 + i

v0
k

)
D = 0. (32d)



Wyznacznik ∆ wynosi

∆ = e−ika
[
2i
(v0
k

)2
+ 4e−ika

(
1 + i

v0
k

)]
. (33)

Podstawiając kolumnę prawej strony równań odpowiednio za tę odpowiedzialną za A i D otrzymu-
jemy

A = −
sin ka+ 2 kv0 cos ka

sin ka+ 2 kv0 e
−ika
(
1− i kv0

) (34a)

D = −
2i
(
k
v0

)2
e−ika

sin ka+ 2 kv0 e
−ika
(
1− i kv0

) . (34b)

Stąd współczynniki odbicia i transmisji wynoszą

R = |A|2 =
[
v0
2k sin ka+ cos ka

]2
1 +
[
v0
2k sin ka+ cos ka

]2 (35a)

T = |D|2 = 1

1 +
[
v0
2k sin ka+ cos ka

]2 . (35b)

Zachodzi R+T = 1. Warunek rezonansu T = 1 oznacza, że wyrażenie pod kwadratem w mianowniku
musi się zerować,

v0
2k
sin ka+ cos ka = 0 ⇒ tg ka = −2k

v0
, ka ̸= (2n+ 1)π

2
, n ∈ N. (36)

Czyli otrzymujemy

an = n
π

k
− 1
k
arctan

(
2k
v0

)
. (37)


