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Zadanie 1

Treść: Wykaż, że zachodzi związek [
n⃗ · ˆ⃗L, ˆ⃗V

]
= iℏ ˆ⃗V × n⃗, (1)

gdzie ˆ⃗V jest wektorem trzech operatorów działających w tej samej przestrzeni, co ˆ⃗L.

Rozwiązanie: Zapisujemy wyrażenie na j-tą składową operatora V̂ i mamy[
n⃗ · ˆ⃗L, V̂j

]
=
∑
i

ni

[
L̂i, V̂j

]
= iℏ
∑
ik

niϵijkVk = iℏ
( ˆ⃗
V × n⃗

)
j
, (2)

gdzie skorzystaliśmy z faktu [
L̂i, V̂j

]
= iℏ
∑
k

ϵijkVk, (3)

który należy osobno wykazać / skomentować.

Zadanie 2

Treść: Stan pewnej cząstki opisywany jest funkcją falową

ψ(r⃗) = N (x+ y + z)e−
r2

α2 , α ∈ R, (4)

gdzie N jest stałą normalizacyjną. Jakie jest prawdopowobieństwo wyników 2ℏ2 i 0 przy pomiarze
odpowiednio L̂2 oraz L̂z?

Rozwiązanie:
Zauważmy, że zachodzi

ψ(r⃗) = f(r)× g(θ, φ), (5)

gdzie we współrzędnych sferycznych

g(θ, φ) = N (sin θ cosφ+ sin θ sinφ+ cos θ) . (6)

Korzystając z

Y1,±1(θ, φ) = ∓
√
3
8π
sin θe±iφ, Y1,0(θ, φ) =

√
3
4π
cos θ, (7)

otzymujemy po unormowaniu

g(θ, φ) =
1√
3

(
i− 1√
2
Y1,1(θ, φ) +

i+ 1√
2
Y1,1(θ, φ) + Y1,0(θ, φ)

)
, (8)

stąd prawdopodobieństwo otrzymania wyniku 2ℏ2 obserwabli L̂2 wynosi 1, zaś wyniku 0 obserwabli
L̂z wynosi 1/3.

Zadanie 3

Treść: Cząstka o masie µ bytująca w potencjale V (r) opisywana jest funkcją falową

ψ(r⃗) = (x+ y + 3z)f(r). (9)

Odpowiedz na następujące pytania:



a) Czy ψ(r⃗) jest stanem własnym L̂2? Jeżeli tak, to jaka jest wartość l? Jeżeli nie, jakie są możliwe
wyniki pomiaru obserwabli L̂2?

b) Jakie są prwadopodobieństwa pomiarów różnych warości m?

c) Załóżmy, że ψ(r⃗) jest stanem własnym Hamiltonianu. W jaki sposób można wyznaczyć poten-
cjał V (r)?

Rozwiązanie:
Analogicznie do poprzedniego zadania, część radialna rf(r) separuje się od kątowej g(θ, φ), mo-

żemy zatem zapisać

g(θ, φ) =
1√
11

(
i− 1√
2
Y1,1(θ, φ) +

i+ 1√
2
Y1,1(θ, φ) + 3Y1,0(θ, φ)

)
. (10)

Zatem jest to stan własny L̂2 z wartością własną l = 1. Możeliwe wyniki pomiarów obserwabli L̂z i
ich prawdopodobieńśtwa to m = ±ℏ: p±1 = 1/11 oraz m = 0ℏ: p0 = 9/11.

By odpowiedzieć na pytanie dotyczące potencjału V (r), zapisujemy równanie Schrödingera w
postaci [

− ℏ2

2µr2
∂2rr
2 +

L̂2

2µr2
+ V (r)

]
f(r)g(Ω) = Ef(r)g(Ω). (11)

Ponieważ g jest stanem własnym L̂2, możemy nim zadziałać i odcałkować stronami f , co daje
wyrażenie czysto radialne [

− ℏ2

2µr2
∂2rr
2 +

ℏ2

µr2
+ V (r)

]
f(r) = Ef(r). (12)

Stąd

V (r) = E +
ℏ2

2µf(r)r2
∂2r
(
r2f(r)

)
− ℏ2

µr2
= E +

ℏ2

2µ
rf ′′ + 4f ′

rf
. (13)

Zadanie 4

Treść: Wykaż że dla operatora momentu pędu zachodzą następujące związki

a) r⃗ ˆ⃗L i ˆ⃗Lr⃗ oraz analogicznie p⃗ ˆ⃗L i ˆ⃗Lp⃗ są operatorami zerowymi.

b) L̂2 = −r⃗
[
p⃗(p⃗ · r⃗)− p⃗2r⃗

]
c)
[
r⃗p⃗2
]
= 2iℏp⃗, ewentualnie [r⃗, p⃗] = 3iℏ

d) Bezpośrednim rachunkiem w zmiennych sferycznych wykaż r⃗p⃗ = −iℏr∂r.

e) Korzysatając z wyniku b) wykaż L̂2 = r2p⃗2 + ℏ2∂r(r2∂r).

Rozwiązanie:

a) Mamy, na przykład

r⃗ · L⃗ =
∑
i

riLi =
∑
ijk

ϵijkrirjpk = (r⃗ × r⃗) · p⃗ = 0. (14)

Analogicznie dla L⃗ · r⃗ i dla przypadków z p⃗.

b) Korzystając z r⃗p⃗ = −p⃗r⃗, otrzymujemy

L̂2 = −(r⃗p⃗)(p⃗r⃗) = −
∑
ijklm

ϵijkϵilmrjpkrlpm = −
∑
ijklm

(δjlδkm − δjmδkl)rjpkrlpm =

= −(r⃗ · p⃗)(p⃗ · r⃗) +
∑
j

rj p⃗
2rj = −r⃗ · (p⃗(p⃗ · r⃗)− p⃗2r⃗). (15)



c) Mamy

[rj , p⃗2] =
∑
i

[rj , p2i ] =
∑
i

(pi[rj , pi] + [rj , pi])pi = 2iℏpj . (16)

Analogicznie dla [r⃗, p⃗] = 3iℏ.

d) Korzystając ze zmiennych sferycznych, otrzymujemy

x∂x + y∂y + z∂z = r sin θ cosφ
[
sin θ cosφ∂r +

1
r
cos θ cosφ∂θ −

1
r
sinφ/ sin θ∂φ

]
+

+ r sin θ sinφ
[
sin θ sinφ∂r +

1
r
cos θ sinφ∂θ +

1
r
cosφ/ sin θ∂φ

]
+

+ r cos θ
[
cos θ∂r −

1
r
sin θ∂θ

]
= r∂r (17)

e) Na koniec, korzystamy z

L̂2 = r⃗ · (p⃗(p⃗ · r⃗)− p⃗2r⃗) = −r⃗ · p⃗(−r⃗ · p⃗− 3iℏ) + r⃗ · (r⃗p⃗2 − 2iℏp⃗) = r2p⃗2 + iℏr⃗p⃗− (r⃗ · p⃗)2. (18)

Daje nam to, na mocy poprzednio wyliczonych związków

L̂2 = r2p⃗2 + ℏ2r∂r + ℏ2(r∂r)2 = r2p⃗2 + ℏ2(2r∂r + r2∂2r ) = r2p⃗2 + ℏ2∂rr2∂r. (19)

Zadanie 5

Treść: Przyjmijmy, że cząstka jest w stanie własnym operatorów L̂2 oraz L̂z (wartości własne
odpowiednio ℏ2l(l + 1) oraz ℏm. Wykaż, że w tym stanie ⟨L̂x⟩ = ⟨L̂y⟩ = 0 oraz że ⟨L̂2x⟩ = ⟨L̂2y⟩ =
ℏ2
2

[
l(l + 1)−m2

]
.

Rozwiązanie: Zauważmy, że operatory L̂x oraz L̂y można zapisać jako

L̂x =
1
2

(
L̂+ + L̂y

)
(20a)

L̂y =
1
2i

(
L̂+ − L̂y

)
. (20b)

Stąd ich wartości średnie na stanie własnym L̂z są zero. Zaś podniesienie do kwadratu daje niezni-
kający wkład od

⟨lm|L̂2x|lm⟩ = ⟨lm|L̂2y|lm⟩ =
1
4

〈
L̂+L̂− + L̂−L̂+

〉
lm

=
1
2

〈
L̂+L̂−

〉
lm
=
1
2
ℏ2(l −m)(l +m+ 1) = ℏ2

2

(
l(l + 1)−m2

)
, (21)

gdzie skorzystaliśmy z tego, jak działa na stan |lm⟩ operator obniżający rzut momentu pędu.


