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Zadanie 1

Tresé: Rozwaz réownanie Schrodingera dla czastki o masie p bytujacej w potencjale centralnym

Vi(r)

I v v = Bee,

Postugijac sie metoda rozdzielenia zmiennych, przedyskutuj ogblne wtasnosci rozwiazania.

Rozwigzanie: Zacznijmy od napisania réwnania Schrodingera w jednostkach bezwymiarowych,
czyli dzielimy stronami przez —h?/(2u) i dostajemy

[VZ + e —v(r)] (D). (1)
Nastepnie dokonujemy separacji zmiennych
P(7) = R(r)P(0)®(¢) (2)
i rozpisujemy laplasjan w zmiennych sferycznych, co daje nam rozdzielone réwnania
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Zatem kazda z tych czesci musi byé osobno stala, gdyz zmienne nie “mieszaja si¢”. Zalézmy, ze czesé
radialna spelnia réwnanie

11d dR
2 (- - % 2% _ — 1 . 4
r |:T‘2Rd7’(r dr)+6 v] ala+1), aeR (4)
Wrtedy, jako ze czesé radialna i katowa musza dodawaé si¢ do zera, otrzymujemy
1 14d dpP 1 1d°®
— = (sinb— |+ ———-"—| =— 1). 5
LinGPdH (Sm d@) T anZed d¢2} alat1) (5)

Mnozac to rownanie stronami przez sin® 6 dostajemy ponownie rozdzielenie zmiennych, tym razem
katowych od siebie, czyli

sinf d (. dP . 9 1d°®
2T (sm 9d9> +sin” fo(a + 1) + Tdr 0. (6)
Otrzymujemy zatem, wprowadzajac m € R,
1 d dP m? d*®
sin @ df (sm d@) + [04(04-1- ) Sin? 0} " dg2 m (7)
To drugie rownanie z tatwoscia rozwiazujemy, otrzymujac
B(¢) = Aeilml?® 4 Be~ilmle, (8)

Rozwigzanie to jest periodyczne, jezeli funkcja i jej pochodna sa periodyczne, zatem mamy
A627ri|m| + Be—27ri\m\ = A+ B, AeQTri\m| _ Be—27ri|m\ — A— B. (9)
Stad otrzymujemy, ze m € Z oraz, na przyktad B = 0, czyli
() ox ™9, (10)



Nastepnie wprowadzamy zmienna x = cosf (z € [—1,1]), zatem zamiana zmiennych daje

d dx d . d
@—@%—_811’19% (11)

Trzeba teraz pozby¢ sie sinusa z prawej strony, ale jego wyrazenie przez x nie jest jednoznaczne,
niemniej jednoznaczne jest

1 d d\ d ) d

Zatem réwnanie na zmienna x przyjmuje postaé

d

- [(1 - x)delm(x)} + {a(a +1) - f;] P"(x) = 0. (13)

dx

Funkcje P/ (x) nazywamy stowarzyszonymi wielomianami Legendre’a.

Zadanie 2

Tresé: Rozwaz rownanie Schrédingera dla czastki o masie m w dwu wymiarach w potencjale
centralnym V(p). Przedyskutuj ogolne wlasnosci rozwiazania.

Rozwigzanie:
Symetria zagadnienia znoéw nakazuje, bySmy rozpisali laplasjan w stosownych zmiennych (tym
razem beda to zmienne cylindryczne). Mamy
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Nastepnie podnosimy kazdy z tych operatorow do kwadratu (do przeliczenia na tablicy), co daje
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W kolejnym kroku zapisujemy réwnanie Schrédingera i, jak poprzednio, dzielimy je stronami przez
—h?/(2m), wprowadzajac wielkoci € oraz v(p). Mamy

[62 10 1 02

8p2+pap+p2892—v(p)Jre} ¥(p,0) =0. (16)

Kolejnym krokiem jest rozdzielenie zmiennych

¥(p.0) = f(p)t(9), (17)

ktore po zastosowaniu chwytéw analogicznych do tych z poprzedniego zadania, daje pare rownan

%’/: 2 (18a)
" / 2
f7+;f7+6— (p):%. (18b)

Rozwiazanie rownania katowego daje funkcje wyktadnicza, ktora musi by¢ okresowa ¢(0) = t(6+2w),
stad u = n € Z. Pelne rozwiazanie jest postaci

V(p,0) = fuc(p)e™. (19)

Przeanalizujemy teraz rozwiazanie radialne w przypadku czastki swobodnej (v(p) = 0).

e czastka swobodna w dwu wymiarach



W tym przypadku réwnanie radialne przyjmuje postaé

02 10 n? 9
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gdzie k? = e¢. Wprowadzamy zmienng bezwymiarowa = = kp i dzielac réwnanie Schrédingera stro-
nami przez k? otrzymujemy tzw. rownanie Bessela

92 10 2
[Weraanrl}fkn()O- (21)

By z identyfikowaé postaé¢ funkcji f, zapisujemy ja w postaci szeregu potegowego, dopuszczajac, by
w ogoblnosci “zaczynal sie” on od potegi s

Jrm( Z apa?*e. (22)
Podstawiwszy to wyrazenie do réwnania Bessela, dostajemy
D oap[(s+p)(s+p—1) + (s +p) —n*|a?t*7% = Za a?te (23)

p=0

za$ dzielac stronami przez z°:

> ap [(s+p)?—n?ar = Zapxp (24)
p=0

Stad otrzymujemy zwiazek rekurencyjny

1
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ap = —

z warunkami startowymi

72 ap(s®—n?) =0, 7' al(s+1)2—n?)=0. (26)
Jako ze warunkiem, by rekurencja ruszyla z kopyta, jest ag # 0, stad s = £|n| zatem a; = 0. Stad
w szeregu wszystkie nieparzyste potegi znikaja. Rozwiazania mozemy podzieli¢ na dwa typy: gdy
s = |n|, jest ono regularne (zachowuje si¢ kulturalnie w « = 0) oraz nieregularne s = —|n|. Dla
rozwiazania regularnego mamy, wprowadzajac p = 2v, v € N,

[e%S) 1
— E 2v - oo, 27
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Ten zwiazek rekurencyjny mozna rozwiklaé, otrzymujac

(=" Inf!
L = — 0 __ap. 28
= 4vy! (\n|+u)!a0 (28)
Stad otrzymujemy
— Llnlo S ﬂ# 2v 29
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Dla szczegoblnego wyboru
1
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otrzymujemy rozwiazanie w postaci funkcji Bessela J,, ().

Zadanie 3



Tresé: Czastka o masie m bytuje w trojwymiarowej stundi potencjatu

W r <7
V(r)_{+oo r>rg

Znajdz wyrazenie na energie i stany wtasne fali s.

Rozwigzanie: Po separacji zmiennych otrzymujemy réwnanie radialne

I(l+1
uf’(r)—l—[e—i—vo— (:; )} w(r) =0, wvo=2mVo/h* >0, e=2mE/h*> —uvp. (31)

W fali s mamy [ = 0 i réwnanie
ug (r) = —k*ug(r), k* = e+ vo. (32)

Zauwazmy, ze musi zachodzi¢, na mocy réwnania Schrédingera , u(r) ~ r'*! dla matych r, zatem
ug musi znikaé¢ dla r — 0, zatem z dwu rozwiazan odrzucamy cos(kr). Naktadajac warunek znikania
funkcji falowej dla r = rq, otrzymujemy

(nm)2h?

in(k kro = = E,=-V
uo(r) o sin(kr), ro = NT o+ omr2

, neN. (33)

Zatem nawet w fali s mamy nieskonézenie wiele rozwiazan. Inne [ mozna ewentualnie omowic,
wprowadzajac pojecie regularnej (j;(p)) 1 nieregularnej (n;(p)) radialnej funkeji Bessela.

noindent Zadanie 4

Tresé: Wyznacz prawdopodobienistwo tego, ze elektron w stanie podstawowym atomu wodoru
zostanie znaleziony w odleglosci od jadra atomowego wiekszej niz pozwala na to klasyczny bilans
energii.

Rozwigzanie: Klasyczny punkt powrotu dany jest przez zwiazek

Kq?
T: |E|7 (34)

gdzie F < 0 jest energia stanu zwiazanego. Stad

Kq?

TOZW.

(35)
W stanie podstawowym atomu wodoru, podstawiajac energie dana przez stala Rydberga, otrzy-

mujemy rog = 2ag, gdzie ag jest promieniem Bohra. Prawdopodobienistwo znalezienia elektronu w
obszarze klasycznie wzbrodnionym wynosi

p(ls) = / |Rio(r)|?r?dr = 13e™* ~ 0.24. (36)
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