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Zadanie 1

Treść: Rozważ równanie Schrödingera dla cząstki o masie µ bytującej w potencjale centralnym
V (r) [

−ℏ
2∇2

2µ
+ V (r)

]
ψ(r⃗) = Eψ(r⃗).

Posługijąc się metodą rozdzielenia zmiennych, przedyskutuj ogólne własności rozwiązania.

Rozwiązanie: Zacznijmy od napisania równania Schrödingera w jednostkach bezwymiarowych,
czyli dzielimy stronami przez −ℏ2/(2µ) i dostajemy[

∇2 + ϵ− v(r)
]
ψ(r⃗). (1)

Następnie dokonujemy separacji zmiennych

ψ(r⃗) = R(r)P (θ)Φ(φ) (2)

i rozpisujemy laplasjan w zmiennych sferycznych, co daje nam rozdzielone równania

r2
[
1
r2
1
R

d

dr

(
r2
dR

dr

)
+ ϵ− v

]
+
[
1
sin θ

1
P

d

dθ

(
sin θ

dP

dθ

)
+
1
sin2 θ

1
Φ
d2Φ
dφ2

]
= 0. (3)

Zatem każda z tych części musi być osobno stała, gdyż zmienne nie “mieszają się”. Załóżmy, że część
radialna spełnia równanie
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= α(α+ 1), α ∈ R. (4)

Wtedy, jako że część radialna i kątowa muszą dodawać się do zera, otrzymujemy[
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= −α(α+ 1). (5)

Mnożąc to równanie stronami przez sin2 θ dostajemy ponownie rozdzielenie zmiennych, tym razem
kątowych od siebie, czyli
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Otrzymujemy zatem, wprowadzając m ∈ R,
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d2Φ
dφ2
= −m2Φ. (7)

To drugie równanie z łatwością rozwiązujemy, otrzymując

Φ(φ) = Aei|m|φ +Be−i|m|φ. (8)

Rozwiązanie to jest periodyczne, jeżeli funkcja i jej pochodna są periodyczne, zatem mamy

Ae2πi|m| +Be−2πi|m| = A+B, Ae2πi|m| −Be−2πi|m| = A−B. (9)

Stąd otrzymujemy, że m ∈ Z oraz, na przykład B = 0, czyli

Φ(φ) ∝ eimφ. (10)



Następnie wprowadzamy zmienną x = cos θ (x ∈ [−1, 1]), zatem zamiana zmiennych daje
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Trzeba teraz pozbyć się sinusa z prawej strony, ale jego wyrażenie przez x nie jest jednoznaczne,
niemniej jednoznaczne jest
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Zatem równanie na zmienną x przyjmuje postać

d

dx

[
(1− x)2 dP

m
l (x)
dx

]
+
[
α(α+ 1)− m2

1− x2

]
Pml (x) = 0. (13)

Funkcje Pml (x) nazywamy stowarzyszonymi wielomianami Legendre’a.

Zadanie 2

Treść: Rozważ równanie Schrödingera dla cząstki o masie m w dwu wymiarach w potencjale
centralnym V (ρ). Przedyskutuj ogólne własności rozwiązania.

Rozwiązanie:
Symetria zagadnienia znów nakazuje, byśmy rozpisali laplasjan w stosownych zmiennych (tym

razem będą to zmienne cylindryczne). Mamy
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Następnie podnosimy każdy z tych operatorów do kwadratu (do przeliczenia na tablicy), co daje
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W kolejnym kroku zapisujemy równanie Schrödingera i, jak poprzednio, dzielimy je stronami przez
−ℏ2/(2m), wprowadzając wielkości ϵ oraz v(ρ). Mamy[
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]
ψ(ρ, θ) = 0. (16)

Kolejnym krokiem jest rozdzielenie zmiennych

ψ(ρ, θ) = f(ρ)t(θ), (17)

które po zastosowaniu chwytów analogicznych do tych z poprzedniego zadania, daje parę równań
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Rozwiązanie równania kątowego daje funkcję wykładniczą, która musi być okresowa t(θ) = t(θ+2π),
stąd µ = n ∈ Z. Pełne rozwiązanie jest postaci

ψ(ρ, θ) = fn,ϵ(ρ)einθ. (19)

Przeanalizujemy teraz rozwiązanie radialne w przypadku cząstki swobodnej (v(ρ) = 0).

• cząstka swobodna w dwu wymiarach



W tym przypadku równanie radialne przyjmuje postać[
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]
fk,n(ρ) = 0, (20)

gdzie k2 = ϵ. Wprowadzamy zmienną bezwymiarową x = kρ i dzieląc równanie Schrödingera stro-
nami przez k2 otrzymujemy tzw. równanie Bessela[
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]
fk,n(x) = 0. (21)

By z identyfikować postać funkcji f , zapisujemy ją w postaci szeregu potęgowego, dopuszczając, by
w ogólności “zaczynał się” on od potęgi s

fk,n(x) =
∞∑
p=0

apx
p+s. (22)

Podstawiwszy to wyrażenie do równania Bessela, dostajemy
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[
(s+ p)(s+ p− 1) + (s+ p)− n2

]
xp+s−2 = −
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zaś dzieląc stronami przez xs:

∞∑
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[
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]
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∞∑
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Stąd otrzymujemy związek rekurencyjny

ap = −
1

(s+ p)2 − n2
ap−2 (25)

z warunkami startowymi

x−2 : a0(s2 − n2) = 0, x−1 : a0[(s+ 1)2 − n2) = 0. (26)

Jako że warunkiem, by rekurencja ruszyła z kopyta, jest a0 ̸= 0, stąd s = ±|n| zatem a1 = 0. Stąd
w szeregu wszystkie nieparzyste potęgi znikają. Rozwiązania możemy podzielić na dwa typy: gdy
s = |n|, jest ono regularne (zachowuje się kulturalnie w x = 0) oraz nieregularne s = −|n|. Dla
rozwiązania regularnego mamy, wprowadzając p = 2ν, ν ∈ N,

fk,n = x|n|
∞∑
ν=0

a2νx
2ν , a2ν = −

1
4ν(ν + |n|)

a2ν−2. (27)

Ten związek rekurencyjny można rozwikłać, otrzymując

a2ν =
(−1)ν

4νν!
|n|!

(|n|+ ν)!
a0. (28)

Stąd otrzymujemy
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∞∑
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Dla szczególnego wyboru

a0 =
1

2|n||n|!
(30)

otrzymujemy rozwiązanie w postaci funkcji Bessela Jn(x).

Zadanie 3



Treść: Cząstka o masie m bytuje w trójwymiarowej stundi potencjału

V (r) =
{
−V0 r ⩽ r0
+∞ r > r0

.

Znajdź wyrażenie na energie i stany własne fali s.

Rozwiązanie: Po separacji zmiennych otrzymujemy równanie radialne

u′′l (r) +
[
ϵ+ v0 −

l(l + 1)
r2

]
ul(r) = 0, v0 = 2mV0/ℏ2 > 0, ϵ = 2mE/ℏ2 > −v0. (31)

W fali s mamy l = 0 i równanie

u′′0(r) = −k2u0(r), k2 = ϵ+ v0. (32)

Zauważmy, że musi zachodzić, na mocy równania Schrödingera , ul(r) ∼ rl+1 dla małych r, zatem
u0 musi znikać dla r → 0, zatem z dwu rozwiązań odrzucamy cos(kr). Nakładając warunek znikania
funkcji falowej dla r = r0, otrzymujemy

u0(r) ∝ sin(kr), kr0 = nπ ⇒ En = −V0 +
(nπ)2ℏ2

2mr20
, n ∈ N. (33)

Zatem nawet w fali s mamy nieskońćzenie wiele rozwiązań. Inne l można ewentualnie omówić,
wprowadzając pojęcie regularnej (jl(ρ)) i nieregularnej (nl(ρ)) radialnej funkcji Bessela.

noindent Zadanie 4

Treść: Wyznacz prawdopodobieństwo tego, że elektron w stanie podstawowym atomu wodoru
zostanie znaleziony w odległości od jądra atomowego większej niż pozwala na to klasyczny bilans
energii.

Rozwiązanie: Klasyczny punkt powrotu dany jest przez związek

Kq2

r
= |E|, (34)

gdzie E < 0 jest energią stanu związanego. Stąd

r0 =
Kq2

|E|
. (35)

W stanie podstawowym atomu wodoru, podstawiając energię daną przez stałą Rydberga, otrzy-
mujemy r0 = 2a0, gdzie a0 jest promieniem Bohra. Prawdopodobieństwo znalezienia elektronu w
obszarze klasycznie wzbrodnionym wynosi

p(1s) =
∫ ∞
r0

|R10(r)|2r2dr = 13e−4 ≃ 0.24. (36)


