
SERIA X
ROZWIĄZANIA

MECHANIKA KWANTOWA ‘26

Zadanie 1

Treść: Przyjmijmy, że elektron w atomie wodoru w chwili czasu t znajduje się w stanie

|ψ⟩ = 1√
5
|21− 1,+⟩+ 2√

5
|100,−⟩, (1)

gdzie |nlm, σ⟩ = |nlm⟩ ⊗ |σ⟩. Jakie są wartości oczekiwane operatorów L̂2, Ĥ, L̂y, L̂z, Ŝ2, Ŝx i Ŝz?

Rozwiązanie: Ponieważ każdy z ketów jest stanem własnym operatora L̂2, więc mamy

⟨L̂2⟩ = ℏ2[
1
5
1(1 + 1)] =

2
5
ℏ2. (2)

Analogicznie mamy

⟨L̂z⟩ = −
1
5
ℏ (3)

Dla operatora Ĥ atomy wodoru otrzymujemy

⟨Ĥ⟩ = 1
5
ϵ2 +
4
5
ϵ1, (4)

gdzie ϵn = −Ryn2 . Kolejne wielkości dają

⟨Ŝ2⟩ = 1
2

(
1
2
+ 1
)
ℏ2 =

3
4
ℏ2, ⟨Ŝz⟩ = −

3
10

ℏ. (5)

Dla operatorów L̂y oraz Ŝx, zauważamy, ze dane są one przez kombinacje operatorów podnoszących
/ opusczających stosowny rzut (momentu pędu / spinu). Jako że pozostawe liczby kwantowe są
różne, wartości średnie tych operatorów wynoszą 0.

Zadanie 2

Treść: Wykaż, że równanie Schrödingera dla cząstki o ładunku q w polu elektromagnetycznym jest
niezmienne ze względu na transformację cechowania potencjałów skalarnego i wektorowego pól EM,
czyli że zachodzi

ψ(r⃗, t) −→ ψ′(r⃗, t) = ψ(r⃗, t)eiqΛ(r⃗,t)/(ℏc). (6)

Rozwiązanie: Zauważmy, że dla pochodna czasowa i operator gradientu działają na funkcję ψ,
wyrażoną przez ψ′, w sposób następujący

iℏ∂tψ(r⃗, t) = iℏ∂t
[
e−iqΛ(r⃗,t)/(ℏc)ψ′(r⃗, t)

]
= e−iqΛ(r⃗,t)/(ℏc)

(
iℏ∂t +

q

c
∂tΛ(r⃗, t)

)
ψ′(r⃗, t), (7a)

−iℏ∇⃗ψ(r⃗, t) = −iℏ∇⃗
[
e−iqΛ(r⃗,t)/(ℏc)ψ′(r⃗, t)

]
= e−iqΛ(r⃗,t)/(ℏc)

(
−iℏ∇⃗ − q

c
∇⃗Λ(r⃗, t)

)
ψ′(r⃗, t). (7b)

Podniesienie do kwadratu tego drugiego operatora, po dodaniu do niego potencjału wektorowego,
daje [

−iℏ∇⃗ − q

c
A⃗(r⃗, t)

]2
ψ(r⃗, t) =

∑
i

[
−iℏ∇⃗ − q

c
A⃗(r⃗, t)

]
i

[
−iℏ∇⃗ − q

c
A⃗(r⃗, t)

]
i
ψ(r⃗, t) =

=
∑
i

[
−iℏ∇⃗ − q

c
A⃗(r⃗, t)

]
i
e−iqΛ(r⃗,t)/(ℏc)

[
−iℏ∇⃗ − q

c
A⃗(r⃗, t)− q

c
∇⃗Λ(r⃗, t)

]
i
ψ′(r⃗, t) =

= e−iqΛ(r⃗,t)/(ℏc)
[
−iℏ∇⃗ − q

c
A⃗(r⃗, t)− q

c
∇⃗Λ(r⃗, t)

]2
ψ′(r⃗, t) ≡

≡ e−iqΛ(r⃗,t)/(ℏc)
[
−iℏ∇⃗ − q

c
A⃗′(r⃗, t)

]2
ψ′(r⃗, t), (8)



gdzie

A⃗′(r⃗, t) = A⃗(r⃗, t) + ∇⃗Λ(r⃗, t) (9)

jest potencjałem wektorowym po zmianie cechowania. Zatem pełne równanie Schrödingera ma postać

e−iqΛ(r⃗,t)/(ℏc)
(
iℏ∂t +

q

c
∂tΛ(r⃗, t)

)
ψ′(r⃗, t) = e−iqΛ(r⃗,t)/(ℏc)

[
1
2m

(
−iℏ∇⃗ − q

c
A⃗′(r⃗, t)

)2
+ qU(r⃗, t)

]
ψ′(r⃗, t),

(10)

co po wprowadzeniu potencjału skalarnego w nowym cechowaniu U ′ = U− 1c∂tΛ(r⃗, t) oraz podzieleniu
przez wspólny czynnik fazowy daje tożsame równanie Schrödingera w nowym cechowaniu.

Zadanie 3

Treść: Rozważ elektron w ustalonym punkcie r⃗ w zmiennym polu magnetycznym

B⃗(t) = B0 cosωtêz. (11)

a) W chwili czasu t = 0 elektron jest spinowym stanie własnym +ℏ/2 operatora Ŝx. Znajdź stan
spinowy w dalszych chwilach czasu.

b) Wyznacz prawdopodobieństwo otrzymania wyniku −ℏ/2 przy pomiarze obserwabli Ŝx.

c) Jakie jest najmniejsze B0, które wystarczy by przerzucić spin do stanu własnego −ℏ/2 opera-
tora Ŝx?

Rozwiązanie:

Jako że interesują nas tylko spinowe stopnie swobody, zapisujemy tę część Hamiltonianu, która
odpowiada za sprzężenie spinu z polem magnetycznym

Ĥ = − ˆ⃗µ · B⃗ = g eB0
2mc

Ŝz cosωt. (12)

Zależne od czasu równanie Schrödingera ma postać

i

(
ċ+(t)
ċ−(t)

)
= g

eB0
4mc

(
c+(t)
−c−(t)

)
. (13)

Stan początkowy jest stanem własnym Ŝx o wartości +ℏ/2, zatem w bazie stanów własnych Ŝz ma
on postać (

c+(0)
c−(0)

)
=
1√
2

(
1
1

)
. (14)

Rozwiązanie tych prostych równań ruchu jest postaci

c±(t) =
1√
2
e∓i

ω0
ω sinωt, ω0 = g

eB0
4mc

. (15)

Poszukujemy teraz prawdopodobieństwa znalezienia stanu |ψ(t)⟩ w stanie własnym operatora Ŝx
o wartości −ℏ/2, który w bazie z-towej przybiera postać

|−⟩x =
1√
2

(
1
−11

)
. (16)

Zrzutowanie stanu zależnego od czasu na ten stan i wzięcie moduł kwadrat daje

p
(x)
− (t) = sin

2
(ω0
ω
sinωt

)
. (17)



Natomiast przerzucenie stanu początkowego do |−⟩x wymaga, by to prawdopodobieństwo wynosiło
1. Zatem spełniony musi być warunek

ω0
ω
sinωt∗ = (2π + 1)n, n ∈ N. (18)

Daje to minimalną wartość pola magnetycznego (dla n = 0) równą

B0 = 2π
mc

ge

ω

sinωt∗
. (19)

Zadanie 4

Treść: Hamiltonian cząstki o spinie 1/2 i ładunku −e umieszczonej w polu elektromagnetycznym
ma postać

Ĥ =
1
2m

[
p⃗+

e

c
A⃗(r⃗, t)

]2
− eψ(r⃗, t) + eℏ

2mc
ˆ⃗σ · B⃗(r⃗, t). (20)

Korzystając z własności macierzy Pauliego, wykaż, że można go przedstawić w postaci

Ĥ =
1
2m

[
ˆ⃗σ · p⃗+ e

c
ˆ⃗σ · A⃗(r⃗, t)

]2
− eψ(r⃗, t). (21)

Rozwiązanie: Skorzystajmy ze związku

ˆ⃗σ · A⃗ˆ⃗σ · B⃗ = A⃗ · B⃗ + iˆ⃗σ(A⃗× B⃗), (22)

który wynika bezpośrodnio z wlaśności macierzy Pauliego. Daje to

ˆ⃗σ ·
(
p⃗+

e

c
· A⃗(r⃗, t)

)
ˆ⃗σ ·
(
p⃗+

e

c
· A⃗(r⃗, t)

)
=
(
p⃗+

e

c
· A⃗(r⃗, t)

)2
+

+ iˆ⃗σ
[(
p⃗+

e

c
· A⃗(r⃗, t)

)
×
(
p⃗+

e

c
· A⃗(r⃗, t)

)]
(23)

Rozważmy teraz i-tą składową powyższego iloczynu wektorowego. Mamy[(
p⃗+

e

c
· A⃗(r⃗, t)

)
×
(
p⃗+

e

c
· A⃗(r⃗, t)

)]
i
=
e

c

(
p⃗× A⃗(r⃗, t) + A⃗(r⃗, t)× p⃗

)
i
=

= −iℏe
c

∑
jk

ϵijk(∂jAk +Ak∂j). (24)

Należy pamiętać, że operator różniczkowy w pierwszym członie działa na iloczyn składowej poten-
cjału wektorowego i funkcję falową. Można go zatem zapisać jako

∂j(Akψ) +Ak∂jψ = Ak∂jψ) +Ak∂jψ + (∂jAk). (25)

Pierwsze dwa człony nie dadzą wkładu, gdyż są symetryczne ze względu na przestawienie indeksów
k i j i po zwężeniu z antysymetrycznym ϵ̂ dadzą zero. Drugi zaś człon daje

−iℏe
c

∑
jk

ϵijk(∂jAk) = −iℏ
e

c
Bi. (26)

Zatem Hamiltonian przepisuje się do postaci

Ĥ =
1
2m

[
p⃗+

e

c
A⃗(r⃗, t)

]2
− eψ(r⃗, t) + eℏ

2mc
ˆ⃗σ · B⃗(r⃗, t). (27)

Zadanie 5

Treść: Rozważmy elektron w jednorodnym polu magnetycznym B⃗.

a) Wykaż, że biorąc A⃗ = 1
2 r⃗ × B⃗ i B⃗ ∝ êz, orbitalna część Hamitlonianu składa się z dwu

komutujących ze sobą części Ĥ⊥ i Ĥ∥, prostopadłej i równoległej do B⃗.



b) Wykaż, że Ĥ⊥ można wyrazić w postaci jednowymiarowego oscylatora Harmonicznego

Ĥ⊥ =
P̂ 2

2m
+
1
2
mω2Q̂2, ω =

eB

mc
, (28)

gdzie [Q̂, P̂ ] = iℏ. Zdiagonalizuj ten Hamilonian wprowadzając stosowne â i â†.

c) Wykaż, że [Ĥ⊥, L̂z] = 0 oraz że [L̂z, â†n] = nℏâ†n.

d) Wyznacz wartości własne Ĥ∥ i znajdź wspólne wektory własne operatorów Ĥ∥, Ĥ⊥ i L̂z.

e) Wykaż, że oddziaływanie spin-pole B można zapisać w postaci

ĤS = ℏω
(
b̂†b̂− 1

2

)
, b̂ =

1
ℏ

(
Ŝx + iŜy

)
. (29)

Wykaż, że te operatory spełniają fermionową relację antykomutacyjną {b̂, b̂†} = 1 i b̂2 = b̂†2 =
0. Wykaż, że operator liczby wzbudzeń N̂ = b̂†b̂ ma wartości własne 0 i 1 i że odpowiadające
im wektory własne spełniają b̂|0⟩ = 0, |1⟩ = b̂†|0⟩.

f) Wprowadźmy R̂ =
√
ℏωâb̂†. Wykaż, że zachodzi

{R̂, R̂†} = Ĥ⊥ + ĤS . (30)

Rozwiązanie:
a) Dla takiej orientacji pola magnetycznego bierzemy a⃗ = (−By/2, Bx/2, 0) i otrzymujemy

Ĥ0 =
1
2m

(
px −

eB

2c
y

)2
+
1
2m

(
px +

eB

2c
x

)2
+
1
2m

p2z. (31)

Oznaczając pierwsze dwie częsci przez Ĥ⊥ i Ĥ∥ od razu widzimy, że [Ĥ⊥, Ĥ∥] = 0.

b) Wprowadźmy operatory pomocnicze

v̂i =
1
m
(p̂i +

e

c
Ai), (32)

które spełniają regułę komutacyjną

[v̂i, v̂j ] =
e

m2c
([p̂i, Aj ] + [p̂j , Ai]) = −i

eℏ
m2c
(∂iAj − ∂jAi) = −i

eℏ
m2c

∑
k

ϵijkBk. (33)

W przypadku pola B i cechowania potencjału wektorowego A⃗ jak w zadaniu, mamy

[v̂x, v̂y] == −iℏ
ω

m
, ω =

eB

mc
> 0. (34)

W kolejnym kroku wprowadzamy następujące operatory

Q̂ = α

√
m

ω
v̂y, P̂ =

1
α

√
m

ω
v̂x, ⇒ [Q̂, P̂ ] = iℏ. (35)

Parametr α określimy w kolejnych krokach, tymczasem zauważamy, że zachodzi

Ĥ⊥ =
ω

2

(
α2P̂ 2 +

Q̂2

α2

)
. (36)

Dobierając α2 = 1/(mω) dostajemy standardowy Hamiltonian oscylatora harmonicznego

Ĥ⊥ =
P̂ 2

2m
+
1
2
mω2Q̂2. (37)



Teraz droga już jest prosta, gdyż wystarczy wprowadzić operatory kreacji i anihilacji

â =
1
2

(
Q̂

a0
+ i

a0
ℏ
P̂

)
(38a)

â† =
1
2

(
Q̂

a0
− ia0

ℏ
P̂

)
, (38b)

gdzie oscylatorowa jednostka długości dana jest przez standardowe wyrażenie a0 =
√

ℏ
mω . Hamilto-

nian propstopadły przyjmuje zatem znaną postać

Ĥ⊥ = ℏω
(
â†â+

1
2

)
(39)

i zachodzą znane związki

En⊥ = ℏω
(
n⊥ +

1
2

)
, |n⊥⟩ =

(â)n⊥√
n⊥!
|0⊥⟩, â|0⊥⟩ = 0. (40)

c) Po prostych przekstzałceniach Hamiltonian Ĥ0 zapisujemy jako

Ĥ0 =
ˆ⃗p2

2m
+

eB

2mc
L̂z +

e2B2

8mc2
(x2 + y2) (41)

i od razu widać, że komutuje on z L̂z. Następnie korzystamy ze związku

[L̂z, v̂j ] = iℏ
∑
k

ϵijkv̂k, ⇒ [L̂z, v̂x] = iℏv̂y, [L̂z, vy] = −iℏv̂x. (42)

Oznacza to, że korzystając z definicji operatora â mamy

[L̂z, â] =

√
ℏ
2mω
[L̂z, v̂y + iv̂x] = −ℏâ. (43)

Analogicznie otrzymujemy

[L̂z, â†] = ℏâ†. (44)

Stąd od razu otrzymujemy

[L̂z, â†n] = a†[L̂z, â†(n−1)] + [L̂z, â†]â†(n−1) = a†[L̂z, â†(n−1)] + ℏa†n (45)

co przez indukcję daje

[L̂z, â†n] = nℏa†n. (46)

d) Hamiltonian Ĥ∥ ma postać

Ĥ∥ =
p̂2z
2m

, (47)

jest to zatem Hamiltonian cząstki swobodnej, którego stany własne są stanami własnymi operatora
pędu p̂z|pz⟩ = pz|pz⟩ (w reprezentacji położeniowej są to fale płaskie). Ponieważ trzy operatory Ĥ⊥,
Ĥ∥ i L̂z komutują, mają wspólną bazę stanów własnych

|ψn⊥,m,pz ⟩ = |n⊥,m, pz⟩. (48)

e) Korzystając z definicji operatora b̂ otrzymujemy

b̂†b̂ =
1
ℏ2
(
Ŝx − iŜy

)(
Ŝx + iŜy

)
=
1
ℏ2
( ˆ⃗
S2 − Ŝz + ℏSz

)
=
1
2
+
1
ℏ
Ŝz. (49)



A zatem zachodzi

ĤS = ℏω
(
b̂†b̂− 1

2

)
= ωŜz, (50)

czyli rzeczywiście jest to Hamiltonian oddziaływania pola B⃗ skierowanego wzdłuż osi z ze spinem.
Możemy analogicznie wykazać, że

b̂b̂† =
1
ℏ2
(
Ŝx + iŜy

)(
Ŝx − iŜy

)
=
1
2
− 1

ℏ
Ŝz. (51)

Stąd zachodzi reguła antykomutacyjna

{b̂, b̂†} = 1. (52)

Bezpośredni rachunek, odwołujący się do własności macierzy Pauliego daje z kolei

b̂2 =
1
4
(σ̂x + iσ̂y)

2 =
1
4

(
σ̂2x − σ̂2y + i(σ̂xσ̂y + σ̂yσ̂x)

)
= 0. (53)

Przechodzimy teraz do dyskusji operatora liczby wzbudzeń. Mamy

N̂2s ≡ (b̂†b̂)2 = b̂(1− b̂†b̂) † b̂ = b̂†b̂− b̂2b̂†2 = N̂s. (54)

Zatem operator N̂s jest operatorem rzutowym, a jego wartości własne to 0 lub 1. Dla stanu własnego
|0⟩ o wartości własnej 0 mamy

N̂s|0⟩ = b̂†b̂|0⟩ = 0 ⇒ ⟨0|b̂†b̂|0⟩ = 0 ⇒ b̂|0⟩ = 0. (55)

Ponadto, jeżeli zdefiniujemy |1⟩ ≡ b̂†|0⟩, to mamy

N̂s|1⟩ = b̂†b̂b̂†|0⟩ = b̂†(1 + b̂†b̂)|0⟩ = b̂†|0⟩, (56)

jest to zatem stan własny operatora liczby wzbudzeń o wartości własnej 1.

f) Definiując R̂ =
√
ℏωâb̂†, mamy

{R̂, R̂†} = ℏω
(
âb̂†b̂â† + b̂â†âb̂†

)
= ℏω

(
ââ†b̂†b̂+ â†â(1− b̂†b̂)

)
= ℏω

(
(ââ† − â†â)b̂†b̂+ â†â

)
= ℏω

(
b̂†b̂+ â†â

)
= Ĥ⊥ + ĤS . (57)


