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Zadanie 1

Treść: Dodawanie momentu pędu i współczynnuki Clebscha-Gordana.

Rozwiązanie:
• Procedura Przez “dodawanie momentu pędu” rozumiemy przejście od bazy stanów własnych

operatorów momentu pędu (Ĵ21 , Ĵ1,z) i (Ĵ22 , Ĵ2,z) do bazy w przestrzeni Hilberta H = H1 ⊗H2, dla
której poszukujemy stanów własnych operatorów

Ĵ2 = ( ˆ⃗J1 +
ˆ⃗
J2)2, Ĵz = Ĵ1,z + Ĵ2,z. (1)

Istotne dla naszych obliczeń jest zauważenie, że

Ĵ2 = ( ˆ⃗J1 +
ˆ⃗
J2)2 = Ĵ21 + Ĵ

2
2 + 2Ĵ1,zĴ1,z + 2Ĵ1,xĴ1,x + 2Ĵ1,yĴ1,y. (2)

Dwa ostatnie człony możemy wyrazić poprzez operatory podnoszące / opuszczające rzut momentu
pędu

Ĵ1,xĴ1,x + Ĵ1,yĴ1,y =
1
4

(
Ĵ1,+ + Ĵ1,−

)(
Ĵ2,+ + Ĵ2,−

)
− 1
4

(
Ĵ1,+ − Ĵ1,−

)(
Ĵ2,+ − Ĵ2,−

)
=
1
2

(
Ĵ1,+Ĵ2,− + Ĵ1,−Ĵ2,+

)
. (3)

Otrzymujemy zatem kwadrat całkowitego momentu pędu wyrażony przez operatory jednociałowe,
które wiemy, jak działają na odpowiednie stany własne:

Ĵ2 = ( ˆ⃗J1 +
ˆ⃗
J2)2 = Ĵ21 + Ĵ

2
2 + 2Ĵ1,zĴ1,z +

(
Ĵ1,+Ĵ2,− + Ĵ1,−Ĵ2,+

)
. (4)

Konstrukcję stanów własnych rozpoczynamy od obserwacji, że istnieją dwa wyszczególnione stany,
które łatwo skonstruować. Mianowicie

|ψj1,j2j1,j2
⟩ = |j1, j1⟩ ⊗ |j2, j2⟩, |ψj1,j2−j1,−j2⟩ = |j1,−j1⟩ ⊗ |j2,−j2⟩. (5)

Stany te mają następujące własności

Ĵz|ψj1,j2±j1,±j2⟩ = ±ℏ(j1 + j2)|ψ
j1,j2
±j1,±j2⟩ (6a)

Ĵ2|ψj1,j2±j1,±j2⟩ = ℏ2 (j1(j1 + 1) + j2(j2 + 1) + 2j1j2) |ψj1,j2±j1,±j2⟩ =

= ℏ2(j1 + j2)(j1 + j2 + 1)|ψj1,j2±j1,±j2⟩. (6b)

Zatem są to stany własne operatorów Ĵ2 i Ĵz o całkowitym momencie pędu równym ℏ(j1+j2) ≡ ℏj∗
i o minimalnym / maksymalnym rzucie ±ℏ(j1 + j2). Mając stan o maksymalnym rzucie możemy,
tak jak w przypadku zagadnienia jednocząstkowego, skonstruować stany o niższym rzucie. Od tej
pory zonaczać będziemy stany dwucząstkowe przez wartość momentu pędu i rzut. Czyli mamy

|j∗, j∗ − 1⟩ = 1

ℏ
√
j∗(j∗ + 1)− j∗(j∗ − 1)

Ĵ−|j∗, j∗⟩ =
1

ℏ
√
2j∗

Ĵ−|j∗, j∗⟩ =

=
1

ℏ
√
2j∗

(
Ĵ1,− + Ĵ2,−

)
|j1, j1⟩ ⊗ |j2, j2⟩ =

=

√
j1
j∗
|j1, j1 − 1⟩ ⊗ |j2, j2⟩+

√
j2
j∗
|j1, j1⟩ ⊗ |j2, j2 − 1⟩. (7)

Konstrukcję tę możemy powtarzać aż dojdizemy do stanu |j∗,−j∗⟩. Łącznie w tej podprzestrzeni o
ustalonym j∗ jest, rzecz jasna 2j∗ + 1 stanów o różnych rzutach.



Stajemy teraz przez zadaniem skonstruowania stanów o mniejszym całkowitym momencie pędu.
Tu jednak z pomocą przychodzi nam obserwacja, że stan ortogonalny do powyższego, postaci

|ψ⟩ = −

√
j2
j∗
|j1, j1 − 1⟩ ⊗ |j2, j2⟩+

√
j1
j∗
|j1, j1⟩ ⊗ |j2, j2 − 1⟩ (8)

jest również stanem własnym Ĵz o wartości własnej ℏ(j∗− 1). Niemniej całkowity moment pędu jest
w tym przypadku równy ℏ(j∗− 1), co łatwo zweryfikować używając wyrażenia (4). Stany o niższym
rzucie w tej podprzestrzeni konstuujemy analogicznie, działając operatorem obniżającym.

Kolejne pytanie dotyczy tego, jak skonstruować stan o wartości momentu pędu ℏ(j∗ − 2). Widać,
że stany o wartości ℏ(j∗ − 1) i ℏj∗ ale o rzucie ℏ(j∗ − 2) są kombinacją iloczynu trzech stanów:
|j1, j1− 2⟩⊗ |j2, j2⟩, |j1, j1− 1⟩⊗ |j2, j2− 1⟩ oraz |j1, j1⟩⊗ |j2, j2− 2⟩. Te stany rozpinają trójwymia-
rową podprzestrzeń, zatem stan o całkowitym momencie pędu ℏ(j∗ − 2) należy skonstruować jako
prostopadły do tych dwu.

Tę skomplikowaną procedurę kontunuujemy, lecz musi się ona urwać, gdyż wymiar przestrzeni
dwuciałowej jest skończony i wynosi (2j1+1)(2j2+2). W następnym zadaniu wykażemy, że minimalna
wartośc, na której ta procedura się kończy, to |j1 − j2|.
•Współczynniki C-G
Jak wynika z rozważań z poprzedniej części, dodawanie momentu pędu prowadzi do powstania

|j,m⟩ =
∑
m1,m2

Cj1,j2(m1m2; jm)|j1,m1; j2,m2⟩, Cj1,j2(m1m2; jm) = ⟨j,m|j1,m1; j2,m2⟩. (9)

Wielkości te nazywamy współczynnikami Clebscha-Gordana i powyższe obliczenia pokazują, że
można je dobrać tak, by były rzeczywiste. Ponadto warto zauważyć, że suma po m1 i m2 nie jest
po całym zakresie zmienności tych wielkości, lecz narzuconu jest wiąz wynikający z tego, że

Ĵz|j,m⟩ = ℏm|j,m⟩ = ℏ
∑
m1,m2

Cj1,j2(m1m2; jm)(m1 +m2)|j1,m1; j2,m2⟩. (10)

Zatem musi zachodzić, po przeniesieniu na jedną stronę

ℏ
∑
m1,m2

Cj1,j2(m1m2; jm)(m1 +m2 −m)|j1,m1; j2,m2⟩ = 0. (11)

Zatem niezerowe współczynniki są tylko, gdy m1+m2−m. Ponadto możemy wyliczyć parę własności
C-G:

1) Jako że ⟨j,m|j′,m′⟩ = δjj′δmm′ , zatem

δj′jδmm′ =
∑
m1,m2

∑
m′1,m

′
2

Cj1,j2(m1m2; jm)Cj1,j2(m
′
1m
′
2; j
′m′)⟨j1,m1; j2,m2|j1,m′1; j2,m′2⟩

=
∑
m1,m2

Cj1,j2(m1m2; jm)Cj1,j2(m1m2; j
′m′). (12)

2) Ponadto korzystając z rozkładu jedynki w pełnej przestrzeni iloczynowej

1̂ =
j1+j2∑
j=|j1−j2|

j∑
m=−j

|j,m⟩⟨j,m| =
j1∑

m1=−j1

j2∑
m2=−j2

|j1,m1; j2,m2⟩⟨j1,m1; j2,m2|. (13)

Zatem zachodzi

δm1m′1δm2m′2 = ⟨j1,m1; j2,m2|j1,m
′
1; j2,m

′
2⟩ = (14)

= ⟨j1,m1; j2,m2|
∑
j,m

|j,m⟩⟨j,m||j1,m′1; j2,m′2⟩ =
∑
j,m

Cj1,j2(m1m2; jm)Cj1,j2(m
′
1m
′
2; jm)

(15)

3) Współczynniki C-G mają wiele symetrii, np.

Cj1,j2(m1m2; jm) = (−1)j1+j2−jCj1,j2(m2m1; jm), (16)

ale tego już nie będziemy dowodzić.



Zadanie 2

Treść: Wykaż, że procedura dodawania momentu pędu j1 i j2 daje minimalną wartość całkowitego
momentu pędu wynoszącą |j1 − j2|.

Rozwiązanie:
Zauważmy, że jeżeli oznaczymy przez j′ najmniejszą możliwą wartość momentu pędu, to musi być

zachowany wymiar przestrzeni, to znaczy

j1+j2∑
j=j′
(2j + 1) = (2j1 + 1)(2j2 + 1). (17)

Najpierw rozważmy przypadek, gdy j1 i j2 są liczbami naturalnymi. Wtedy, wprowadzając j∗ =
j1 + j2, mamy

j∗∑
j=0

(2j + 1)−
j′−1∑
j=0

(2j + 1) = (j∗ + 1)2 − (j′)2 = (2j1 + 1)(2j2 + 1). (18)

Stąd otrzymujemy

(j′)2 = (j1 − j2)2 ⇒ j′ = |ji − j2|. (19)

Gdy jedna z tych liczb jest połówkowa a druga naturalna. Wtedy zarówno j∗ jak i j′ są połówkowe,
zaś 2j∗ i 2j′ są nieparzyste. Wtedy możemy napisać

2j∗∑
k=2j′
(k + 1) = (2j1 + 1)(2j2 + 1), (20)

gdzie k przyjmuje tylko wartości nieparzyste. Wtedy korzystając z tego, że sumowanie po nieparzy-
stym k do nieparzystego n daje

n∑
k=1

k =
(
n+ 1
2

)2
,

n∑
k=1

1 =
n+ 1
2

. (21)

znów zapisujemy, jak poprzednio

2j∗∑
k=2j′
(k + 1) =

2j∗∑
k=1

(k + 1)−
2j′−2∑
k=1

(k + 1) =
2j∗ + 1
2

(
2j∗ + 1
2
+ 1
)
− 2j

′ − 1
2

(
2j′ − 1
2
+ 1
)

= (j∗ + 1)2 − (j′)2 = (2j1 + 1)(2j2 + 1), (22)

co prowadzi do tego samego wyniku co poprzednio.

Zadanie 3

Treść: Wyznacz stany całkowitego momenentu pędu dwu cząstek: jednej o j1 = 1, drugiej o
j2 = 1/2.

Rozwiązanie:

Korzystamy z ogólnego wyrażenia na rozkład stanu z przestrzeniH = H1⊗H2 na stany iloczynowe,
czyli

|j,m⟩ =
∑
m1,m2

C1,1/2(m1m2; jm)|j1,m1; j2,m2⟩. (23)

Oczywiście mamy dostępne możliwości: j = 3/2 i j = 1/2 o dpowiednio rzuty −3/2 . . . 3/2 oraz
−1/2 . . . 1/2. Stan o maksymalnym momencie pędu oraz maksymalnym / minimalnym rzucie otrzy-
mujemy poprzez iloczyn stanów jednocząstkowych o maksymalnym / minimalnym rzucie

|3/2,±3/2⟩ = |1,±1⟩ ⊗ |1/2,±1/2⟩ (24)



Teraz korzystamy z wyniku (7) z Zadania 1, czyli

|3/2, 1/2⟩ =
√
1
3
|1, 1⟩ ⊗ |1/2,−1/2⟩+

√
2
3
|1, 0⟩ ⊗ |1/2, 1/2⟩ (25)

Zadziałanie na ten stan sumą jednocząstkowych operaotrów obniżających daje

|3/2,−1/2⟩ =
√
2
3
|1, 0⟩ ⊗ |1/2,−1/2⟩+

√
1
3
|1,−1⟩ ⊗ |1/2, 1/2⟩ (26)

Pozostają nam stany o j = 1/2. Na mocy konstrukcji (8) mamy

|1/2, 1/2⟩ = −
√
2
3
|1, 1⟩ ⊗ |1/2,−1/2⟩+

√
1
3
|1, 0⟩ ⊗ |1/2, 1/2⟩ (27)

zaś obniżenie tu rzutu daje

|1/2,−1/2⟩ = −
√
1
3
|1, 0⟩ ⊗ |1/2,−1/2⟩+

√
2
3
|1,−⟩ ⊗ |1/2, 1/2⟩. (28)

Zadanie 4

Treść: Stan nazywamy niezmiennyczym ze względu na obrót, jeżeli zachodzi ˆ⃗J2|ψ⟩ = 0. Rozważmy
dwie cząstki o momencie pędu j1 i j2.

a) Jaki musi być związek między j1 i j2, by można było otrzymać stan dwucząstkowy niezmien-
niczy ze względu na obrót?

b) Znajdź związek między współczynnikami CG wynikający z faktu, że dla tego stanu zachodzi
Ĵ+|ψ⟩ = 0.

c) Na tej podstawie, wykaż, że współczynniki CG dane są wyrażeniem

Cjj(m;−m; 00) =
(−1)j−m√
2j + 1

(29)

d) Z kolei na podstawie tego wyniku by znaleźć wyrażenie na dodawanie harmonik sferycznych

Pl(â · b̂) =
4π
2l + 1

l∑
m=−l

(−1)mYl,m(â)Yl,−m(b̂), (30)

gdzie â i b̂ to wersory. W tym celu wykaż, że funkcja

Fl(â, b̂) =
l∑

m=−l

(−1)m√
2l + 1

Yl,m(â)Yl,−m(b̂), (31)

zależy tylko od iloczyny skalarnego â · b̂, jest zatem niezmiennicza ze względu na obroty. Biorąc
ˆ⃗a = (sin θ cosφ, sin θ sinφ, cos θ), b̂ = (0, 0, 1) wyprowadź wyrażenie na dodawanie harmonik
sferycznych.

Rozwiązanie:

a) Stan niezmienniczy ze względu na obrót to taki, który ma zerowy moment pędu, oznaczymy
go zatem jako |0, 0⟩. Zatem musi zachodzić j1 = j2. Tylko wtedy stan o minimalnym całkowitym
momencie pędu będzie miał j = |j1 − j2| = 0.

b) W szczególności, dla tego stanu zachodzi

Ĵ+|0, 0⟩ = 0. (32)

Zauważmy, że stan ten można wyrazić przez C-G jako

|0, 0⟩ =
∑
m

Cj,j(m,−m; 0, 0)|j,m; j,−m⟩. (33)



Działając na ten stan operatorem podnoszącym, otrzymujemy

Ĵ+|0, 0⟩ = ℏ
∑
m

Cj,j(m,−m; 0, 0)(
√
j(j + 1)−m(m+ 1)|j,m+ 1; j,−m⟩

+
√
j(j + 1) +m(−m+ 1)|j,m; j,−m+ 1⟩) = 0. (34)

Zmieniamy indeks sumowania na przykład w drugiej parze stanów i otrzymujemy

0 =
∑
m

[Cj,j(m,−m; 0, 0) + Cj,j(m+ 1,−m− 1; 0, 0)]
√
j(j + 1)−m(m+ 1)|j,m+ 1; j,−m⟩ (35)

a zatem musi zachodzić

Cj,j(m,−m; 0, 0) + Cj,j(m+ 1,−m− 1; 0, 0) = 0. (36)

c) Powyższy związek rekurencyjny można uzyskać na przykład przyjmując

Cj,j(m,−m; 0, 0) = Nj(−1)j−m, (37)

gdzie fazę dobraliśmy tak, żeby Cj,j(j,−j; 0, 0) > 0, a zatem stała normująca musi spełniać Nj > 0.
Stałą normalizującą wyznaczamy ze związku (12), czyli

δj′jδmm′ =
∑
m1,m2

Cj1,j2(m1m2; jm)Cj1,j2(m1m2; j
′m′). (38)

Dostosowujemy ten wzór do naszego przypadku, czyli otrzymujemy warunek∑
m

C2j,j(m,−m; 0, 0) = 1. (39)

Podstawiamy pod sumę wyrażenie (37) i otrzymujemy Nj = 1/
√
2j + 1, czyli

Cj,j(m,−m; 0, 0) =
(−1)j−m√
2j + 1

. (40)

d) Następująca kombinacja

l∑
m=−l

(−1)l−m√
2l + 1

Yl,m(â)Yl,−m(b̂) (41)

jest niczym innym, jak reprezentacją położeniową wyrażenia (33) po uwzględnieniu wyniku (40).
Wyrażenie powyższe musi zatem zależeć tylko od skalara â · b̂. Rozważmy przypadek szczególny
ˆ⃗a = (sin θ cosφ, sin θ sinφ, cos θ), b̂ = (0, 0, 1), który daje

Yl,m(b̂) =

√
2l + 1
4π

δm,0 (42)

oraz

(−1)l√
4π

Yl,0(â) =
(−1)l

4π

√
2l + 1Pl(cos θ). (43)

Używając â · b̂ = cos θ otzrymujemy, że ogólne wyrażenie ma postać

l∑
m=−l

(−1)l−m√
2l + 1

Yl,m(â)Yl,−m(b̂) = (−1)l
√
2l + 1
4π

Pl(⃗a · b⃗) (44)

lub, korzystając z (−1)−m = (−1)m, otrzymujemy

Pl(⃗a · b⃗) =
4π
2l + 1

l∑
m=−l

(−1)mYl,m(â)Yl,−m(b̂). (45)


