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Rozdzial 1
Rys historyczny

Narodziny mehcaniki kwantowej — od zauwazenia “rys” na gmachu zbudowanym z klasycznych teo-
rii, po koncem sformutowanie réwnania Schrodingera i nadanie mu interpretacji — to zlozony proces
roztozony na wiele lat. Jednym z najwazniejszych przyktadéw jest promieniowanie ciala doskonale
czarnego, czyli (na przyklad) szesciennego pudetka, ktorego $cianki sa w rownowadze termicznej
(maja ustalona temperature) i sa “doskonale czarne”, czyli pochtaniaja calte padajace na nie promie-
niowanie.

1.1 Cialo doskonale czarne i stala Plancka

Klasyczny (czyli wywodzacy sie z rownan Maxwella) opis tego zjawiska, w szczegolnoscei ilosé energii,
ktora wypromieniowuje taki obiekt, prowadzi do niefyzycznych wynikow — im wieksza czestosé
Swiatlta, tym wiecej energii, zatem catkowita ilog¢ energii, rozumiana jako catka po gestosci energii,
jest nieskoriczona. Zjawisko to, czyli “katastrofa w ultrafiolecie”, bylo jednym z istotnych signatow,
ze klasyczny opis §wiata jest niekompletny.

Max Planck zaproponowal, by do opsiu tego uktadu wprowadzi¢ pojecie fotonu, czyli niepodziel-
nej czastki §wiatta. W odréznieniu od klasycznej elektromagnetyki, w ramach ktorej energia £ pola
elektromagnetycznego zalezy od jego natezenia

£ /d?’r (1B 0P + 18 0P), (1.1)

Planck zapostulowal, by przyjaé, ze energia pojedynczego fotonu jest proporcjonalna do jego czesto-
$ci, czyli

Eo=hv=h— =, (1.2)
2T

gdzie wspoélezynnik propocjonalnosci h nazywamy “stata Plancka”, za§ h = % “zredukowana stala
Plancka”. Jest to pierwszy omawiany przez nas przyklad na “skwantowanie” wielkosci fizycznej, czyli
na wymuszenie, by sktadala sie z porcji, a nie byta wielkoscig ciagla. Wprowadzenie tego postulatu
okazuje si¢ ‘“ratowac¢” cialo doskonale czarne. Katastrofa w ultrafiolecie juz nam nie grozi, energia
uktadu jest skoniczona i — co najwazniejsze — rozklad spektralny energii jest zgodny z obserwacjami.
Waunkiem jest dobranie wartosci statej Plancka (od tej pory okresla¢ tak bedziemy 7), tak by krzywa
doswiadczalna pokrywatla sie z ta wysnuta z rozwazai Plancka. Daje to, w przyblizeniu, niezwykle



mala wartosé
B~ 1.055 x 10734] - s. (1.3)

Widaé, ze i ma wymiar momentu pedu [co jest oczywiste juz na poziomie réwnania (1.2)]. Porow-
nujac wartosé stalej Plancka z momentem pedu, na przyklad wazacej 1 ug czastki poruszajacej sie
po okregu o promieniu 1 pum z predkoscia katowa 1 Hz, otrzymujemy, ze & jest jeszcze okolo 16
rzedoéw wielkosci mniejsza. Jezeli jest tak (a bedziemy to argumentowaé w kolejnych rozdzialtach),
ze h zadaje w jakims$ sensie skale zjawisk kwantowych, nic dziwnego, ze tak dlugo zajeto odkrycie
tak subtelnych efektow.

1.2 Od atomu wodoru do réwnania Schrodingera

Od postulatu Plancka (1.2) do w pelni sformutowanej mechaniki kwantowej daleka droga. Kluczowe
znaczenie w tym procesie miato zagadnienie stabilnosci atomow. Od czaséw doswiadczenn Rutherforda
wiadomo bylo, ze atomy maja strukture planetarng — w $rodku atomowego “uktadu stonecznego”
znajduje sie masywne, dodatnio natadowane jadro atomowe, za$ elektrony “kraza” po orbitach®.
Planetarny model atoméw ma jedna fundamentalng wade — jest jawnie sprzeczny z pewnymi
danymi do$wiadczalnymi. Mianowicie, elektrodynamika klasyczna przewiduje, ze kazdy obiekt obda-
zony tadunkiem, a poruszajacy sie ruchem innym niz jednostajnym prostoliniowym, emituje promie-
niowanie elektromagnetyczne, a zatem traci energie. W konsekwencji, wszystkie atomy powinny by¢
niestabilne, gdyz orbity, po ktoérych kraza elektrony powinny z czasem sie zaciesnia¢, skutkujac tym,
ze czastki te spadatyby ruchem spiralnym na jadro atomowe. Co wiecej, skale czasowe, na ktorych
takie zjawiska by zachodzily, sa “astronomicznie” kréotkie. Dochodzimy zatem do sprzeczno$ci: zadna
materia we Wszech$wiecie nie moze by¢ stabilna, a taki §wiat, jaki znamy, nie moze istniec.

1.2.1 Model Bohra atomu wodoru

Na pomoc przyszedl Niels Bohr, ktéry zaproponowal, by “uwiezi¢” elektrony na orbitach kotowych,
na ktorych warto$é wektora ich momentu pedu jest caltkowita wielokrotnoscia pewnej statej. Jedynym
znanym kandydatem na taka wielkosé byla stata Plancka, stad postulat Bohra przybral postaé:

L =mevr =nh, neN. (1.4)

Porownujac sile odsrodkowa oraz przyciaganie Coulomba, otrzymujemy, ze dla atomu wodoru za-
chodza nastepujace wyrazenia dla promienia r,, oraz energii F,
h? ke* 1

2 E €

, Bn=——— (1.5)

Tn .
2 r,

ke2m,

Zatem energia skaluje sie odwrotnie do kwadratu gtownej liczby kwantowej, a jej najmniejsza wartosé,
zwana “energia Rydberga”, wynosi [przyjmujac wartos¢ statej Plancka z rownania (1.3)]

E; =Ry = —13.6eV. (1.6)

Model Bohra jest w bardzo sporym stopniu zgodny z danymi do§wiadczalnymi. Stosujac nastepujaca
interpretacje: przeskok elektronu z jednej powtoki do drugiej, czyli zmiania n na m w rownaniu (1.5),

1O koniecznoséci postawienia tego drugiego cudzystéowu dowiemy si¢ a posteriori, to znaczy gdy nauczymy sie
kwantowego opisu ukltadéw atomowych.



zwiazany jest z emisja badz absorpcja porcji §wiatta, otrzymujemy, ze energia fotonu wynosi

1 1
Badajac widmo wypromieniowanego przez atom wodoru $wiatta mozna zaobserwowaé zbior “linii
widmowych”, ktorych polozenia przewiduje powyzsze rownanie. Wyrazenia (1.5) to drugi, po (1.2),
przyktad na kwantowanie wielkosci fizycznych. To, co zaskakujace, to ze ponownie pojawia sie tu
stata Plancka, mimo ze zagadnienie jest diametralnie inne od rozwazanego wczesniej promieniowania
ciata doskonale czarnego.

Postulat de Broglie’a

W kolejnych latach badacze préobowali, poczatkowo bezskutecznie, rozwiklta¢ zagadke modelu Bohra
— jakie mianowicie prawo fizyczne stoi za tym modelem? Poki co, byt on konsekwencja wyjetego z
kapelusza postulatu (1.4), bez zadnego glebszego uzasadnienia. Czesciowa odpowiedz na to pytanie
zaproponowal w ramach swojej pracy doktorskiej Louis de Broglie: zatézmy, ze tak jak fotonom
mozna przypisa¢ dlugosé fali i opisywaé promieniowanie elektromagnetyczne w ramach klasycznych
rownann Maxwella, tak mozna i czastkom masywnym. W przypadku fotonéw pierszych méwimy o
wektorze falowym k = 27”, za$ ped fotonu wyraza sie przez zwiazek p = ¢ - k.
Moze analogicznie mozna napisaé dla elektronu:

Pe = Mev = const - k 7 (1.8)
Wektor falowy k zwiazany bylby z dlugoscia fali materii A. za$ stala proporcjonalnosci znéw ma
wymiar momentu pedu, czy stalej Plancka. Postulujemy zatem, za de Broglie’em:
27
1

Korzystajac z rownania (1.4) oraz z wyrazenia na promien r,,, otrzymujemy, ze elektrony znajduja
sie na orbitach, dla ktorych zachodzi

Pe = hk =h (19)

An = 2magn, (1.10)

gdzie ag = 1 ~ 0.5x107'° m nazywamy promieniem Bohra. Zatem warunek kwantowania momentu
pedu odpowiada rezonansowemu warunkowi, przypominajacemu na przyklad zagadnienie drgajacej
struny przymocowanej na koricach: na orbicie musi sie miescié¢ catkowita wielokrotno$¢ pewnej statej.
Spostrzezenie to stawia dotychczasowe obserwacje w zupelnie nowym $wietle. Czyzby elektrony
byty falami? Co mialtoby to znaczy¢? I wreszcie: czy istnieje rownanie falowe, ktore je opisuje?

1.3 Rownanie falowe: Maxwell vs. Schrodinger

Zanim przejdziemy do zapostulowania rownania Schrédingera dla czastki masywnej, wro¢my do
$wiata klasycznego i przypomnijmy komplet rownan Maxwella w préozni:

oD
H= " 1.11
V x 5 (1.11a)
0B
E=— 1.11
V x 5 (1.11b)
V-B=0 (1.11c)

V-D=0, (1.11d)



gdzie B = puoH, D = ¢E oraz ugeg = ¢ 2. Ze zwigzkéw tych mozna wywiesé réwnanie falowe
poprzez przemnozenie wektorowo przez V rownania (1.11a), czyli przez policzenie stronami rotacji
tego roéwnania, otrzymujac

VZE - — —— =0. (1.12)
C

Jest to rownanie falowe dla pola elektrycznego. Wyprowadzajac je skorzystaliSmy ze zwiazku V x
(VxA) =V (V-A)—V2A, gdzie A jest dowolnym, dwokrotnie rézniczkowalnym polem wektorowym.
Rozwiazanie tego réwnania jest postaci

E(r,t) = e &eter—ert) (1.13)

gdzie ey jest jednostkowym wektorem polaryzacji, spelniajacym ey - k = 0, za$ & jest amplituda
pola elektrycznego. By spetnione bylo rownanie (1.12), zwiazek dyspersyjny taczacy czestotliwosé wy
z dhugoscia wektora falowego k = |k| dla swobodnego pola jest postaci wy = ke, a zatem [korzystajac
z rownania (1.2)]

E), = hwy, = hke. (1.14)

Predkosé¢ grupowa zdefiniowana jako pochodna czestosci po wektorze falowym, wynosi w tym przy-
padku po prostu c. Jezeli, podazajac za propozycja de Broglie’a, przypiszemy elektronowi (i innym
czastkom masywnym) dlugosé fali A, to zwiazek dyspersyjny dla zagadnienia swobodnego powinien
mieé postaé

p? _ h2k? h o

FE, = = — = = —k~. 1.1
k=T 2m 2m Wk ka (1.15)

Predko$¢ grupowa wynosi zatem

Owr, hk p 2m
Y T (1.16)
Jest to zatem zwigzek bardziej ztozony niz dla swobodnego pola elektrycznego.

Schrodinger, referujac wyniki de Broglie’a na jednym z seminariéw, zapytany zostal o rzecz
nastepujaca: skoro zwiazek dyspersyjny dla pola elektrycznego jest konsekwencjg réwnania falo-
wego (1.12), to czy mozna zaproponowaé¢ analogiczne réwnanie dla “fali materii”? Poczatkowo,
Schrédinger nie potrafit udzieli¢ odpowiedzi na to pytanie. Po paru tygodniach przyniost rozwigzanie,
a jego rozumowanie byto nastepujace.

Zaltozmy, ze fala materii zwiazana z czastka swobodna, analogicznie do przypadku pola E, réwniez
jest fala pltaska, dana wyrazeniem

(7, t) oc el FT=wnt), (1.17)

By spetniony byt zwiazek (1.15), z lewej strony musi pojawié sie czestos¢ w pierwszej potedze (jedno-
krotne rozniczkowanie po czasie), zas z prawej wektor falowy w kwadracie (dwukrotne rozniczkowanie
po polozeniu). Jak nie trudno zgadnaé, réownanie na fale ¢ jest postaci

LA

ihOyb(F ) = V2 (7, t). (1.18)



Liniowy operator rézniczkowy po prawej stronie, dzialajac na fale ptaska, zwraca jej energie kine-
tyczna, czyli

2 o 21.2 o 2 o
2h eri(khF—wkt) _ h2 k ei(k'F_Wkt) — %ei(k~F—wkt). (119)
m m m

Zatem operator ten oznaczamy, przez analogie do energii kinetycznej w hamiltonowskim sformuto-
waniu mechaniki klasycznej, jako

h? o2

A
2m

(1.20)
Rownanie (1.19) nazywamy swobodnym réwnaniem Schrodingera i z samej jego konstrukeji wiemy,
ze jego rozwiazaniem jest fala plaska (badz dowolna ich kombinacja liniowa, jako Ze réwnanie to jest
liniowe w ).

Poniewaz energie kinetyczna w mechanice hamiltonowskiej oznaczmy przez

2
T=2_ (1.21)
2m
gdzie p jest pedem kanonicznym, zatem przez analogie zapisujemy w mechanice kwantowej
9
2 p 5 h
T==, p=-V. 1.22
5 D=7 (1.22)
Oznacza to na przyklad, ze operator xz-owej sktadowej pedu ma postaé
h 0O
Py = ——. 1.23
e =S50 (1.23)

Kolejnym krokiem jest postulat rownania w obecnosci zewnetrznego potencjatu V(7,t). W tym
przypadku, poprzez analogie do zagadnienia klasycznego, gdy konstruujac Hamiltonian do energii
konetycznej dodaje sie energie potencjalna, rowniez dla czastki kwantowej postulujemy

ihOpp (7, t) = —%vuv(f,t) V(7 t). (1.24)

Jest to pelne réwnanie Schrodingera na funkcje falowa ¢ dla pojedycznej czastki o masie m w
potencjale V. Operator dziatajacy na funkcje falows z prawej strony tego réwnania nazywamy Ha-
miltonianem i oznaczamy

. h? 9

H=-—V"4+V(Z1). 1.25

V(@) (1.25)

Pozostata czesé tego wykladu poswiecona bedzie badaniom wlasnosci tego rownania i jego rozwiazan
w konkretnych uktadach fizycznych.






Rozdzial 2

Stan, reprezentacje, itp.

2.1 Stan

Rownanie Schrédingera w postaci (1.24) jest rownaniem rozniczkowym czastkowym, drugiego rzedu.
Poniewaz jest ono liniowe, innymi stowy

H: L*(C) — L?*). (2.1)

Operator H mozna wyrazi¢ w innej bazie przestrzeni Hilberta, nie koniecznie zwiazanej ze zmienng
x. W ogdlnoéci stosowaé bedziemy notacje na wektor w tej przestrzeni

Y@, 1) = [9(t). (2.2)

Oznaczenie |¢) (zamiast tradycyjnie uzywanego 15 dla elementow przestrzeni wektorowej) pochodzi
od Paula Diraca, i te forme zapisu nazywamy notacja Diraca.

W kolejnym kroku, wprowadzamy operator potozenia &, co d ktorego zakladamy, ze jest opera-
torem hermitowskim, czyli

it =z, (2.3)

gdzie T oznacza sprzezenie zespolone i transpozycje zarazem. Operator hermitowski ma rzeczywiste
wartosci wlasne, a zatem

Zlx) = z|z), zeR. (2.4)
Rozktad spektralny tego operatora ma posta¢ (w przypadku dyskretnym i ciagltym)

= Zm|x>(m|, lub &= /dxx|x)<x\ (2.5)

x

za$ rozne |x) sg ortonormalne, czyli w przypadku dyskretnym i ciagtlym mamy
(]a') = bppr, ub  (z]2') =6(z — 2'). (2.6)

Od tej pory bedziemy zaklada¢, w ramach pewnej idealizacji, ze £ ma spektrum ciagle. Poniewaz
zbibr stanéw wilasnych operatora hemrotowskiego rozpina przestrzen, mamy zatem

/dw|x>(m| =1. (2.7)

11



Funkcje falows ¢ (Z, t) nalezy zrozumieé¢ jako wspolezynniki rozkladu wektora [ (¢)) w bazie stanow
wlasnych |z). Wektor [¢(t)) od tej pory nazywamy stanem uktadu. Mamy zatem

ww»zjﬁfwfwu% (2.8)

za$ korzystajac z ortonormalnodci i rzutujac na |x), otrzymujemy

@wmri/mw@wmmwz¢mw. (2.9)
Zachodzi zatem kluczowy zwiazek:

P(T,t) = (x[v(t)). (2.10)
Rownanie Schrodingera ma zatem ogdlna postac

alv(0) = By, A= 1 v, (211)

gdzie postaé¢ operatoréow p zalezy od wyboru bazy.

2.2 Reprezentacja pedowa

Z przyczyn czysto fizycznych (a zatem empirycznych), oprocz reprezentacji potozeniowej wyrézniona
jest reprezentacja pedowa, czyli taka, gdzie stan rzutujemy na stany wtasne operatora pedu

Y(p,t) = (plY(2)). (2.12)

W tej bazie Hamiltonian ma postaé

A~ p R
H=—+V(z 2.13
v vi), (213)
innymi stowy dzialanie operatorem pedu jest mnozeniem przez liczbe. Przedstawimy teraz rozumo-
wanie, ktére pozwoli nam przechodzi¢ miedzy tymi dwiema wyréznionymi reprezentacjami.
Mianowicie, przypomnijmy, ze operator pedu w reprezentacji potozeniowej ma postaé

h o
Py = ——. 2.14
b 1 Ox ( )
Zatem stan wlasny operatora pedu w reprezentacji polozeniowej to fala ptaska, czyli
1 .
z) = (z|p) = ——=eP/", 2.15
gdyz dzialanie operatora pedu na te funkcje falowa daje
.1 & 1 & 1
" e = hk——=¢e""" = e, 2.16
P vV 2mh 2mh P 27h ( )

Powod, by wprowadzié¢ czynnik normalizacyjny \/ﬁ okaze sie jasny jeszcze w tej sekcji.



Poprzez sprzezenie hermotowskie wyrazenia (2.15) dostajemy reprezentacje pedows stanu wla-
snego operatora polozenia, czyli

0e(p) = ((zlp)) = (plz) = %’“ (217)

mozemy zatem od razu odczytaé, ze operator polozenia w reprezentacji pedowej ma postac

. .0 0
Zp —z% ih a—p (2.18)

Pozostaje nam wyznaczy¢ zwiazek miedzy dwiema reprezentacjiami. Korzystajac z (2.7), otrzumy-
jemy

b(z) = (alp) = / dplz||p)pll) = / dpe'% (2.19)

i na odwrot przy przejsciu z reprezenacji polozeniowej do pedowej. Zatem zwiazek miedzy reprezen-
tacjami dany jest przez transformate Fouriera.

2.3 Regula komutacyjna i zasada nieoznaczonosci

Zauwazmy, ze komutator operatora polozenia i pedu, wyznaczony na przyktad w reprezentacji po-
tozeniowej, wynosi

o [aho]_ho (ho N_ mo (b, noY_
[x’p]_[x’iax] o <zc’9x> i dx (z’+ 28x>_m' (2.20)

Zatem operatory polozenia i pedu nie komutuja, co pociaga za soba nastepujaca konsekwencje. Roz-
wazmy dwa operatory hermitowskie dziatajace na tej samej przestrzeni Hilberta, A i B. Wyznaczmy
wariancje kazdego z nich na stanie |1), to znaczy

0% = (WI(X = (X))*|9), (2.21)
gdzie X = A lub B. Wprowadzmy dwa stany:
[x) = (X = (X))[9), (2.22)
moéw z X = A lub B. Mamy zatem
ox = (Yx|ix). (2.23)

Zauwazmy, ze na mocy nieréwnosci Cauchy-Schwarza, mamy

ohoh = (Walva)(Wplve) = [(Walvs). (2.24)

Prawa strona tej nieré6wnosci wynosi

|<wA|¢B>|

I |
(WA~ (A)(B — (B) ) WI(B ~ (B)(A — (A)v) (2.26)



Wprowadzmy dwa operatory
AX =X — <X> : (2.27)
gdzie X = A lub B, za$ érednia policzona jest na stanie |¢)). Zauwazmy nastepnie, ze

A A 1 ~ N 1 ~ N
AAAB = §[AA’ AB]+ i{AA’ AB}, (2.28)
gdzie symbol {Z, §} = & + §& nazywamy antykomutatorem. Poniewaz AiB sa hermitowskie, wiec
odpowiednio komutator i antykomutator sa antyhermitowskie i hermitowskie, a co za tym idzie, ich
wartosé srednia jest odpowiednio czysto urojona i rzeczywista. A Zatem, korzystajac z nier6wnosci
Cauchy-Schwarza, mamy

- . ~ A\ |2 1 ~ N 1 ~ .
(BB > [(AAABY| = (A4 AB) 2 + (A4 ABDI, (2:29)

Pomijajac drugi czton, otrzymujemy “standardows” zasade nieoznaczonosci Heisenberga

(AA)*){(AB)*) = J[([AA, AB). (2.30)

RNy

W szczegolnosei, biorac za A i B operatory polozenia i pedu, otrzymujemy

h2

(A2 N(Bp)?) = (2.31)

lub biorac stronami pierwiastek

N St

AzAp > —. (2.32)



Rozdziatl 3

Pomiar, postulaty, interpretacja

Droga od “katastrofy w ultrafiolecie”, przez model Bohra atomu wodoru po réwnanie Schrédingera
zajeta ponad dwadziescia lat. Ale czy mozna powiedzieé, ze po jej przebyciu zrozumienie praw
przyrody sie poglebilo? Postulat de Boglie’a jest dalece niejasny — jak interpretowac to, ze masywnej
czastce, bedacej w przyblizeniu punktem materialnym, przypisujemy dtugosé fali?

Roéwnanie Schrodingera opisuje ewolucje czasowa obiektu, ktory nazwaliSmy funkcjq falowg. Ale
czym ona jest? Skoro, w og6lnosci, jest ona obiektem rozciaglym, to jak polaczyé ten byt z inter-
pretacja czastki jako punktu materialnego?

Nie opiszemy tu calego procesu poznawczego, ktory doprowadzil do wspolczesnie obowiazuja-
cej interpretacji mechaniki kwantowej. Przedstawimy po prostu jej postulaty i méwimy po krotce
plynace z nich wnioski.

1.

Mechanika kwantowa (jednej czastki) jest teoria opisujaca ewolucje funkcji falowej (7, t) za-
dana réwnaniem Schrodingera .

. Funckja falowa ma interpretacje probabilistyczna: prawdopodobienistwo znalezienia czastki w

otoczeniu punktu 7 dane jest przez

p(7, t)d>r = | (Z, t)|>d>r. (3.1)

7 tego wynika, ze funkcja falowa musi by¢é unormowana, musi byé¢ zatem “catkowalna z kwa-
dratem”, czyli fizyczne rozwiazania to takie, gdy ¢ € L?(C) oraz zachodzi

/p(F, t)d3r = / [ (F, t)|2dPr = 1. (3.2)

Wielkosciom fizycznym przypisyjemy obserwable, czyli operatory hermitowskie o rozktadzie
spektralnym

A= Zai|ai><ai| (3.3)

Pomiar wielkosci A odpowiada rzutowaniu stanu |) na jeden ze stanow whasnych A. W wyniku
pomiaru uktad przechodzi zatem

|’(/}> pomiar |a2><al|‘/¢)> unormowanie |a,Z> (3.4)
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6. Mechanika kwantowa jest teoria statystyczna. Nie mozna stwierdzi¢, w jakim stanie |a;) znaj-
dziemy uklad w wyniku pomiaru A. Mozemy jedynie wyznaczy¢ prawdopodobienistwo znalezie-
nia ukladu w stanie |a;). Reguta Borna moéwi, ze wynosi ono

plai) = (Yllaifail|l¥) = [{ail)]?. (3.5)
Wielkosé <1/J|X |1} nazywamy wartosciqg Srednig operatora X.

Postulaty te sa wysoce niejasne. Co to znaczy, ze wynikom pomiaru mozna tylko przypisaé
prawdopodobienistwo? Czy mechanika kwantowa jest fundamentalnie losowa? Jezeli tak, to jaki jest
stan ukladu przed pomiarem? Czy w ogble ma sens mowienie o wlasnosciach uktadu przed aktem
obserwacji? Jezeli nie, to jaka jest rola obserwatora? Czy swoim wplywem na uklad nadaje mu on
wtasnosci fizyczne? A skoro tak, to czy ten proces wymaga Swiadomosci?

Sa to pytania, na ktére nie znamy odpowiedzi. W ramach interpretacji kopenhaskiej mechaniki
kwantowe] przyjmujemy postawe minimalistyczna, to znaczy méwimy, ze nie wiemy, jaki jest realny
stan uktadu i czy w ogole on istnieje. Stan |¢) i z wiazana z nim teorie traktujemy jedynie jako metode
opisu. Jedyne, do czego mamy dostep, to pomiar, a jedyne, co mozna okresli¢ deterministycznie, to
prawdopodobienistwo wyniku.

Sa liczne inne proby interpretacji mechaniki kwantowej. Na przyktad teoria wielu Swiatow Eve-
retta mowi, ze funkcja falowa, w wyniku pomiaru nie zapada sie¢ do jednego wyniku, lecz ze obser-
wator/ka widzi wszystkie mozliwosci na raz, lecz nie jest tego Swiadoma/y.

Jako ze obecnie spor jest nierozstrzygalny, w dalszej czesci traktowaé¢ bedziemy mechanike kwan-
towa jako metode obliczeniows i pokazemy, jakie s jej przewidywania probabilistyczne.



Rozdzial 4

Rozwigzania rownania Schrodingera
w jednym wymiarze

Przedstawiliémy zarys procesu powstawania nowej teorii — mechaniki kwantowej. Rzecz jasna, zarys
ten jest wyrywkowy i stanowi jedynie wstep do gtebszej refleksji nad historig teorii kwantow. Mozemy
teraz przejs¢ do kolejnego etapu — poszukiwania rozwigzan rownania Schrodingera w najprostszych
jednowymiarowych przypadkach. Kanonem zagadnien, ktore sie w tym kontekscie rozwaza sa: czastka
swobodna, czastka w prostokatnej skoniczonej/nieskoriczonej studni oraz jednowymiarowy kwantowy
oscylator harmoniczny. Na wykladzie rozwazymi pierwsze i trzecie z nich, zas zagadnienia zwiazane
z jednowymiarowymi studniami potencjatu przedyskutujemy na ¢éwiczeniach.

4.1 Czastka swobodna

Zaczynamy od najprostrzego mozliwego zagadnienia: czastki swobodnej w 1D. Stajemy zatem przed
zagadnieniem rozwiazania réwnania Schréodingera w postaci

h2 82
2m 922

ihou(z,t) = b(a,t). (4.1)

Poszukujac rozwiazania, wygodnie jest przej$¢ do reprezentacji pedowej, to znaczy zapisa¢ rownanie
Schrodingera jako

A2
ihd(p,t) = 21 (p, ). (4.2)

Zaleta tego sformutowania jest fakt, ze operator pedu dziata na ¥ (p,t) jak mnozenie przez liczbe,
otrzymujemy zatem

2
B (p. 1) = 5 (P 1), (43)

Jest to liniowe réwnanie rézniczkowe pierwszego rzedu, mozemy zatem od razu podaé¢ rozwigzanie
L2
P(p,t) = e Tamtap(p, 0). (4.4)
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Pytanie teraz o warunek poczatkowy, to znaczy o to, jakie jest ¥(p,0). Jezeli przyjmiemy, ze jest to
gaussowska paczka falowa postaci

b(p,0) e (4.5)

oraz narzucimy warunek normalizacji

/ b0 —  9(p,0) = e *7F (4.6)

otrzymamy wtedy

1 _p 2
b(p,t) = ——me FeiFm, (4.7)
Vo,
Mozemy nastepnie wyznaczy¢ reprezentacje potozeniowa, korzystajac z rownania (2.19). Mamy
_2 2
e *belamAt, (4.8)

Y(z,t) dp e*y(p,t) =

L L [
\/ V2rh /7o,
Catkujemy poprzez zebranie do pelnego kwadratu 1 wykonanie calki gaussowskiej, otrzymujac

P(z,t) = ;([Z\/lﬁe_zdgz(t), (4.9)

gdzie

2
o, hm

2()-ﬁQ(1 —it>. (4.10)

SprawdzZmy najpierw, czy rzeczywiscie ewolucja jest unitarna, czyli czy zachowana jest norma funkcji
falowej. Zapisujac

o2(t) = a —if, a=—5 B=— (4.11)
mamy

e 2482 = Y ¢

2 _
W(%f” - \/mﬁap \/mﬁ

Widaé¢ zatem, ze podstawiajac y = =z, /ﬁﬁz i dokonujac zamiany zmiennych przy catkowaniu,

h 1l am o Ve L ety (4.12)

otrzymujemy unormowana funkcje falowa.
Mozemy nastepnie wyznaczy¢ szerokos¢ paczki falowej, to znaczy

0x(t) = V/(2?) — (2)?, (4.13)

Poniewaz funkcja falowa (4.12) nie ma przesuniecia, wiec () = 0. Natomiast jej szerokosé odczytu-
jemy natychmiast z prawej strony tego rownania, otrzymujac

2 2 2 2
_ Ll jerd st 1 n (ot (4.14)
2 o 2 0'% m



W szczegolnoscei, widzimy, ze dla duzych czasoéw rozplywanie jest liniowe w czasie, mianowicie

2> pm lo,t
= (t L 4.15
o2 (1) = (415)
Na koricu zauwazmy, ze zasada nieoznaczonosci daje nam
h o2t\?
(D)o, (t) = =1/1 L), 4.16
ra0,0) = 511+ (72 (1.16)

jest ona zatem nasycana tylko w t = 0.

4.2 Oscylator harmoniczny

Kolejnym zagadnieniem, ktore “bierzemy na warsztat” jest jeden z kluczowych probleméw w jed-
nociatowej mechanice kwantowej — jednowymiarowy oscylator harmoniczny. Hamiltonian dla tego
zagadnienia ma postaé

@2 (4.17)

Naszym zadaniem bedzie przedyskutowaé zagadnienie niezalezne od czasu, czyli znalezé rozwiazanie
zagadnienia wlasnego

Rozwiazanie mozna wyznaczyé¢ na dwa podstawowe sposoby: analitycznie i algebraicznie. Rozwig-
zania analitycznego poszukamy na ¢wiczeniach, tu przedstawimy rozumowanie algebraiczne. Rozu-
mowanie zaczynamy od spostrzezenia, ze z kwantowym oscylatorem harmonicznym zwigzana jest
jednostka dlugosci

h
=4/ —. 4.19
a0 mw ( )

Korzystajac z tej wielkosci, konstruujemy niehermitowski, bezwymiarowy operator

. 1 (% .pag
= — | — — . 4.2
a 7 (ao +1 W > (4.20)

Operator ten, zwany operatorem anihilacji, wraz ze swym sprzezeniem hermotowskim (operatorem
kreacji) daje nastepujaca regute komutacyjna

a,af] = 1. (4.21)

Odwrac relacje (4.20), czyli wyznaczajac & i p w funkeji a i af, i podstawiajac do Hamiltonianu (4.17),
dostajemy

H = hw (aTd + ;) . (4.22)



Zalozmy, ze znalezliSmy rozwiazanie rownania (4.18). Musi by¢ zatem tak, ze

1

dlalin) = o (Bn 3 ) Wb = Eali). (4.23)

Zauwazmy nastepnie, ze stan a|i,) tez jest stanem wlasnym operatora. ktory oznaczymy przez
7 = 0a'a. Albowiem, korzystajac z reguty komutacyjnej (4.21) otrzymujemy

i (alhn)) = (€ — 1)alyn) (4.24)

i analogicznie dla a' tylko z +1. Zatem dzialajac wielokrotnie operatorem anihilacji na |1, ) mozemy,
co jeden, dowolnie zmniejsza¢ energie. Jednak ta nie moze byé¢ dowolnie malta, gdyz prowadziloby
to do niefizycznych konsekwencji. Zatem musi by¢ tak, ze &, jest liczba catkowita. W szczegdlnosci
istnieje stan podstawowy, ktéremu nie mozna juz zmniejszy¢ energii. Oznaczmy go przez |0). Musi
mie¢ on te wlasnosé, ze 7n|0) = 0, zatem jego energia wynosi

H|0) = %hw|0>. (4.25)

. Kolejne stany otrzymujemy poprzez dziatanie operatorem kreacji, zatem n-ty stan wlasny |n) ma
energie

Hn) = hw <n + ;) n). (4.26)

. Thumaczy to zatem oznaczenie 7 = a'a. Poniewaz zachodzi
fi|n) = n|n), (4.27)

. jest to zatem operator, ktéry informuje na ktérym poziome energetycznym sie znajdujemy. Nazy-
wamy go “operatorem liczby wzbudzen”. Zauwazmy jeszcze, ze

(n|n|n) = (n|ataln) = n, (4.28a)
(n|aa’|n) = (n|(a'a + 1)]a) = n + 1. (4.28b)
Zatem mamy, zauwazajac, ze lewa strona jest kwadratem normy stanu a|n)

aln) = v/nln — 1), (4.29a)
a'ln) = vVn+1n+1). (4.29h)



Rozdzial 5

Zagadnie trojwymiarowe 1 moment
pedu

ZakonczyliSmy wstepne rozwazania oraz dyskusje kanonicznych przykladéw jednowymiarowych.
Czas przejs¢ do zagadnien tréjwymiarowych. Zaczniemy ten rozdzial od prostego przykitadu, w
ktorym nastepuje separacja zmiennych kartezjainiskich. Nastepnie oméwimy przyktad o symetrii sfe-
rycznej, by “wytuska¢” z Hamiltonianu operator momentu pedu.

5.1 3D — separacja zmiennych kartezjanskich

Zaczijmy od stacjonarnego réwnania Schrodingera w trzech wymiarach, majgcego postac

h? ( 9? 02 02

g+ a) () + V() = BH(). (5.1)

2m
Zalézmy nastepnie, ze potencjal ten jest sumg funkcji trzech zmiennych kartezjanskich, czyli
V() = Va(z) + Vy(y) + V(). (5.2)

Zapostulujmy, ze w takim przypadku funckja falowa si¢ “faktoryzuje”, czyli mozna ja zapisa¢ jako
iloczyn fukncji kazdej ze zmiennych z osobna

() = Yo () by (y)¢=(2), (5-3)
Podstawiajac to wyrazenie do rownania Schrodingera (5.1) otrzymujemy

5 (52 + 3 + 523 ) + Vo) ) + V(o) @y ) = B0, (50

Dzielac stronami przez funkcje falowa, dostajemy

h?2 821/)35(@‘) 1 h2 82wy(y) 1
{‘Qm 522 V(@) *Vw(m)} " [‘2m 02 by *Vy(y)}
B2 0%y,(2) 1
+ [—2m gzz( )wz(z) +Vz(2)] =E. (5:5)
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Aby rownanie to spelnione bylo dla kazdej wartosci z, ¥y oraz z, musi by¢ tak, ze kazda z osobnych
czedci jest stala, czyli zachodzi

[ B 0%p,(x) 1
2 02®  du(a)

i analogicznie dla dwu pozostalych zmiennych. Zatem otrzymujemy trzy oddzielne jednowymiarowe
roéwnania Schrédingera postaci

+ Vx(x)] = E,. (5.6)

n* o2
5 + V)| 02(0) = Bunl) 6.7
oraz warunek
E,+E,+E.=FE. (5.8)
Na przyktad, trojwymiarowy oscylator harmoniczny o potencjale
1 1 1
V() = EmwixQ + émwigf + imwgzz (5.9)
da energie wtasne postaci
1 1 1
En,ingm, = hwy (nm + 2) + hw, (ny + 2> + Iw, <nz + 2) . (5.10)

5.2 Moment pedu

Przygotujemy teraz grunt pod szczegélna rodzine zagadnien: gdy potencjal jest sferycznie syme-
tryczny (w jezyku klasycznym powiedzieliby$my o polu sity centralnej). Zanim skupimy sie na takim
zagadnieniu — a bedzie to atom wodoru z kulombowskim oddziatywaniem elektron-proton — przyj-
zyjmy sie samemu laplasjanowi. We wspotrzednych sferycznych mamy

_ 1 2 1 . 2, 2 L?
A= ﬁar (T 3r) + m&g(sln 989) 7«2 sin 3 96 d) iy (T 3T) — W (51].)
Wykazemy teraz, ze oznaczenie to nie jest przypadkowe, to znaczy
22 £2  £2 72
L* =L+ L, + Lz, (5.12)
gdzie
Lo = gp. — 2py (5.13)

i analogicznie dla pozostalych dwu sktadowych. We wspoétrzednych sferycznych mamy dla wektora
potozenia

7 = r(sin f cos ¢, sin 0 sin ¢, cos ) (5.14)

oraz dla operatoréw pedu

Py = —ih (Sinécos @0y + COSQCOS¢89 - Slr,l¢ 8¢> (5.15a)
r rsin 0

B, = —ik <sin0sin 60, + L50sine, | oSO a¢) (5.15b)
rsin 6

b, = —ih (cos 00, — Sm%) (5.15¢)



Korzystajac z tych wyrazeri, mozemy wyznaczy¢ wszystkie trzy skladowe momentu pedu, podniesé
je do kwadratu, by otrzymaé

f2_ g2 mae(sin 09) + s11n20 2 (5.16)
Zatem Hamiltonian dla zagadnienia sferycznie symetrycznego ma postaé
2 T2
H= —glmr%ar (r?0,) + 2572 +V(r). (5.17)
Hamiltonian ten komutuje z L2 oraz z kazda ze sktadowych L;.
Jego postaé sugeruje, by poszukiwaé¢ rozwiazania w postaci iloczynowej
P(7) = R(r)Y (0, 9). (5.18)

Podstawiamy te posta¢ o obustronnie dzielimy przez v(7)/(2mr?), otrzymujac réwnanie Schrédin-
gera

g po o 2 g Y (0:0)
R(T)ar( O-R(r)) +2mr*(V(r) — E) + Y@.0) 0. (5.19)

Roéwnanie to separuje sie, otrzymujemy w szczegdlnosci wyrazenie na czesé katowa

L*Y (0, 9)

Y(0.0) = const. (5.20)

Jest to zatem zagadnienie wlasne dla kwadratu operatora hermitowskiego L2. Poniewaz operator
hermitowski ma rzeczywiste wartosci wlasne, jego kwadrat jest dodatnio okreslony. Wprowadzmy
oznaczenie na wartos$¢ wlasna i odpowiadajacy jej wektor wlasny

L2Y (0, ¢) = K211+ 1)Y (6, ¢), (5.21)

gdzie [ > 0. Otzrymujemy wtedy uklad réwnan

2 2
pes0: (20, 1() = (Vi) - £+ ) me (5.220)
— [5in 00y (sin 09p) + 9%¢] Y (0, ¢) = I(1 + 1) sin® 0Y (0, ¢). (5.22b)

Rozwiazanie rownania (5.22a) zalezy od postaci potencjatu, lecz to drugie jest ogélne i nie pojawia
sic w nim V' (r). Mozemy zatem podaé ogélne rozwiazanie rownania (5.22b). Wida¢, ze w rownaniu
tym znéw separuja sie zmienne, piszemy zatem Y (0, ¢) = T(0)F(¢) is otrzymujemy

OF(¢) = —m*F(¢), (5.23)

gdzie m € Z, aby funkcja F(¢) o €™ byta periodyczna funkcja ¢. Réwnanie na funkcje 7' przyjmuje
postac

2
—[0:(1 - €30 + 10+ 1) - 1%2 T(¢) =0, (5.24)



gdzie £ = cosf. Rownanie to daje normalizowalne rozwiazanie tylko, gdy [ € Z i —m < | < m.
Rozwigzaniem sg harmoniki sferyczne, ktore wyrazaja sie przez stowarzyszone funkcje Legendre’a
P (&) w nastepulacy sposéb

Vi (0, 6) = \/ (2 = &)f |m||’;?|)!Pﬁ(cos 0)cime. (5.25)

Funkcje te sa ortonormalne

/ A i1 (6. 6)Yirmy (8, 0) = 5By (5.26)

i spelniaja rownania wlasne
LY (0, ¢) = B2U(L+1)Yim (0, 0) (5.27)
L.Yim(0,0) = hmYinm, (0, 6). (5.28)

Podaé¢ pare przykladéow

5.3 Algebra momentu pedu

Przechodzimy teraz to opisu operatoréw momentu pedu, ich wartosci wtasnych i regut komutacyjnych
— innymi stowy, do ich algebry — w bardziej abstrakcyjnym, ale w grunice rzeczy prostszym jezyku.
Przywolajmy na poczatku jawne wyrazenia na skladowe operatora momentu pedu w reprezentacji
polozeniowem. Mamy

- o 0 0

L, = ih(sin (Z)% + cot 6 cos ¢6—¢) (5.29a)

L, = ih(— cos gbg + cot @ sin d)i) (5.29b)
v 06 00 '

A 0

Lz = —Zh% (529C)

Zauwazmy na przyklad, ze biorac ¢ = 0, operator ﬁy ma postaé¢ analogiczna do operatora pedu, tak
jak i L,. Jako ze ped generuje przesuniecie, zatem

U (@) = e~ #97L/M (5.30)

generuje obrdt o kat ¢ wokot osi 7. Mozemy nastepnie sie przekonaé, na przyklad bezposrednio z
definicji (5.13), ze sktadowe operatora wektora momentu pedu spetniaja regute komutacyjna

|Li, L] = ineijuhLy. (5.31)

Odrywamy sie teraz od reprezentacji potozeniowej i rozwazamy trzy operatory Iy, jy, J., spelniajace
regule, jak powyzej, a co za tym idzie (co mozna wykazaé¢ bezposrednim rachunkiem)

[ji, jﬂ =0, (5.32)



gdzie
JP= T2+ T+ T2 (5.33)
Jako ze kazda ze sktadowych komutuje z operatorem catkowitego momentu pedu, mozemy zdiago-
nalizowaé, na przyktad .J, i J? jednoczesnie, czyli
J.|a,b) = bla,b), J?|a,b) = ala,b). (5.34)
W nastepnym kroku wprowadzamy operatory “podnoszace” i “obnizajace”, ktére maja postac
Jy = J, +id,. (5.35)

Ich nazwa stanie sie jasna, gdy zadzialamy jednym z nich na stan wtasny. Mmianowicie, na mocy
reguly komutacyjnej, mamy

J.Jila, by = (JoJ. £ hJ.)|a,b) = (b + h)J+|a,b), (5.36)

zatem zadzialanie operatorem Ji na stan wlasny |a,b) daje rowniez stan wlasny ale z wartoscia
wlasna wiecksza/mniejsza o i. W kolejnym kroku zauwazamy, ze operator J? — jzz = Jf —+ jf jest
nieujemy, zatem wartosci wlasne musza spetiaé¢ a—b? > 0. Stad ptynie wniosek: nie mozna podnosié
/ obnizaé¢ ad infinitum, gdyz dostaliby$my w pewnym momencie warto$¢ wlasna z-towej sktadowej,
ktora nie spelnia tego ograniczenia. Istnieje zatem jakis wektor, ktory daje

Ji|a, brax) = 0 (5.37)
i analogicznie dla pary j_, bmin. Zauwazmy nastepnie, ze
0= J_Jy|a,bmax) = | J2 + J2 + il ], jy]} 12, bmax) = (@ — b2, — Fbmas)|@, bmas)- (5.38)

Stad mamy zwiazki @ = bmax (bmax + ) = bmin (bmin — £). ROwnowaznie mozna zapisa¢ (bpmin — bmax —
1) (bmin + bmax) = 0, ale jako ze byax = bmin, Stad bmin = —bmax. Zwiazki te mozna spelnié¢ tylko, gdy
bmaz = jh, gdzie j = {0, %, 1, %, ...}. Dla ustalonego j mamy 2j + 1 elementow, zas warto$¢ wlasna

J? wynosi @ = bax (bmax + 1) = A25(j + 1). Mamy zatem komplet relacji
1 3

J2|j,m) = B2j(j + 1)|5,m), i={05.15..} (5.39a)
J.lj,m) = hmlj,m), m=—j,—j+1...,j—1,j (5.39b)
Jelj,m) = /GG +1) —m(m £ 1)|j,m £ 1), (5.39¢)
gdzie ostatnia relacja wynika z wyliczenia
G ml L Jylj,m) = (Goml (s = J2 F h.)|G,m). (5.40)

5.4 Atom wodoru

Wykonawszy te wszystkie kroki, jesteSmy gotowi zmierzyé¢ sie z zagadnieniem réwnania Schrodingera
dla atomu wodoru. Formalnie, jest to zagadnienie dwuciatowe, gdzie proton i elektron oddziatuja
potencjatem kulombowskim. Rozwiazaé¢ bedziemy zagadnienie stacjonarne, zatem mamy

h? h?
(— A — WAQ + V(‘Fl — FQ)) ’(/J(’Fh 772) = Ew(Fl,FQ) (541)



gdzie A; oznacza rézniczkowanie po polozeniu 7; elektronu / protonu (i = 1,2), za$ potencjal ma
postacé

e? 1
o 47T€0 ‘771—772‘

(5.42)

Poprzez analogie do zagadnienia klasycznego (np. ruch w polu centralnym sity grawitacyjnej), wpro-
wadzamy zmienna wzgledna i srodka masy

1M1 + Tamg

r=ry—r1, R= p—— (5.43)
co przeksrzalca zagadnienie do
h? h? . .
(_2]\/[Aé — %ATH— V(r)) Y(7, R) = EY(7, R), (5.44)

gdzie m = (my + ms)/myms jest masg zredukowana, za§ M = m; + my. Widzimy, Ze zmienne
wzgledna i $rodka masy si¢ separuja. Od tej pory interesuje nas tylko réwnanie Schrodingera na
zmienna wzgledna. Ponadto korzystamy z rozkladu operatora Lapace’a na cze$é¢ radialna i ka-
towa (5.11) i zapisujemy rownanie tylko na cze$ radialng R;(r), ktére ma postaé

2

h? 9
%@(T OrRy(r)) = [V(r) —F+ Sy

11+ 1)] Ri(r). (5.45)

Poniewaz poszukujemy stanéw zwiazanych, wiec £ < 0. Wygodnie jest wprowadzi¢ zmienna p = ar

oraz dwie stale
8m|E| e? m
= A= — 5.46
TN TR dneoh\ 2|E (5.46)

Analiza wymiarowa pokazuje, ze o ma wymiar m ™', zatem p jest wielkoscia bezwymiarows, zag A
jest bezwymiarowa. Réwnanie Schrodingera wyraza sie przy pomocy tych wielkosci w nastepujacy
Sposob

1 A1 Ui+1) B
oo, + (5 -1 - ) i =o. (5.47)

Ostatnie przeksztalcenie jest postaci R;(p) = F(p)e™ 2, co daje

2 A-1 1(l+1)
a§F+<p—1)apF+(p— pe )on. (5.48)

Poszukujemy rozwiazania w postaci
o0
F(p)=> ayp"™, ag#0, seN (5.49)
v=0

Podstawiamy te posta¢ do réwnania Schrédingera i po przemnozeniu przez p? otrzymujemy naste-
pujace réwnanie algebraiczne

oo

SNlw+s)vts—1)+2w+s) =11+ Dlap™ = p> [(v+5)+ (A= D]a,p™ =0. (5.50)
v=0 v=0



Widzimy, ze wyraz dla v = 0 z pierwszej sumy nie ma odpowiednika w prawej sumie, musi si¢ on
wiec niezaleznie zerowaé, dajac

s(s+1)=1(1+1). (5.51)

Rownanie to ma dwa rozwiazania: s =11 s = —(I + 1), ale jako ze musi by¢ s > 0, wiec drugie z
nich odrzucamy. W kolejnym kroku postawiamy ten wynik i otrzymujemy zwiazek rekurencyjny

41 v+Il—A+1 via 1
a,  WHDW+I+1)—1(1+1) v

(5.52)

Wida¢ zatem, ze szereg ten ma zerowy promien zbieznosci. Musi zatem by¢ tak, ze rekurencja ta w
pewnym momencie sie urywa. Mozliwe to jest tylko wtedy, gdy A = n € N z warunkiem n > [ + 1.
Korzystajac z definicji A otrzymujemy stad energie

me? 1

En=—-F%5553
32m2e3h? n?

(5.53)

a zatem wynik identyczny z tym wyprowadzonym w ramach fenomenologicznego modelu Bohra.
Wielkosc n nazywamy gtowna liczba kwantowa i zachodzi | € {0,1,2,...n — 1}. Kazdy poziom
energetyczny jest Zlnz_ol(% + 1) = n? razy zdegenerowany (co wynika z braku zaleznosci od [ i m).
Radialna funkcja falowa ma postaé

Ru(p)=e? a,p"*, (5.54)
v=0

gdzie wspotezynniki wyznaczamy z rekurencji (5.52). Ogolne wyrazenie na funkcje falowa jest postaci

3 7 Lo
Yot (T) = <2> (n-l-Lt (m«) e mo L2 (3:0) Yim (6, ¢), (5.55)

nro 2n(n+ 1! \ nro
gdzie
4reoh?
ro = mZQ (5.56)

nazywamy promieniem Bohra atomu wodoru. Wielomian Laguerre’a dany jest, na mocy rekuren-
cji (5.52) przez

k—p . k'2
LY (p) = —1)vrr . Y. 5.57
Funkcja radialna stanu podstawowego ma postaé
2 _r
Ryg(r) = € 70, (5.58)
To

Wszystkie (i tylko te) funkcje o I = 0 sa sferycznie symetryczne.






Rozdzial 6

Metody przyblizone

W tym rozdziale skonfrontujemy sie z okrutng rzeczywistoscia, mianowicie nauczymy sie, jak mozna
sobie radzi¢ w niektérych przypadkach, gdy nie ma mozliwosci Scistego wyznacznia widma Hamilto-
nianu.

6.1 Stacjonarny rachunek zaburzen

Zaczynamy od najprostszego zagadnienia. Wyobrazmy sobie, ze Hamiltonian, ktérego spektrum
chcemy znalezé sktada sie z dwu czesci

H=Hy+ \H'. (6.1)

Zaktadamy, ze znamy spektrum Hamiltonianu niezaburzonego ro, czyli potrafimy rozwiazaé stacjo-
narne réwnanie Schrodingera

Hy[n©) = EP|n®), (6.2)
gdzie zachodzi warunek ortonormalnosci (n(®|m(®) = §,,,. Do tego Hamiltonianu dodane jest

zaburzenie H’ proporcjonalne do A € R, co do ktorej zakladamy, ze jest na tyle malta, ze mozna
sie spodziewaé, ze wplyw AH’ na energie calosci bedzie niewielki. Oznacza to, ze sensownie jest
poszukiwaé pelnego rozwiazania w postaci szeregu potegowego w zmiennej A, czyli

n) = > A n®) (6.3)
k=0

E,=> XEW. (6.4)
k=0

Zakladamy, ze stany w kolejnych rzedach sg ortogonalne do siebie na wzajem. Wielkosci |n(’“)> i E,Sk)
bedziemy rozumieé¢ jako poprawki k-tego rzedu (w A) do stanu i energii niezaburzonej. Zaktadamy na

tym etapie, ze spektrum niezaburzone jest niezdegenerowane, czyli ET(L0 ) #+ E,(CO) Vn # k. Postepujemy
zgodnie z rozumiem, to znaczy podstawiamy powyzsze wyrazenia do réwnania Schrodingera

(FIO + /\H’) SNy = 3T A E® RO, (6.5)
k=0 k,1=0
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i poszokujemy rozwigzan przy kolejnych potegach A, czyli otrzymujemy zwiazki rekurencyjne

A Hyn@y = EOp0)y, (6.6a)
AL HylnW)Y + A n@) = EOpnMy 4 EW |0, (6.6b)
A2 Holn®y + H'[nWy = EQn®) + EWnW) 4 E@ n®), (6.6c)
N Holn®) + H'n®) = EQn®) + EMn®) + EP nD) + EP|n®) (6.6d)

i tak w kolo Macieju. Korzystajac z ortonormalno$ci stanéw niezaburzonych otrzymujemy
E® = (nOH'|nk-Dy, (6.7)

W szczegolnosci poprawka pierwszego rzedu bedzie postaci

EWL = (nO) 7' |n®), (6.8)

Korzystajac z faktu, ze poprawka pierwszego rzedu do n-tego stanu jest prostopadla do wektora
“zerowego’, mozemy ja roztozyé¢ w bazie wszystkich ortogonalnych stanéw, czyli

nM) =" ay k). (6.9)

k#n

Podstawiamy ten rozklad do réwnania (6.6b) i korzystamy z faktu, ze |k () s stanami whasnymi
Hy, co daje, po przemnozeniu stronami przez (k'(o | wyrazenie na wspolezynnik rozkladu

<k(0)|f{/|n(0)>

ap = , (6.10)
(0) (0)
E,’ —E,
a co za tym idzie, poprawka do stanu ma postaé
kO F711n,0)
) = 37 EOT ) o, (6.11)

0 (]
k#n EY(L )~ E(

Dysponujac wyrazeniem na poprawke do stanu w pierwszym rzedie, mozemy skorzystaé¢ z wyraze-
nia (6.7) by otrzymac

. (0)|H |n(0)) | (0)|H’|k(0 NE
EX = mO1H" > <7 =3 (6.12)
n 0 0 0) O

Kolejne rzedy otrzymujemy iterujac te procedure.

6.1.1 Przypadek z degeneracja

Do tej pory rozwazaliSmy zagadnienie z degeneracja, co pozwolito nam dzieli¢ bez obaw przez réz-
nice niezaburzonych energii, jak w réwnaniu (6.11). Zalézmy teraz, ze stan |n§0)> jest d-krotnie
zdegenerowany, to znaczy istnieje

Holn®)y = E© ie{1,....d} (6.13)



Zdegenerowang podprzestrzen mozemy rozpisa¢ w dowolnej bazie, w szczegolnosci wybieramy taka,
ktora jest baza wlasng operatora H', a zatem zachodzi

(7' [n(7) = 6,;ELD. (6.14)

Oznacza to, ze w pierwszym rzedzie poprawke energetyczng otrzymujemy poprzez zdiagonalizowanie
Hamiltonianu H’' w podprzestrzeni zdegenerowane;j.

Dla przyktadu rozwazmy liniowy efekt Starka, to znaczy zagadnienie, gdy atom wodoru umiesz-
czony jest w stalym, liniowo spolaryzowanym polu elektrycznym. Zaburzenie ma wtedy postaé

H' = —eEz = —ercos®. (6.15)

Zaburzenie to nie ma wktadu do standéw sferycznie symetrycznych, zatem rozwazmy jego wpltyw na
stany o n = 2. Jest to podprzestrzeri poczwoérnie zdegenerowana, gdyz mamy tu stany |2,0,0) oraz
[2,1,0) 1 |2,1,+1). Naszym celem jest zdiagonalizowanie H' w tej bazie. Bezposredni rachunek daje

0 3r, 0 0
H =¢E 36'0 8 8 8 (6.16)
0 0 00
Energie i stany wlasne to
) = 2 (12,0,0) £ [2,1,0)), B = +3¢Er. (6.17)

V2

Zatem zniesienie degeneracji jest tylko cze$ciowe, w podprzestrzeni o m = 0.

6.2 Metoda wariacyjna

Kolejna metoda opiera sie na spostrzezeniu, ze dowolny stan “prébny” daje zawsze gérne ograniczenie
na energie stanu podstawowego, gdyz

WIH[) =D lan*En 2 Y lan|*Eo = Eo. (6.18)
n n
Zatem warto poszukiwaé ograniczenia gérnego poprzez zaproponowanie jakiej$ funkcji prébnej zalez-
nej od parametru, a nastepnie zminimalizowaé warto$¢ oczekiwana Hamiltonianu po tym parametrze.
A zatem liczymy

(WNIH[D(N) = E() (6.19)
i szukamy Ao, ktore spelnia warunek
Lpm =0 (6.20)
dA A=Xo '

zapewniwszy, ze jest to minimum.
Najprostszy przyktad to poszukiwanie stanu podstawowego oscylatora harmonicznego w postaci

—_
&}
M

=
>
—
8
~
Il
rb‘
IS
£

(6.21)



Oblozenie nim Hamiltonianu i wycatkowanie po przestrzeni daje

(H)y = ol + L (6.22)
AT 8mA 2 ’ '
co daje minimum dla wartosci Ao = h/(2mw) wynoszace (H)min = 1/2hw, zgodne z wynikiem

$cistym. W og6lnoéci nie znamy, rzecz jasna, wyniku Scistego, musimy zatem poszukiwaé dobrych
funkcji prébnych.

6.3 Zagadnienie zalezne od czasu

Kolejny typ zagadnienia, z jakim nalezy sie zmierzy¢ to sytuacja, gdy zaburzenie zalezne jest od

czasu. W og6lnosci, gdy Hamiltonian zalezy od ¢ problem, ktéry sie pojawia jest taki, ze nie koniecznie
w roznych chwilach czasu komutuje on sam ze soba, czyli moze zachodzi¢

[fr(tl), ﬁ(tQ)] £ 0. (6.23)
Latwo si¢ przekonaé, ze z tego powodu réwnanie Schrodingera
ihoy | (t)) = H(b)[)(t) (6.24)
“naiwnie” rozwiazane popprzez probe formalnego odcatkowania stronami
B0 = ¢ o (o)) (6.25)

daje niepoprawny wynik, gdyz — na mocy rownania (6.23) — nie jest w ogélnosci prawda, ze
o (B0 ey (ot i), 62

Niemniej, rownanie (6.24) mozna scalkowaé stronami, dostajac niejawna postaé rozwiazania

() = o) = . [ ) li(m)) (6.27)

Dodanie dolnego indeksu przy zmiennej catkowania wynika z tego, ze rozwiazanie to bedziemy teraz
iterowaé, mianowicie podstawiamy po prawej stronie otrzymane wlasnie wyrazenie na |¢(¢)), co daje

7

wo) =160+ (1) [[aritioon+ (1) [an ["anieacIwE). 629

Iterowanie tej procedury bedzie dawalo kolejne potegi i kolejne wielkokrotnosci calki po czasie. To,
czego nam brakuje do szczescia (czyli do zwiniecia tego wyrazenia do funkcji wyktadniczej), to czyn-
nika n! w mianowniku. Niemniej zauwazmy, ze czynnik ten mozna “wypropdukowaé” wprowadzajac
symbol uporzadkowania czasowego, 7. Mianowicie, majac iloczyn n funkcji zaleznych od czasu po-
staci

Ai(t) = /0 drA;(1) (6.29)



kazda, operator 7 dziala nan w nastepujacy sposob

T[] Air) :/dml(n)Az(TZ)...An(Tn)+/dmz(n)Al(Tg)...An(Tn)+..., (6.30)
i=1

gdzie symbol catkowania po dr oznacza

t T1 Tn—1
/di". L= / dri / drs .. / dr,. (6.31)
0 0 0

Kropki po Prawej stronie réwnania (6.30) informuja, ze nalezy wzia¢ wszystkie mozliwe n! kombinacji
ustawien. Poniewaz w naszym przypadku funkcja A;(t) zawsze jest taka sama, to znaczy

Ai(t) = /0 drH(7), (6.32)

stad mamy pelne rozwiazanie

(1)) = Te * Jo IO 0y = e ¥ S IOy 0)). (6.33)

Pozazemy teraz, w jaki sposéb poszukiwaé przyblizonego rozwiazania tego réwnania. W tym celu
zaktadamy, ze Hamiltonian ma postaé

H = Hy+V(t), (6.34)

gdzie Hy jest niezaleznym od czasu Hamiltonianem, ktorego rozktad spektralny jest znany.

6.3.1 Obrazy

Zanim ruszymy do boju, warto zapoznad sie z tak zwanymi “obrazami” ewolucji, czyli trzema podsta-
wowymi metodami poszukiwania ogélnych rozwiazan rownania Schréodingera niezaleznego od czasu.
Standardowym jest ten, gdzie ewoluuje stan, czyli gdy liczymy

[(t)) = Ut (1) |4 (0)), (6.35)

za$ operator ewolucji dany jest przez réwnanie

U(t) = e~#H, (6.36)

Metoda ta nazywana jest “obrazem Schrédingera”. Wszelkie wielkosci mierzalne, czyli wartosci ocze-
kiwane obserwabli A, otrzymujemy poprzez oblozenie tego operatora z obu stron przez stan, czyli

At) = (D ()] A](2)). (6.37)
Alternatywnie, mozemy “przerzuci¢” ewolucje na obserwable, czyli zauwazajac, ze
A(t) = (WO (#) AT () (0)) (6.38)

potraktowaé operator jako zmienny w czasie,

Aty =UT(t)AU (1), (6.39)



za$ stan jako ustalony. Podejscie to, niezwykle wygodne w niektorych obliczeniach, nazywamy “obra-
zem Heisenberga”. Zauwazmy, ze w tym podej$ciu rownanie, ktore spelnia operator A(t) ma postaé¢

W A(t) = —HA(t) + A(t)H = [A(t), H]. (6.40)

Roéwnanie to nazywamy “réwnaniem Heisenberga”.
Ostatnia metoda stosuje sie do przypadkow, gdy Hamiltonian dzieli sie na dwie czesci

H=Hy+V, (6.41)

a my znamy zagadnienie Schrodingera dla Hamiltonianu swobodnego Hy. W “obrazie oddziatywania”
staramy sie pozby¢ czesci swobodnej i skupi¢ tylko na V. Jednak nie jest to w pelni mozliwe, gdyz
kazde nietrywialne zagadnienie to takie, gdy obie te czeci nie komutuja. Pewnym uproszczeniem
jest wprowadzenie operatora

Vi(t) = ULtV (), (6.42)

gdzie Uo(t) to operator ewolucji generowany przez Hy. Zauwazmy, ze jezeli zapiszemy réwnania
Schrédingera

inonl(t) = (Ho+ V) [i(0) (6.43)
a nastepnie podziatamy nan z lewej strony przez Ul(t) to otrzymamy, wprowadzajac [¢;(t)) =
U (6)(2)
ihU§ (60, (1)) = ihdy by (£)) + Holebr (£) = Holobr (£)) + Vi(£)|wr (1)) (6.44)
Zatem, upraszczajac stronami czlon swobodny dostajemy
ihd b1 (1)) = Vi (1) i (1)) (6.45)

Jest to obraz mieszany, bo za razem ewoluuje w nim stan, jak i operator V. Okazuje sie on réwniez
niezwykle przydatny w niektoérych przypadkach.

Zauwazmy, ze réwnanie (6.45) ma postac¢ rownania (6.24), zatem stosuje sie do niego argumen-
tacja z poprzedniej czeéci. W szczegolnosci oznacza to, ze w pierwszym rzedzie rachunku zaburzen,
stan bedzie ewoluowal zgodnie z wyrazeniem

r() = 10 — 1 [ drn0) = () = 5 [ aret By @t i), (640

gdyz |¥7(0)) = |[(0)). Zalozmy teraz, ze interesuje nas nastepujace zagadnienie: jakie jest prawdo-
podobienistwo przejscia ze stanu poczatkowego |k) do konicowego |n), gdzie oba te stany sa stanami
wlasnymi Hj i sa wzajemnie ortogonalne. W tym przypadku mamy amplitude prawdopodobieristwa
dang przez

Ghen(t) = (i1 (1)) = —e 7Bt L / dr (a7 () e #Fe ) (6.47)
h 0



Przyktad

Dla ilustracji tego, jak wykonywaé obliczenia w ramach zaleznego od czasu rachunku zaburzen,
rozwazmy nastepujace zaburzenie Hamiltonianu atomu wodoru Hy, mianowicie

H(t) = Hy 4 2V sinwt, (6.48)

gdzie V nie zalezy od czasu. W takim przypadku otrzymujemy, ze amlituda prawdopodobienstwa
przejscia miedzy dwoma ortogonalnymi stanami wlasnymi elektronu w atomie wodoru dana jest
przez

; ) t )
ap—n(t) = —2%<n|V|k>e*%E"t/ dre” 7 Br=En)T gin o = (6.49)
0
_ 2<R|V|]€> efﬁ(Ekan+hw)t sin (%(Ek — En + h’w)) _ e*#(Ekanfhw)t sin (;?(Ek - En - hw)) )

Gdy czestosé w jest dostrojona do przejscia miedzy poziomami, czyli fiw ~ +(E,, — Ey), jeden z
powyzszych dwoch cztonéw powoli zmienia sie w czasie, drugi zas szybko oscyluje, za$ jego mia-
nownik jest duzo wiekszy od mianownika pierwszego. W takim przypadku otrzymujemy przyblizone
wyrazenie

2 sin? (& (Ex — B, — hw))

pn(t) = 4|<n|‘7|k> (Ek ~E, - hw)2

Dla t — oo korzystamy ze wzoru

_ sin®(zy)
co daje
27t ~ 9
P (t) = o (n|V|E)*6(E — E, — hw). (6.51)

Pochodna tej wielkosci, czyli tempo przejscia ze stanu k do n, dane jest przez ztotqg regute Fermiego,
czyli

27r‘
T h

wy (t) =~ = |(n|V|k)|*6(Ey — Ep, — hw). (6.52)






Rozdzial 7
Spin

7.1 Doswiadczenie Sterna-Gerlacha

Doswiadczenie Sterna-Gerlacha pokazuje, ze wiazka elektronéw przechodzaca przez obszar, w ktorym
wystepuje gradient pola magnetycznego, zawsze dzieli si¢ na dwie czesci. Dzieje si¢ tak niezaleznie od
wlasnosci kinetycznych tej wiazki. Wniosek, ktoéry nasuwa sie na tej podstawie jest zaskakujacy—
ot6z wydaje sie, ze elektron zawiera jaki§ wewnetrzny moment magnetyczny, ktory oddzialuje z
polem za pomoca Hamiltonianu (na razie piszemy bez daszkow, stosujac klasyczne rozumowanie i
zapisujac klasyczng energie oddzialywania)

H=—ji-B. (7.1)

Jezeli pole zalezy od polozenia, pojawia sie sita, ktéra dziata na elektrony. Kluczowa jest “dwo-
isto$é” tego zjawiska, to znaczy do$wiadczenie wskazuje, ze elektron moze mie¢ dwa rézne momenty
magnetyczne [ = +ug€,. Da to, w efekcie, site dzialajaca w przeciwnych kierunkach na kazda ze
sktadowych, zgodnie z obserwowanymi wynikami. Wewnetrzny moment pedu elektronu jest “nie do
wyhamowania”, to znaczy nie jest on konsekwencja ruchu obrotowego zadnego tadunku. Stad podej-
rzenie, ktére z czasem okazalo sie by¢ wieloktornie zweryfikowana hipoteza: na poziomie kwantowym
czastki opisujemy dodatkowym stopniem swobody (stanowiacym uzupelnie do tych wystepujacych
w fizyce klasycznej, jak masa czy tadunek), a jest nim spin (czy, jak mawiaja w Krakowie, kret).

Jako ze spin zachowuje sie tak jak tradycyjny moment pedu, wydaje sie rozsadne, by opisywaé¢ go
w mechanice kwantowej tak, jak opisujemy moment pedu czastki nieklasycznej. Niemniej, na mocy
rownania (5.39a) jest oczywiste, ze jezeli ten stopient swobody ma dwa stany, to spin elektronu musi
wynosi¢ 1/2. Tylko wtedy mozna bedzie otrzymaé¢ dwa rzuty, ktore oznaczymy przez mg = :I:%.
Odpowiadajace im stany wlasne operatora §, bedziemy oznacza¢ przez | T) i | |).

Dramat spinu rozgrywa sie w dwuwymiarowej przestrzeni Hilberta, rozpietej przesz te dwa wek-
tory, a oznaczanej przez Hy. Dowolna macierz hermitowska dziatajaca w tej przestrzeni mozemy
zapisaé¢ jako

i a c+1id
4 (c—id b

) . a,bc,d €R. (7.2)

Zauwazmy, ze kazda taka macierz mozemy rozpisa¢ przy pomocy hermitowskich “operatoréw bazo-
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wych”, czyli

e (88) a8 ) (3 8) 1=(89) o

Pierwsze trzy nazywamy “macierzami Pauliego”. Czwarta to oczywiscie identyczno$é. Macierz A
mozemy przedstawié¢ jako

A 1 1 .
A:c&w—kd&y—k§(a—b)&z+§(a+b)]1. (74)
Kwestia umowna jest to, ktorej z macierzy Pualiego przypiszemy wektory | 1) 1| ]). Jezeli ustalimy,

zgodnie z zazwyczaj stosowang konwencja, ze sa to stany wlasne operatora z-towego, to zapisujemy
1 0

G 1) =11, 6l 1) =—1] 1), (7.6)

Aby nadaé tym operatorom sens analogiczny do operatoréw momentu pedu, wprowadzamy operatory
spinu, ktore powstaja poprzez pomnozenie macierzy Pauliego przez %h Wtedy wartosci wtasne
powstalych operatorow §; (i = x,y,2) wynosza i%h, tak jak nalezy oczekiwaé¢ od poléwkowego
momentu pedu.

Latwo sie przekonaé, ze macierze Pauliego spelniaja nastepujace reguly

(64,65] = 2i€iju Y o, {6i,6;} =216, Tr(a:]=0. (7.7)
k

Mamy wtedy, rzecz jasna

Niekomutowanie macierzy Pauliego oznacza, ze nie da sie przygotowaé elektronu w takim stanie, by
spin byt okreslony we wszystkich kierunkach na raz.
Zauwazmy, ze wektory wlasne, na przyktad z-owej macierzy Pauliego dane sa przez

=5 (1) 1= ( 1) (78)

Prawdopodobienstwo tego, ze czastke przygotowana w stanie | 1), znajdziemy w ktoryms z z-towych
stanoéw wlasnych, wynosi 1/2; jest ona zatem zupelnie niespolaryzowana w tej bazie.

7.2 Atom wodoru w polu magnetycznym

Wprowadziwszy pojecie spinu mozemy zastanowié¢ sie nad tym, jak czastka obdarzona spinem i
(ewentualnie) tadunkiem zachowuje sie w zewnetrznym polu elektromagnetycznym. Zacznijmy od
przywotania Hamiltonianu minimalnego sprzezenia w fizyce klasycznej, ktéry ma postaé

(F—ed)?

2m

H= ey, (7.9)

gdzie A jest potencjalem wektorowym, za$ ¢ skalarnym pola elektromagnetycznego. Jest to najpro-
strza postaé sprzezenia naladowanej czastki z polem, dajaca poprawne réownania ruchu (to jest sile
Lorentza) oraz niezmienniczo$¢ ze wzgledu na zmiane cechowania, czyli transformacje

p—p—0x, A—A+Vo, (7.10)



ktora, jak wiemy, nie zmienia pol EM. W przypadku skalarnej (to jest nieposiadajacej spinu) czastki
natadowanej, postulujemy, ze odpowiadajace rownaniu (7.9) rownanie Schrodingera bedzie mialo
postac

RO (7 ) (HW‘”‘)Q —ep+ vm) 6(7,1). (7.11)

2m

Kolejnym etapem jest dodanie spinu, ktéry sprzega sie z polem magnetycznym analogicznie do tego,
jak sprzega sie moment magnetyczny w klasycznej fizyce. Dla czastki o spinie 1/2, spinowa przestrzen
Hilberta jest dwuwymiarowa, mozemy zatem napisaé

o [ W10 ] ((ZihY —ed)? o eh s g\ [ ()
ihd, { (7 1) } = <2m g B) [ b1 1) ] (7.12)

Mozna wykazaé (éwiczenia), ze rownanie to jest—z dokladnoscia do fazy—mniezmiennicze ze wzgledu
na transformacje cehcowania, dodajac wylacznie czynnik fazowy

[ wr(ﬁ? ] . [ wr(ﬁ? ]ei;ex_ (7.13)

7.2.1 Przyklad 1

Rozwazmy teraz prosty przypadek, gdy pole elektromagnetyczne sklada si¢ wylacznie z jednorodnego
pola magnetycznego skierowanego wzdtuz osi z. Wtedy ¢ = 0, zas§ A = (—By,0,0) (jest to jedno z
mozliwych cechowan). Réwnanie Pauliego rozsprzega sie wtedy na dwie niezaleznie ewoluujace rzuty

spinu. Na przyktad dla sktadowej ¢_, otrzymujemy

—ihdy — eBy)® — h*0; — 0]
(—i eBy) y v oy ehB> W1 (7 1). (7.14)

2m 2m

ihOupy (7, t) = (

Poszukujemy rozwiazania réwnania stacjonarnego w postaci
U1 () = RO (y), (715)

co prowadzi do réwnania

1) - (B- 52 - £) 1), (7.16)

2m 2m

[_ h20} N e?B? (y pw)

Rozpoznajemy od razu Hamitlonian jednowymiarowego uscylatora harmonicznego, zatem energie w
kierunku y beda skwantowane i dane przez

ehB 3 P2
E,=— - £ 7.17
m <n+ 2) - 2m (7.17)

ktore — jak widaé — nie zaleza od p,.



7.2.2 Przyklad 2

Dla ilustracji dynamiki spinu (ktora w powyzszym przypadku byla “zamrozona”), rozwazmy sytu-
acje, gdy czastka nie posiada tadunku, niemniej posiada wewnetrzny moment magnetyczny p (na
przyktad neutron), ktory sprzega sie ze staltym polem B.Na mocy ogblnego rownania Pauliego (7.12)
otrzymujemy

ihd, [ w?g ] _ <—;;A+2€?-1§) [ :ﬂg?g ] . (7.18)

Mozemy, przez analogie do obrazu oddzialywania, “odwirowa¢” czesé swobodna i poszukiwaé roz-
wigzania w postaci

{ UG i) } _ [ ¥1(t) }eé (’W’f’"t) [ 1 (7 t) } , (7.19)

<
s
—
)
-~
S~—

Otrzymujemy nastepujace zwiazki dynamiczne

i = e | o0

Widzimy, ze operator dzialajacy na spinor jest operatorem obrotu spinu wokot osi wyznaczonej przez
B. Zatem spin ewoluuje w jedyny mozliwy sposéb: obraca sie, a zjawisko to nazywamy precesja spinu.
e ew. faza Berry’ego (efekt Aharonova-Bohma)

7.3 Dodawanie momentu pedu

Przechodzimy teraz do ostatniego ze spinowych zagadnieni, czyli do problemu dodawania spinu czy
orbitalnego momentu pedu. W tym celu rozwazymy najprostszy mozliwy przypadek, czyli dwie
czastki o spinie s = 1/2 kazda. Zadajemy sobie pytanie: gdyby czastki te traktowaé jako dwie czesci
jednego uktadu, jaki jest catkowity spin i mozliwe jego rzuty? Zauwazmy, ze zgodnie z postulatami
mechaniki kwantowej, calkowita przestrzeri Hilberta dwu czastek jest iloczynem tensorowym kaz-
dej z nich, zatem oznasczajac przez He dwuwymiarowa przestrzein rozpinana przez jednoczastkowe
wektory |s = 1/2,m, = £1/2) = £12 otrzymujemy

H=Hy®Hy, dimH =4 (7.21)

Oczywiscie, przestrzen te mozna rozpia¢ przed dowolna kombinacje iloczynéw jednoczastkowych
wektoréw bazowych, na przyktad

i) = | £1/2,£1/2), i=1...4. (7.22)

Niemniej, istnieje pewna wyrozniona baza, ktora tworza wektory wlasne kwadratu operatora catko-
witego momentu pedu

v
+
2v

S = (7.23)
Kwadrat tego operatora to

$2=82+ 82+ 82 =5l +8e1 +25 5. (7.24)



Zauwazmy teraz, ze czton mieszany ma postaé
S o= i® 1o 4 @a?), (7.25)

Korzystamy teraz ze zwiazkow

@) L), () NG I RORIRG
S0 = 2 (30 +80), s = (50 -5, (7.26)
by otrzymad
1 1
5D @52 43D @3 = ié(j) ®3? + 50 ® 59 (7.27)

Zatem ostateczne wyrazenie na kwadrat operatora catkowitego momentu pedu przyjmuje postaé
PPl +8eil +5 e +5Y P + 250 0s®. (7.28)
Zadzialajmy tym operatorem na stan |¢) = |1/2,1/2). Mamy

1

§21/2,1/2) = [2; (2 4 1) + ;] 11/2,1/2) = 2[1/2,1/2). (7.29)

Jest to zatem stan wtasny operatora 52 o wartosci wtasnej S = 1. Nastepnie zbadajmy jego rzut na
of z, czyli

S.11/2,1/2) = [§g1> +§§2>} 11/2,1/2) = |1/2,1/2). (7.30)
Identyfikujemy zatem ten stan, jako stan wtasny
[1/2,1/2) < |S =1,mg = 1). (7.31)

Kolejne dwa stany wlasne o S = 1 konstruujemy poprzez zadzialanie operatorem obnizajacym, czyli

. 1
815 =1mg =1) = (57 +5%) 1/2,1/2) = =122 4= 1202). (12)
Mozna sie przekonaé, ze jest to stan wlasny o mg = 0. Jeszcze jedno obnizenie daje stan o mg = —1,

zatem mamy “tryplet” stanéow o S =1

11

‘2, 2> —|S=1,mg=1) (7.33a)
1 11 1 1

ﬂ(‘ 2,2>+‘2, 2>> |S=1,mg =0) (7.33b)
1 1

— . —— ) = = —1). .

‘ 5 2> IS =1,ms ) (7.33c)

Latwo sie przekonaé, ze jedynym mozliwym stanem, ktéry jest ortogonalny do tej trojki jest “singlet”,
ktory daje

SR s o



Procedure pokazang powyzej mozna uogolni¢ na pare czastek o momentach pedu j; i jo. Analo-
gicznie do dwu potéwkowych spindéw, mamy

4j:d2) < |J = j1 + jasmy = j1 + ja). (7.35)

Pozostale stany z tej podprzestrzeni (o ustalonym J) otrzymujemy dziatajac operatorem obnizaja-
cym rzut. Na przykltad

ﬁ (\/71|]1 —1,j52) + \/]>2|]17]2 - 1>) = |J = g1+ jo,my = j1 +j2 — 1). (7.36)

By przejsé do innej podprzestrzeni, postulujemy stan prostopadly do powyzszego i tatwo identyfi-
kujemy go nastepujaco

77 (\/J>2|J1 —1,72) — /71 11, g2 — 1>> = |J=g1+jo—1,my=j1+j2—1). (7.37)

Procedure te mozna kontytuowaé¢ az otrzymamy pelen rozktad przestrzeni Hilberta w postaci sumy
proste;j

1®Ja=|j1—Je|l®lj1—Je|l +1®... D j1 + jo. (7.38)

Tym sposoobem konczymy rozwazania o spinie i momentu pedu i przechodzimy do zagadnieri zwia-
zanych z informacjg kwantowa.



Rozdzial 8

Macierz gestosci

Juz w poprzednim rozdziale, w ramach dyskusji o spinie, rozwazalismy ukltady dwuczastkowe i sko-
rzystaliSmy z faktu, ze przestrzen Hilberta jest iloczynem tensorowym przestrzeni jednoczastkowych.
Rozwazmy teraz uktad sktadajacy sie z dwu czesci, ktore ozaczaé¢ bedziemy przez A i B. Catkowita
przestrzeni Hilberta jest iloczynem tensorowym

H="Hs®Hp. (8.1)

Rozpinana jest ona przez wektory bedace iloczynem tensorowym wektorow |¢7(1A)> €EHy i |¢£§ )> €
‘Hp z kazdej podprzestrzeni, na przyktad tworzacych bazy ortonormalne, czyli

n,m)y € H: |n,m) = [vPD) @ |6B) (8.2a)
ST = 1A, D) = 6 (8.2b)
S PSP = 1B (@ BL)) = 6. (8:2¢)

Rozwazmy teraz obserwable, ktora dzialta tylko na podprzestrzeni A, za$ stopnie swobody zwigzane
z B pozostawia nietkniete. Obserwabla taka bedzie miala postac

@AB = @(A) (2] ﬂ(B). (8.3)

W nastepnym kroku policzmy jej warto$¢ oczekiwana na dowolnym stanie |¢) € H, ktory zawsze

mozemy zapisaé jako
Z A |nM), Z |Gnm|? = (8.4)

Mamy

(Oap) = ($|Oaplp) = Z Z AU (M| O @ 1B |nm). (8.5)

nm nn’

Zauwazamy teraz, ze jedynka operatorowa dzialajaca w podprzestrzeni B sprawia, ze (m’| spotyka
sie z |m), a jako ze stany te sa ortonormalne, otrzymujemy

DAB) = D D Uil (0|0 |n). (8.6)

43



Wprowadzmy teraz oznaczenie
Onn' = Z a:/manwr (87)
m
Widaé od razu, ze zachodzi
RS Zan’mazm = On'n- (8.8)
m

W kolejnym kroku zauwazamy, ze powyzsza Srednig mozna wyrazi¢ w nastepujacy sposéb

(Oap) =D (0" Y onwr[n)n|OWn") (8.9)

n'’ nn’

a to dlatego, ze gdy (n”| trafia na |n), wykonuje sie d,,~ 1 sumowanie po n” znika. Powyzsze
“oblozenie” operatora dzialajacego w podprzestrzeni H 4 to nic innego jak $lad tego operatora (czyli
suma elementéw diagonalnych). Mozemy zatem zapisaé to wyrazenie jako

(Oap) =Tr {@A@(A)} : (8.10)

gdzie wprowadziliémy jeden z fundamentalnych obiektoéw mechaniki kwantowej, czyli macierz gesto-
$ci, dang wzorem

04 = Zan"n><n/|~ (8.11)

Jak wida¢, jest to operator dzialajacy na wektory w podprzestrzeni H4 i majacy nastepujace wta-
snosci. Po pierwsze, na mocy zwiazku (8.8)

nn’ nn’

czyli 04 jest operatorem hermitowskim. Po drugie,

Tr[oa] = ) (n” (Z an'n’><n|> ") = onn =Y lagm|* = 1. (8.13)

n' nn' nm

Jest to zatem operator unormowany, ponadto jego elementy na diagonali sa nieujemne, bo 9,, =
|anm|? = 0. Jako ze sumuja si¢ one do jedynki, mozna im nada¢ interpretacje prawdopowdobienstwa.
Podsumowujac, macierz gestosci to operator hermitowski, g4 > 0 (operator nieujemnie okreslony),
oraz o unormowanym sladzie. Ostatnim krokiem jest diagonalizacja 0 4, czyli doprowadzenie macierzy
gestosci (co zawsze jest mozliwe dla operatoréw hermitowskich) do postaci

04 = an|n an =1, p, =0 Vn. (8.14)

Jezeli tylko dla jednej wartosdci indeksu, ng, odpowiadajace mu p,, jest niezerowe, to musi ono
wynosi¢ 1, zatem macierz gestosci sprowadza sie wtedy do

04 = [no)nol. (8.15)



W tym przypadku g4 niesie tyle samo informacji co samo |ng) i méwimy wtedy, ze jest to macierz
gestosci stanu czystego. Jezel p, # 0 co najmnej dla dwu wartosci n, nie da sie przedstawi¢ gaw
postaci operatora rzutowego na pojedynczy stan czysty, jest to zatem struktura inna, bardziej ztozona
od kazdego ze stanéw z osobna. Mowimy wtedy, ze operator g4 reprezentuje macierz gestosci stanu
mieszanego.

Z powyzszych obserwacji wynikaja zasadnicze konsekwencje dla interpretacji tego obiektu. Zanim
do nich przejdziemy, przesledzmy to, jak doszlisémy do definicji macierzy gestosci (8.11). Zaczelismy
od stanu (8.4), nastepnie zalozyliSmy, ze obserwabla “dotyka” tylko stopni swobody zwiazanych
z A [patrz réwnanie (8.3)] by ostatecznie dosta¢ macierz gestosci poduktadu A, tak jak w rowna-
niu (8.11). Obiekt ten czesto nazywamy “zredukowana macierza gestosci”. Pochodzenie tej nazwy jest
nastepujace. Zauwazmy, ze macierz gestosci 04 mozna otrzymac¢ w nastepujacych krokach. Najpierw
bierzemy stan czysty z rownania (8.4) i konstruujemy z niego operator rzutowy

N =D D @@ ). (8.16)
nm n’m’
Nastepnie policzmy $lad tej wielkosci po stopniach swobody zwiazanych z B. Mamy
Te([9)Xellp = D ("D Y anm@ lnm)n'm||m") =3 > " anm @y, In)n]. (8.17)
m'’ nm n’m’ nn’ m
Przypomnijmy, ze zdefiniowaliSmy > = anmal,,, = Onn’, zatem powyzsze wyrazenie to po prostu

macierz gestosci poduktadu A. Zachodzi zatem

0a = Tr[[¥)¢]]lp - (8.18)

Zatem operacje $ladowania po pewnych stopniach swobody (w tym przypadku B) mozna rozumie¢
jako “zapominanie” o tym podukladzie, ewentualnie jako konsekwencje braku do niego dostepu.
Powstaje w ten spos6b operator, ktory opisuje tylko cze$é poduktadu, stad moéwimy, ze jest to
zredukowana (wzgledem calodci) macierz gestosei.

8.1 Dodatkowe uwagi

8.1.1 Splatanie i stan separowalny

Po tym, jak wprowadziliSmy pojecie stanu mieszanego mozemy zmierzy¢ sie z jednym z waznych
poje¢, ktore pojawia sie w ramach opsiu ukladéow kwantowych. Dla stanéw czystych sprawa jest
prosta. Stanem separowalnym (produktowym) nazywamy takie [¢), ktére mozna przedstawié¢ w
postaci

) = [¥a) © [os). (8.19)

Stan, ktorego nie da sie zapisa¢ w tej postaci nazywamy stanem splatanym.

Dla stanéw mieszanych, sytuacja jest bardziej ztozona. Co prawda natychmiast narzuca sie de-
finicja stanu separowalnego jako takiego, ktory mozemy przedstawié jako iloczyn macierzy gestosci
kazdego z podukladow

b= 4 0. (8.20)

Niemniej definicja ta nie dopuszcza istnienia klasycznych korelacji miedzy poduktadami. Przez taki
zwiazek rozumiemy sytuacje, gdy na A i B mierzone sa w i-tym do$wiadczeniu wielkosci IX) oraz



Ig), a nastepnie ich iloczyn usredniany jest po zespole statystycznym n — co powtérzen pomiaru.
Uktad klasycznie skorelowany to taki, gdy

1 " 7 1) M—00
(Ialp) = = > 1015 = / dala(@)I5(a)p(a), (8:21)
i=1

gdzie p(«) jest rozkladem prawdopodobienistwa zmiennej losowej . Gdy p(a) = d(a — ap), uktad
jest nieskorelowany. Latwo sie przekonaé, ze jezeli stan mozemy zapisa¢ w postaci

0= /dap(a)@A(Oé) ® op(a), (8.22)

wtedy funkcja korelacji policzona na tym stanie, ktora zgodnie z definicja wynosi
(IuIp) = Tr [A ® B@} = /dap(a)Tr [A@A(a)} o {B@B(a)}B (8.23)

jest postaci takiej, jak w rownaniu (8.21). Stad rozszerzenie definicji stanéw separowalnych w przy-
padku stanow mieszanych na wszystkie dwuczesciowe macierze gestosci postaci (8.22). Jezeli ¢ nie
da sie zapisa¢ w ten sposéb, méwimy ze uklad jest splatany.

Detekcja splatania

W wielu przypadkach wazne jest, by znaé¢ odpowiedz na pytanie: czy dany stan jest splatany. W
przypadku standéw czystych, sprawa jest stosunkowo prosta. Jezeli stan jest w postaci iloczynowej, jak
w rownaniu (8.19), wystarczy wykonaé $lad po jednym z poduktadéw (na przyktad B), by otrzymaé

0a = |[ha)val, (8.24)

zatem stan czysty. A zatem, jezeli stan zredukowany jest mieszany, oznacza to, ze nie mial on
wyjsciowo postaci iloczynowej, byt zatem splatany.

Sytuacja dramatycznie sie komplikuje, gdy stan 9 jest mieszany. Dla przypadku A + B, to zna-
czy gdy chcemy przekonaé sie o istnieniu splatania miedzy dwoma poduktaami, mozemy zastosowaé
kryterium PPT (Positive Partial Transpose) zwane réwniez kryterium Peresa-Horodockiego. Mia-
nowicie, jezeli stan jest separowlany, czyli postaci (?77), to wykonanie czeSciowe] transpozycji na
podprzestrzeni B, czyli

5T = / dop(a) () ® (05(a))™ , (8.25)

nie dotyka stopni swobody A. Jezeli od$ladujemy stopnie swobody zwigzane z B, otrzymujemy wtedy

ba =10 6] = [ dap(@)aata). (8.26)

Jest to nadal zwykla macierz gestosci, wiec w szczego6lnosci jej wartosci wlasne sg nieujemnie. Jezeli w
wyniku tej procedury (czesciowa transpozycja + czesciowy $lad) otrzymujemy operator dziatajacy
na H4, ktéory ma co najmniej jedna ujemna warto$¢ wlasna, wnioskujemy, ze nie mogt by¢ on
postadi (8.22), a zatem byt splatany.

Niestety, w wiekszosci przypadkdéw, z jakimi mamy do czynienia w pracy doswiadczalnej i teore-
tycznej, uktady nie maja binarnej struktury i wykrycie splatania staje sie znacznie trudniejsze.



8.1.2 Sprzeganie z otoczeniem

Zauwazmy, ze gdy peten (A 4+ B) stan poczatkowy jest separowalny (wiecej o tym pojeciu jeszcze w
tym rozdziale), czyli mozna go zapisaé jako

[¥) = |n) @[m) (8.27)

to zredukowana macierz gestosci jest postaci

oa = Te[[}el)p = Y (m/|[nm)nm||m') = |n)nl, (8.28)

m/’

a zatem reprezentuje ona stan czysty. Mozna zatem podaé nastepujaca interpretacje tego, czemu
w opisie uktadéw kwantowych pojawia sie macierz gestosci. Wyobrazmy sobie, ze A jest ukladem,
na ktérym wykonywany jest pomiar/doswiadczenie, za§ B reprezentuje jego cale otoczenie. Jezeli
uktad wchodzi w kontakt z otoczeniem, niechybnie, jak sie przekonamy, stan powstaly w wyniku
tego oddzialywania jest nieseparowalny, czyli nie mozna go przedstawi¢ w postaci rownania (8.27).

Gdy wykonujemy pomiar tylko na A i liczymy wartos$c¢ srednia jakiej$ obserwabli tak, jak zapisano
w rownaniu (8.3), nieseparowalny stan |¢) doprowadzi do efektywnego opisu samego ukladu A
przy pomocy stanéw mieszanych. Zatem interpretacja pojawiania sie macierzy gestosci wiaze sie z
oddzialywaniem uktadu z otoczeniem i wyplywem czesci informacji. Jej utrata prowadzi do bardziej
zlozonego, wzgledem stanéw czystych, i “brudnego” opisu uktadéw kwantowych.

8.1.3 Interpretacja probabilistyczna

Na macierz gesto$ci mozna réwniez spojrzeé z innej perspektywy. Mianowicie przywolajmy jej roz-
ktad spektralny, czyli wyrazenie

64 = paln)nl. (8.29)

Czesto spotyka sie takie wyjasnienie: czasem nie wiemy, jaki stan czysty |n) zostal przygotowany
(na przyktad dlatego, ze nie mamy pelnej informacji dotyczacej tego, jak dziataja nasze urzadzenia
laboratoryjne). Niemniej, jezeli jestesmy w stanie okresli¢ prawdopodobienistwo p,, tego, ze powstaje
[n) (choéby na podstawie tego, ze wiemy jakie sa fluktuacje pola magnetycznego albo fazy lasera), to
stosujemy opis statystyczny, ktory utozsamiamy z wyrazeniem (8.29). Glebszego uzasadnienia tego,
ze to wlasnie macierz gestosci jest odpowiednim opisem w takim przypadku, dostarcza kwantowa
mechanika statystyczna.

8.1.4 DMacierz gestosci qubitu

Pewng szczegblng macierza, gestosci, wazna dla dziedzin takich jak optyka kwantowa, fizyka ciata
stalego czy szeroko pojeta informacja kwantowa, jest macierz gestosci qubitu, czyli uktadu dwupo-
ziomowego, ktérego przestrzen Hilberta rozpinana jest przez dwa wektory

Ha = span (| 1),] 1)) (8.30)

Macierz taka zawsze mozemy zapisaé w postaci

1( 1+n, ng+ing

e= ny —ing, 1—mn,

2 > ’ Ny, My, Tz eR. (831)



Dzieki przedstawieniu ¢ w tej postaci zapewnili$my, ze jej §lad jest 1. Natomiast nieujemnosé wartosci
wtlasnych otrzymujemy z réwnania wiekowego, czyli

(T4n, =201 —n, —2)) —n) —n] =0=4\> -4\ +1—n’> =0, (8.32)

gdzie n? = n2 + nf/ +n2. Stad otrzymujemy
1
Ay = 5(1 +n). (8.33)

A zatem musi zachodzi¢ n = (/n2 + ni + n2 < 1. Gdy nier6wno$¢ ta jest nasycona, stan jest czysty
(gdyz wtedy A_ = 0). W ogolnosci mozemy postuzyé sie macierzami Pauliego z réwnania (7.3) by
zapisa¢ dowolng macierz gestosci qubitu w postaci

N . . . L/s s

0= (11 + ngby + nyby + nzaz) =3 (]1 + na) ) (8.34)
Wektor 7 nazywamy wektorem Blocha, a powyzsza posta¢ sprawia, ze kazdy stan qubitu mozemy
przedstawi¢ na sferze (zwanej sfera Blocha) badz w jej wnetrzu (wtedy jest to stan mieszany).

e 0 obrotach



Rozdziatl 9

Nierownosci Bella

Wprowadziwszy pojecia takie jak separowalno$é i splatanie, mozemy przejéé¢ do dyskusji jednej z bar-
dziej zagadkowych wlasnosci mechaniki kwantowej, opisywanej iloSciowo przez “nieréwnosci Bella”.
Nieréwnosci te zostaly sformutowane przez Johna Bella w 1964 roku i sa poktosiem dyskusji, jaka
toczyta sie w §rodowisku naukowym od 1935 roku, kiedy Einstein, Podolsky i Rosen (EPR) opubli-
kowali prace sugerujaca, ze opis rzeczywistosci, jakiego dostarcza mechanika kwantowa, jest niekom-
pletny. W tym samym roku Erwin Schrodinger wprowadzil pojecie splatania, do ktoérego odwotuje
sie praca EPR.
Argument EPR byl nastepujacy. Wyobrazmy sobie dwucialowy stan splatany

W) = aniV) @ 6). (9.1)

Zalozmy, mowia EPR, ze “uzytkownik” A postanawia dokona¢ pomiaru obserwabli w bazie rozpietej
przez wektory |@[J7(LA)>. Otrzymawszy wynik zwiazany z operatotem rzutowym |1/)1(vi1 )><¢’£ﬁ4 )|, natych-
miast rzutuje wynik w B na |¢5f )). Jezeli A rozwazalby ten stan w innej bazie

W) = an|d) @ [6). (9.2)

i w niej wykonywalby pomiar, to natychmiast jego decyzja mialaby wplyw na mozliwe wyniki w B.
Wydaje sie zatem, ze splatanie dopuszcza “upiorne dzialanie na odleglosé” (jak to ujat Einstein). To
z kolei tamie postulaty lokalnego realizmu, czyli:

e stan uktadu jest okreslony w momencie jego powstawania [realizm];

e lokalne decyzje podjete w A nie maja natychmiastowego (czyli szybszego, niz zajeloby dotarcie
z A do B impulsowi §wietlnemu) wplywu na wyniki pomiaréw w B [lokalnosd).

EPR postulowali, ze nalezy uzupelni¢ mechanike kwantowa o teorie spelniajaca postulaty lokal-
nego realizmu. Innymi stowy twierdzili, ze opis, jakiego dostarcza teoria kwantow, jest niekompletny.

Mineto az 29 lat do momentu, gdy w 1964 roku John Bell bardzo prostym rachunkiem wykazat,
ze nie da sie pogodzié¢ niektérych wynikéw mechaniki kwantowej z zadna lokalnie realistyczna teoria.
Tym samym wykluczyl powr6t do statej dobrej fizyki klasycznej. Przedstawimy tu jego argumenty
w wersji zaproponowanej pare lat pozniej przez Clausera, Horne’go, Shimonny’ego i Holtza (stad
moéwimy o nieréwnosci CHSH).

Zalozmy, na razie abstahujac od mechaniki kwantowej, ze A i B mierza wielkosci fizyczne 14 oraz
Ip. Ponadto, by méc odwolaé sie do powyzszego przykladu, dajmy im swobode zmiany lokalnych
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ustawien, takich jak dobdr bazy, orientacja polaryzatora itp. Zatem pelne oznaczenie na mierzone
wielkoéci to .71(4 " oraz I (M) Postulat realizmu oznacza, ze nawet jezeli wielkosci mierzone zmieniaja
sie od eksperymentu do eksperymentu, to nie jest to fundamentalna losowos¢ uktadu, lecz wynik na-
szej niepetnej wiedzy o szczegdtach przygotowania doswiadczenia. Te niewiedze mozna odwzorowaé
poprzez wprowadzenie zmiennej losowej A (na przyktad opisujacej wynik rzutu moneta, w zaleznosci
od ktorego ustalane sa wlasnosci uktadu).

Nastepnie, konstruujemy funkcje korelacji miedzy wynikami w A i B rozumiang jako $rednig po
wielu pomiarach z iloczynu wynikéw. Jezeli srednia ta spelnia postulat realizmu, to mozemy zapisaé
ja w postaci

E(n, m) / DI (W18 (). 9.3)

Postulat realnosci “zakodowany” jest w tym, ze lokalne ustawienia n i m nie maja na siebie — na
wzajem — wpltywu. Innymi stowy, 14 nie zalezy od m i na wzajem. Celem ponizszego rozumowania
jest, po pierwsze, wykazanie, ze pewna szczeg6lna kombinacja E dla réznych ustawienn moze przyjmo-
waé wartosci tylko z okreslonego przedzialu, a, po drugie, ukltady kwantowe lamig te ograniczenia.
Oznacza to tyle, ze nie wszystkie korelacje kwantowe da sie opisa¢ przy pomocy funkeji (9.3).

Wyprowadzenie zaczyna si¢ od zalozenia, ze lokalne wyniki sg binarne, czyli 14,5 = £1. Odpo-
wiada to wynikom pomiaréw dla dwu czastek o spinie 1/2 kazda, gdyz wartosci wlasne macierzy
Pauliego to wlasnie 1. Nastepnie rozwazamy po dwa mozliwe ustawienia na poduktad, czyli n i n’
dla A oraz m i m’ dla B i konstruujemy wielkosé

C =E(n,m) +E(n',m) — E(n,m’) + E(n’,m’). (9.4)

Korzystajac z postaci (9.3), otrzymujemy
C— / ) [(1970) + 150 157 00 + (15700 — 180 0) 157 ()] 9.5)

Latwo sie przekonaé, ze jezeli zawsze | (")()\) IXL,)()\), to warto$é korelatora jest ograniczona przez

IC] < 2. Tak jest tez dla I(") (A = —11(4" )()\) i dla wszystkich wartosci posrednich. Stad otrzymujemy,
ze dla korelatora C spelniajadcego postulaty lokalnego realizmu zachodzi

c] < 2. (9.6)

Wyrazenie to nazywamy nieréwnoscia Bella albo nieréwnoscia CHSH.
Kluczowe jest to, ze istnieja stany kwantowe, ktore je lamia. Rozwazmy uklad dwu spinow 1/2
(na przyklad pare elektronow albo fotonow — wtedy role spinu odgyrwa polaryzacja) w stanie

)= —=(+1L-1)—[-1,+41)), (9.7)

1
V2
gdzie | £ 1) sa stanami wlasnymi operatorow .. Lokalne obserwable niech beda parametryzowane
katami 6 i ¢ i niech maja postaé

ff) =6 cosh + 62(}‘4) sin 6 (9.8a)
fg)) = 63(03) cos ¢ + 6?53) sin ¢. (9.8b)



Funkcja korelacji, ktora badamy, jest zatem $rednig iloczynu tych operatoréw policzona na sta-
nie (9.7) i ma postaé

E(0,0) = (I1). (9.9)
Bezposredni rachunek daje
C =FE(0,7/4) + E(r/2,7/4) — E(0, —7/4) + E(n/2, —7/4) = 2V/2, (9.10)

co lamie nieréwnos¢ CHSH. Stad wniosek: albo mechanika kwantowa albo lokalny realizm.



