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Rozdział 1

Rys historyczny

Narodziny mehcaniki kwantowej — od zauważenia “rys” na gmachu zbudowanym z klasycznych teo-
rii, po końcem sformułowanie równania Schrödingera i nadanie mu interpretacji — to złożony proces
rozłożony na wiele lat. Jednym z najważniejszych przykładów jest promieniowanie ciała doskonale
czarnego, czyli (na przykład) sześciennego pudełka, którego ścianki są w równowadze termicznej
(mają ustaloną temperaturę) i są “doskonale czarne”, czyli pochłaniają całe padające na nie promie-
niowanie.

1.1 Ciało doskonale czarne i stała Plancka

Klasyczny (czyli wywodzący się z równań Maxwella) opis tego zjawiska, w szczególności ilość energii,
którą wypromieniowuje taki obiekt, prowadzi do niefyzycznych wyników — im większa częstość
światła, tym więcej energii, zatem całkowita ilość energii, rozumiana jako całka po gęstości energii,
jest nieskończona. Zjawisko to, czyli “katastrofa w ultrafiolecie”, było jednym z istotnych signałów,
że klasyczny opis świata jest niekompletny.

Max Planck zaproponował, by do opsiu tego układu wprowadzić pojęcie fotonu, czyli niepodziel-
nej cząstki światła. W odróżnieniu od klasycznej elektromagnetyki, w ramach której energia E pola
elektromagnetycznego zależy od jego natężenia

E ∝
∫

d3r
(

| ~E(~r, t)|2 + | ~H(~r, t)|2
)

, (1.1)

Planck zapostulował, by przyjąć, że energia pojedynczego fotonu jest proporcjonalna do jego często-
ści, czyli

Eω = hν = h
ω

2π
= ~ω, (1.2)

gdzie współczynnik propocjonalności h nazywamy “stałą Plancka”, zaś ~ = h
2π “zredukowaną stałą

Plancka”. Jest to pierwszy omawiany przez nas przykład na “skwantowanie” wielkości fizycznej, czyli
na wymuszenie, by składała się z porcji, a nie była wielkością ciągłą. Wprowadzenie tego postulatu
okazuje się “ratować” ciało doskonale czarne. Katastrofa w ultrafiolecie już nam nie grozi, energia
układu jest skończona i — co najważniejsze — rozkład spektralny energii jest zgodny z obserwacjami.
Waunkiem jest dobranie wartości stałej Plancka (od tej pory określać tak będziemy ~), tak by krzywa
doświadczalna pokrywała się z tą wysnutą z rozważań Plancka. Daje to, w przybliżeniu, niezwykle
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małą wartość

~ ≃ 1.055× 10−34J · s. (1.3)

Widać, że ~ ma wymiar momentu pędu [co jest oczywiste już na poziomie równania (1.2)]. Porów-
nując wartość stałej Plancka z momentem pędu, na przykład ważacej 1 µg cząstki poruszającej się
po okręgu o promieniu 1 µm z prędkością kątową 1 Hz, otrzymujemy, że ~ jest jeszcze około 16
rzędów wielkości mniejsza. Jeżeli jest tak (a będziemy to argumentować w kolejnych rozdziałach),
że ~ zadaje w jakimś sensie skalę zjawisk kwantowych, nic dziwnego, że tak długo zajęło odkrycie
tak subtelnych efektów.

1.2 Od atomu wodoru do równania Schrödingera

Od postulatu Plancka (1.2) do w pełni sformułowanej mechaniki kwantowej daleka droga. Kluczowe
znaczenie w tym procesie miało zagadnienie stabilności atomów. Od czasów doświadczeń Rutherforda
wiadomo było, że atomy mają strukturę planetarną — w środku atomowego “układu słonecznego”
znajduje się masywne, dodatnio naładowane jądro atomowe, zaś elektrony “krążą” po orbitach1.

Planetarny model atomów ma jedną fundamentalną wadę — jest jawnie sprzeczny z pewnymi
danymi doświadczalnymi. Mianowicie, elektrodynamika klasyczna przewiduje, że każdy obiekt obda-
żony ładunkiem, a poruszający się ruchem innym niż jednostajnym prostoliniowym, emituje promie-
niowanie elektromagnetyczne, a zatem traci energię. W konsekwencji, wszystkie atomy powinny być
niestabilne, gdyż orbity, po których krążą elektrony powinny z czasem się zacieśniać, skutkując tym,
że cząstki te spadałyby ruchem spiralnym na jądro atomowe. Co więcej, skale czasowe, na których
takie zjawiska by zachodziły, są “astronomicznie” krótkie. Dochodzimy zatem do sprzeczności: żadna
materia we Wszechświecie nie może być stabilna, a taki świat, jaki znamy, nie może istnieć.

1.2.1 Model Bohra atomu wodoru

Na pomoc przyszedł Niels Bohr, który zaproponował, by “uwięzić” elektrony na orbitach kołowych,
na których wartość wektora ich momentu pędu jest całkowitą wielokrotnością pewnej stałej. Jedynym
znanym kandydatem na taką wielkość była stała Plancka, stąd postulat Bohra przybrał postać:

L = mevr = n~, n ∈ N. (1.4)

Porównując siłę odśrodkową oraz przyciąganie Coulomba, otrzymujemy, że dla atomu wodoru za-
chodzą następujące wyrażenia dla promienia rn oraz energii En

rn =
~
2

ke2me
n2, En = −

ke2

2

1

rn
. (1.5)

Zatem energia skaluje się odwrotnie do kwadratu głównej liczby kwantowej, a jej najmniejsza wartość,
zwana “energią Rydberga”, wynosi [przyjmując wartość stałej Plancka z równania (1.3)]

E1 ≡ Ry = −13.6 eV. (1.6)

Model Bohra jest w bardzo sporym stopniu zgodny z danymi doświadczalnymi. Stosując następującą
interpretację: przeskok elektronu z jednej powłoki do drugiej, czyli zmiania n na m w równaniu (1.5),

1O konieczności postawienia tego drugiego cudzysłówu dowiemy się a posteriori, to znaczy gdy nauczymy się

kwantowego opisu układów atomowych.



związany jest z emisją bądź absorpcją porcji światła, otrzymujemy, że energia fotonu wynosi

~ω = En − Em = Ry
(

1

n2
− 1
m2

)

. (1.7)

Badając widmo wypromieniowanego przez atom wodoru światła można zaobserwować zbiór “linii
widmowych”, których położenia przewiduje powyższe równanie. Wyrażenia (1.5) to drugi, po (1.2),
przykład na kwantowanie wielkości fizycznych. To, co zaskakujące, to że ponownie pojawia się tu
stała Plancka, mimo że zagadnienie jest diametralnie inne od rozważanego wcześniej promieniowania
ciała doskonale czarnego.

Postulat de Broglie’a

W kolejnych latach badacze próbowali, początkowo bezskutecznie, rozwikłać zagadkę modelu Bohra
— jakie mianowicie prawo fizyczne stoi za tym modelem? Póki co, był on konsekwencją wyjętego z
kapelusza postulatu (1.4), bez żadnego głębszego uzasadnienia. Częściową odpowiedź na to pytanie
zaproponował w ramach swojej pracy doktorskiej Louis de Broglie: załóżmy, że tak jak fotonom
można przypisać długość fali i opisywać promieniowanie elektromagnetyczne w ramach klasycznych
równań Maxwella, tak można i cząstkom masywnym. W przypadku fotonów pierszych mówimy o
wektorze falowym k = 2πλ , zaś pęd fotonu wyraża się przez związek p = c · k.

Może analogicznie można napisać dla elektronu:

pe = mev = const · k ? (1.8)

Wektor falowy k związany byłby z długością fali materii λ. zaś stała proporcjonalności znów ma
wymiar momentu pędu, czy stałej Plancka. Postulujemy zatem, za de Broglie’em:

pe = ~k = ~
2π

λ
. (1.9)

Korzystając z równania (1.4) oraz z wyrażenia na promień rn, otrzymujemy, że elektrony znajdują
się na orbitach, dla których zachodzi

λn = 2πa0n, (1.10)

gdzie a0 = r1 ≃ 0.5×10−10 m nazywamy promieniem Bohra. Zatem warunek kwantowania momentu
pędu odpowiada rezonansowemu warunkowi, przypominającemu na przykład zagadnienie drgającej
struny przymocowanej na końcach: na orbicie musi się mieścić całkowita wielokrotność pewnej stałej.

Spostrzeżenie to stawia dotychczasowe obserwacje w zupełnie nowym świetle. Czyżby elektrony
były falami? Co miałoby to znaczyć? I wreszcie: czy istnieje równanie falowe, które je opisuje?

1.3 Równanie falowe: Maxwell vs. Schrödinger

Zanim przejdziemy do zapostulowania równania Schrödingera dla cząstki masywnej, wróćmy do
świata klasycznego i przypomnijmy komplet równań Maxwella w próżni:

∇×H = ∂D

∂t
(1.11a)

∇×E = −∂B
∂t

(1.11b)

∇ ·B = 0 (1.11c)

∇ ·D = 0, (1.11d)



gdzie B = µ0H, D = ǫ0E oraz µ0ǫ0 = c−2. Ze związków tych można wywieść równanie falowe
poprzez przemnożenie wektorowo przez ∇ równania (1.11a), czyli przez policzenie stronami rotacji
tego równania, otrzymując

∇2E− 1
c2
∂2E

∂t2
= 0. (1.12)

Jest to równanie falowe dla pola elektrycznego. Wyprowadzając je skorzystaliśmy ze związku ∇ ×
(∇×A) = ∇(∇·A)−∇2A, gdzieA jest dowolnym, dwókrotnie różniczkowalnym polem wektorowym.
Rozwiązanie tego równania jest postaci

E(r, t) = ekEkei(k·r−ωkt), (1.13)

gdzie ek jest jednostkowym wektorem polaryzacji, spełniającym ek · k = 0, zaś Ek jest amplitudą
pola elektrycznego. By spełnione było równanie (1.12), związek dyspersyjny łączący częstotliwość ωk
z długością wektora falowego k = |k| dla swobodnego pola jest postaci ωk = kc, a zatem [korzystając
z równania (1.2)]

Ek = ~ωk = ~kc. (1.14)

Prędkość grupowa zdefiniowana jako pochodna częstości po wektorze falowym, wynosi w tym przy-
padku po prostu c. Jeżeli, podążając za propozycją de Broglie’a, przypiszemy elektronowi (i innym
cząstkom masywnym) długość fali λ, to związek dyspersyjny dla zagadnienia swobodnego powinien
mieć postać

Ek = ~ωk =
p2

2m
=

~
2k2

2m
−→ ωk =

~

2m
k2. (1.15)

Prędkość grupowa wynosi zatem

vg =
∂ωk
∂k
=

~k

m
=

p

m
=
2π

λm
. (1.16)

Jest to zatem związek bardziej złożony niż dla swobodnego pola elektrycznego.

Schrödinger, referując wyniki de Broglie’a na jednym z seminariów, zapytany został o rzecz
następującą: skoro związek dyspersyjny dla pola elektrycznego jest konsekwencją równania falo-
wego (1.12), to czy można zaproponować analogiczne równanie dla “fali materii”? Początkowo,
Schrödinger nie potrafił udzielić odpowiedzi na to pytanie. Po paru tygodniach przyniósł rozwiązanie,
a jego rozumowanie było następujące.

Załóżmy, że fala materii związana z cząstką swobodną, analogicznie do przypadku pola E, również
jest falą płaską, daną wyrażeniem

ψ(~r, t) ∝ ei(~k·~r−ωkt). (1.17)

By spełniony był związek (1.15), z lewej strony musi pojawić się częstość w pierwszej potędze (jedno-
krotne różniczkowanie po czasie), zaś z prawej wektor falowy w kwadracie (dwukrotne różniczkowanie
po położeniu). Jak nie trudno zgadnąć, równanie na falę ψ jest postaci

i~∂tψ(~r, t) = −
~
2

2m
∇2ψ(~r, t). (1.18)



Liniowy operator różniczkowy po prawej stronie, działając na falę płaską, zwraca jej energię kine-
tyczną, czyli

− ~
2

2m
∇2ei(~k·~r−ωkt) = ~

2k2

2m
ei(
~k·~r−ωkt) =

p2

2m
ei(
~k·~r−ωkt). (1.19)

Zatem operator ten oznaczamy, przez analogię do energii kinetycznej w hamiltonowskim sformuło-
waniu mechaniki klasycznej, jako

T̂ ≡ − ~
2

2m
∇2 . (1.20)

Równanie (1.19) nazywamy swobodnym równaniem Schrödingera i z samej jego konstrukcji wiemy,
że jego rozwiązaniem jest fala płaska (bądź dowolna ich kombinacja liniowa, jako że równanie to jest
liniowe w ψ).

Ponieważ energię kinetyczną w mechanice hamiltonowskiej oznaczmy przez

T =
p2

2m
, (1.21)

gdzie p jest pędem kanonicznym, zatem przez analogię zapisujemy w mechanice kwantowej

T̂ =
p̂2

2m
, ~̂p =

~

i
∇. (1.22)

Oznacza to na przykład, że operator x-owej składowej pędu ma postać

p̂x =
~

i

∂

∂x
. (1.23)

Kolejnym krokiem jest postulat równania w obecności zewnętrznego potencjału V (~r, t). W tym
przypadku, poprzez analogię do zagadnienia klasycznego, gdy konstruując Hamiltonian do energii
konetycznej dodaje się energię potencjalną, również dla cząstki kwantowej postulujemy

i~∂tψ(~r, t) =

[

− ~
2

2m
∇2 + V (~x, t)

]

ψ(~r, t). (1.24)

Jest to pełne równanie Schrödingera na funkcję falową ψ dla pojedycznej cząstki o masie m w
potencjale V . Operator działający na funkcję falową z prawej strony tego równania nazywamy Ha-
miltonianem i oznaczamy

Ĥ ≡ − ~
2

2m
∇2 + V (~x, t). (1.25)

Pozostała część tego wykładu poświęcona będzie badaniom własności tego równania i jego rozwiązań
w konkretnych układach fizycznych.





Rozdział 2

Stan, reprezentacje, itp.

2.1 Stan

Równanie Schrödingera w postaci (1.24) jest równaniem różniczkowym cząstkowym, drugiego rzędu.
Ponieważ jest ono liniowe, innymi słowy

Ĥ : L2(C) −→ L2(C). (2.1)

Operator Ĥ można wyrazić w innej bazie przestrzeni Hilberta, nie koniecznie związanej ze zmienną
x. W ogólności stosować będziemy notację na wektor w tej przestrzeni

ψ(~x, t) ↔ |ψ(t)〉. (2.2)

Oznaczenie |ψ〉 (zamiast tradycyjnie używanego ~ψ dla elementów przestrzeni wektorowej) pochodzi
od Paula Diraca, i tę formę zapisu nazywamy notacją Diraca.

W kolejnym kroku, wprowadzamy operator położenia x̂, co d którego zakładamy, że jest opera-
torem hermitowskim, czyli

x̂† = x̂, (2.3)

gdzie † oznacza sprzężenie zespolone i transpozycję zarazem. Operator hermitowski ma rzeczywiste
wartości własne, a zatem

x̂|x〉 = x|x〉, x ∈ R. (2.4)

Rozkład spektralny tego operatora ma postać (w przypadku dyskretnym i ciągłym)

x̂ =
∑

x

x|x〉〈x|, lub x̂ =

∫

dxx|x〉〈x|. (2.5)

zaś różne |x〉 są ortonormalne, czyli w przypadku dyskretnym i ciągłym mamy

〈x|x′〉 = δxx′ , lub 〈x|x′〉 = δ(x− x′). (2.6)

Od tej pory będziemy zakładać, w ramach pewnej idealizacji, że x̂ ma spektrum ciągłe. Ponieważ
zbiór stanów własnych operatora hemrotowskiego rozpina przestrzeń, mamy zatem

∫

dx|x〉〈x| = 1̂. (2.7)
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Funkcję falową ψ(~x, t) należy zrozumieć jako współczynniki rozkładu wektora |ψ(t)〉 w bazie stanów
własnych |x〉. Wektor |ψ(t)〉 od tej pory nazywamy stanem układu. Mamy zatem

|ψ(t)〉 =
∫

dx′ψ(x′, t)|x′〉, (2.8)

zaś korzystając z ortonormalności i rzutując na |x〉, otrzymujemy

〈x|ψ(t)〉 =
∫

dx′ψ(x′, t)〈x|x′〉 = ψ(x, t). (2.9)

Zachodzi zatem kluczowy związek:

ψ(~x, t) = 〈x|ψ(t)〉. (2.10)

Równanie Schrödingera ma zatem ogólną postać

∂t|ψ(t)〉 = Ĥ|ψ(t)〉, Ĥ =
p̂2

2m
+ V (x̂), (2.11)

gdzie postać operatorów p̂ zależy od wyboru bazy.

2.2 Reprezentacja pędowa

Z przyczyn czysto fizycznych (a zatem empirycznych), oprócz reprezentacji położeniowej wyróżniona
jest reprezentacja pędowa, czyli taka, gdzie stan rzutujemy na stany własne operatora pędu

ψ(p, t) = 〈p|ψ(t)〉. (2.12)

W tej bazie Hamiltonian ma postać

Ĥ =
p2

2m
+ V (x̂), (2.13)

innymi słowy działanie operatorem pędu jest mnożeniem przez liczbę. Przedstawimy teraz rozumo-
wanie, które pozwoli nam przechodzić między tymi dwiema wyróżnionymi reprezentacjami.

Mianowicie, przypomnijmy, że operator pędu w reprezentacji położeniowej ma postać

p̂x =
~

i

∂

∂x
. (2.14)

Zatem stan własny operatora pędu w reprezentacji położeniowej to fala płaska, czyli

ψp(x) = 〈x|p〉 =
1√
2π~

eipx/~, (2.15)

gdyż działanie operatora pędu na tę funkcję falową daje

p̂x
1√
2π~

eikx = ~k
1√
2π~

eikx = p
1√
2π~

eikx. (2.16)

Powód, by wprowadzić czynnik normalizacyjny 1√
2π~

okaże się jasny jeszcze w tej sekcji.



Poprzez sprzężenie hermotowskie wyrażenia (2.15) dostajemy reprezentację pędową stanu wła-
snego operatora położenia, czyli

ψx(p) = (〈x|p〉)† = 〈p|x〉 =
1√
2π~

e−ikx, (2.17)

możemy zatem od razu odczytać, że operator położenia w reprezentacji pędowej ma postać

x̂p = i
∂

∂k
= i~

∂

∂p
. (2.18)

Pozostaje nam wyznaczyć związek między dwiema reprezentacjiami. Korzystając z (2.7), otrzumy-
jemy

ψ(x) = 〈x|ψ〉 =
∫

dp〈x||p〉〈p||ψ〉 = 1√
2π~

∫

dpei
px
~ ψ(p) (2.19)

i na odwrót przy przejściu z reprezenacji położeniowej do pędowej. Zatem związek między reprezen-
tacjami dany jest przez transformatę Fouriera.

2.3 Reguła komutacyjna i zasada nieoznaczoności

Zauważmy, że komutator operatora położenia i pędu, wyznaczony na przykład w reprezentacji po-
łożeniowej, wynosi

[x̂, p̂] =

[

x̂,
~

i

∂

∂x

]

= x
~

i

∂

∂x
−
(

~

i

∂

∂x
x

)

= x
~

i

∂

∂x
−
(

~

i
+ x

~

i

∂

∂x

)

= i~. (2.20)

Zatem operatory położenia i pędu nie komutują, co pociąga za sobą następującą konsekwencję. Roz-
ważmy dwa operatory hermitowskie działające na tej samej przestrzeni Hilberta, Â i B̂. Wyznaczmy
wariancję każdego z nich na stanie |ψ〉, to znaczy

σ2X = 〈ψ|(X̂ − 〈X̂〉)2|ψ〉, (2.21)

gdzie X = A lub B. Wprowadźmy dwa stany:

|ψX〉 = (X̂ − 〈X̂〉)|ψ〉, (2.22)

znów z X = A lub B. Mamy zatem

σ2X = 〈ψX |ψX〉. (2.23)

Zauważmy, że na mocy nierówności Cauchy-Schwarza, mamy

σ2Aσ
2
B = 〈ψA|ψA〉〈ψB |ψB〉 > |〈ψA|ψB〉|2 . (2.24)

Prawa strona tej nierówności wynosi

|〈ψA|ψB〉|2 = |〈ψ|(Â− 〈Â〉)(B̂ − 〈B̂〉)|ψ〉|2 = (2.25)

〈ψ|(Â− 〈Â〉)(B̂ − 〈B̂〉)|ψ〉〈ψ|(B̂ − 〈B̂〉)(Â− 〈Â〉)|ψ〉 (2.26)



Wprowadźmy dwa operatory

∆X̂ = X̂ −
〈

X̂
〉

, (2.27)

gdzie X = A lub B, zaś średnia policzona jest na stanie |ψ〉. Zauważmy następnie, że

∆Â∆B̂ =
1

2
[∆Â,∆B̂] +

1

2
{∆Â,∆B̂}, (2.28)

gdzie symbol {x̂, ŷ} = x̂ŷ + ŷx̂ nazywamy antykomutatorem. Ponieważ Â i B̂ są hermitowskie, więc
odpowiednio komutator i antykomutator są antyhermitowskie i hermitowskie, a co za tym idzie, ich
wartość średnia jest odpowiednio czysto urojona i rzeczywista. A Zatem, korzystając z nierówności
Cauchy-Schwarza, mamy

〈(∆Â)2〉〈(∆B̂)2〉 >
∣

∣

∣

〈

∆Â∆B̂
〉∣

∣

∣

2

=
1

4
|〈[∆Â,∆B̂]〉|2 + 1

4
|〈{∆Â,∆B̂}〉|2. (2.29)

Pomijając drugi człon, otrzymujemy “standardową” zasadę nieoznaczoności Heisenberga

〈(∆Â)2〉〈(∆B̂)2〉 > 1
4
|〈[∆Â,∆B̂]〉|2. (2.30)

W szczególności, biorąc za Â i B̂ operatory położenia i pędu, otrzymujemy

〈(∆x̂)2〉〈(∆p̂)2〉 > ~
2

4
, (2.31)

lub biorąc stronami pierwiastek

∆x∆p >
~

2
. (2.32)



Rozdział 3

Pomiar, postulaty, interpretacja

Droga od “katastrofy w ultrafiolecie”, przez model Bohra atomu wodoru po równanie Schródingera
zajęła ponad dwadzieścia lat. Ale czy można powiedzieć, że po jej przebyciu zrozumienie praw
przyrody się pogłębiło? Postulat de Boglie’a jest dalece niejasny — jak interpretować to, że masywnej
cząstce, będącej w przybliżeniu punktem materialnym, przypisujemy długość fali?

Równanie Schrödingera opisuje ewolucję czasową obiektu, który nazwaliśmy funkcją falową. Ale
czym ona jest? Skoro, w ogólności, jest ona obiektem rozciągłym, to jak połączyć ten byt z inter-
pretacją cząstki jako punktu materialnego?

Nie opiszemy tu całego procesu poznawczego, który doprowadził do współcześnie obowiązują-
cej interpretacji mechaniki kwantowej. Przedstawimy po prostu jej postulaty i mówimy po krótce
płynące z nich wnioski.

1. Mechanika kwantowa (jednej cząstki) jest teorią opisującą ewolucję funkcji falowej ψ(~r, t) za-
daną równaniem Schrödingera .

2. Funckja falowa ma interpretację probabilistyczną: prawdopodobieństwo znalezienia cząstki w
otoczeniu punktu ~r dane jest przez

p(~r, t)d3r = |ψ(~x, t)|2d3r. (3.1)

3. Z tego wynika, że funkcja falowa musi być unormowana, musi być zatem “całkowalna z kwa-
dratem”, czyli fizyczne rozwiązania to takie, gdy ψ ∈ L2(C) oraz zachodzi

∫

p(~r, t)d3r =

∫

|ψ(~x, t)|2d3r = 1. (3.2)

4. Wielkościom fizycznym przypisyjemy obserwable, czyli operatory hermitowskie o rozkładzie
spektralnym

Â =
∑

i

ai|ai〉〈ai| (3.3)

5. Pomiar wielkości A odpowiada rzutowaniu stanu |ψ〉 na jeden ze stanów własnych Â. W wyniku
pomiaru układ przechodzi zatem

|ψ〉 pomiar−−−−→ |ai〉〈ai||ψ〉 unormowanie−−−−−−−−→ |ai〉 (3.4)
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6. Mechanika kwantowa jest teorią statystyczną. Nie można stwierdzić, w jakim stanie |ai〉 znaj-
dziemy układ w wyniku pomiaru Â. Możemy jedynie wyznaczyć prawdopodobieństwo znalezie-
nia układu w stanie |ai〉. Reguła Borna mówi, że wynosi ono

p(ai) = 〈ψ||ai〉〈ai||ψ〉 = |〈ai|ψ〉|2. (3.5)

Wielkość 〈ψ|X̂|ψ〉 nazywamy wartością średnią operatora X̂.

Postulaty te są wysoce niejasne. Co to znaczy, że wynikom pomiaru można tylko przypisać
prawdopodobieństwo? Czy mechanika kwantowa jest fundamentalnie losowa? Jeżeli tak, to jaki jest
stan układu przed pomiarem? Czy w ogóle ma sens mówienie o własnościach układu przed aktem
obserwacji? Jeżeli nie, to jaka jest rola obserwatora? Czy swoim wpływem na układ nadaje mu on
własności fizyczne? A skoro tak, to czy ten proces wymaga świadomości?

Są to pytania, na które nie znamy odpowiedzi. W ramach interpretacji kopenhaskiej mechaniki
kwantowej przyjmujemy postawę minimalistyczną, to znaczy mówimy, że nie wiemy, jaki jest realny
stan układu i czy w ogóle on istnieje. Stan |ψ〉 i z wiązaną z nim teorię traktujemy jedynie jako metodę

opisu. Jedyne, do czego mamy dostęp, to pomiar, a jedyne, co można określić deterministycznie, to
prawdopodobieństwo wyniku.

Są liczne inne próby interpretacji mechaniki kwantowej. Na przykład teoria wielu światów Eve-

retta mówi, że funkcja falowa, w wyniku pomiaru nie zapada się do jednego wyniku, lecz że obser-
wator/ka widzi wszystkie możliwości na raz, lecz nie jest tego świadoma/y.

Jako że obecnie spór jest nierozstrzygalny, w dalszej częsci traktować będziemy mechanikę kwan-
tową jako metodę obliczeniową i pokażemy, jakie są jej przewidywania probabilistyczne.



Rozdział 4

Rozwiązania równania Schrödingera

w jednym wymiarze

Przedstawiliśmy zarys procesu powstawania nowej teorii — mechaniki kwantowej. Rzecz jasna, zarys
ten jest wyrywkowy i stanowi jedynie wstęp do głębszej refleksji nad historią teorii kwantów. Możemy
teraz przejść do kolejnego etapu — poszukiwania rozwiązań równania Schrödingera w najprostszych
jednowymiarowych przypadkach. Kanonem zagadnień, które się w tym kontekście rozważa są: cząstka
swobodna, cząstka w prostokątnej skończonej/nieskończonej studni oraz jednowymiarowy kwantowy
oscylator harmoniczny. Na wykładzie rozważymi pierwsze i trzecie z nich, zaś zagadnienia związane
z jednowymiarowymi studniami potencjału przedyskutujemy na ćwiczeniach.

4.1 Cząstka swobodna

Zaczynamy od najprostrzego możliwego zagadnienia: cząstki swobodnej w 1D. Stajemy zatem przed
zagadnieniem rozwiązania równania Schrödingera w postaci

i~∂tψ(x, t) = −
~
2

2m

∂2

∂x2
ψ(x, t). (4.1)

Poszukując rozwiązania, wygodnie jest przejść do reprezentacji pędowej, to znaczy zapisać równanie
Schrödingera jako

i~∂tψ(p, t) =
p̂2

2m
ψ(p, t). (4.2)

Zaletą tego sformułowania jest fakt, że operator pędu działa na ψ(p, t) jak mnożenie przez liczbę,
otrzymujemy zatem

i~∂tψ(p, t) =
p2

2m
ψ(p, t). (4.3)

Jest to liniowe równanie różniczkowe pierwszego rzędu, możemy zatem od razu podać rozwiązanie

ψ(p, t) = ei
p2

2m~
tψ(p, 0). (4.4)
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Pytanie teraz o warunek początkowy, to znaczy o to, jakie jest ψ(p, 0). Jeżeli przyjmiemy, że jest to
gaussowska paczka falowa postaci

ψ(p, 0) ∝ e
− p2

2σ2p (4.5)

oraz narzucimy warunek normalizacji

∫

dp |ψ(p, 0)|2 −→ ψ(p, 0) =
1

√√
πσp

e
− p2

2σ2p (4.6)

otrzymamy wtedy

ψ(p, t) =
1

√√
πσp

e
− p2

2σ2p ei
p2

2m~
t. (4.7)

Możemy następnie wyznaczyć reprezentację położeniową, korzystając z równania (2.19). Mamy

ψ(x, t) =
1√
2π~

∫

dp eikxψ(p, t) =
1√
2π~

1
√√

πσp

∫

dp eipx/~e
− p2

2σ2p ei
p2

2m~
t. (4.8)

Całkujemy poprzez zebranie do pełnego kwadratu i wykonanie całki gaussowskiej, otrzymując

ψ(x, t) =

√
~

σ(t)

1
√√

πσp
e
− x2

2σ2(t) , (4.9)

gdzie

σ2(t) = ~
2

(

1

σ2p
− i t

~m

)

. (4.10)

Sprawdźmy najpierw, czy rzeczywiście ewolucja jest unitarna, czyli czy zachowana jest norma funkcji
falowej. Zapisując

σ2(t) = α− iβ, α =
~
2

σ2p
, β =

~t

m
(4.11)

mamy

|ψ(x, t)|2 = ~
√

α2 + β2
1√
πσp

e
−x2 α

α2+β2 =

√
α

√

α2 + β2
1√
π
e
−x2 α

α2+β2 . (4.12)

Widać zatem, że podstawiając y = x
√

α
α2+β2 i dokonując zamiany zmiennych przy całkowaniu,

otrzymujemy unormowaną funkcję falową.
Możemy następnie wyznaczyć szerokość paczki falowej, to znaczy

σx(t) =
√

〈x2〉 − 〈x〉2, (4.13)

Ponieważ funkcja falowa (4.12) nie ma przesunięcia, więc 〈x〉 = 0. Natomiast jej szerokość odczytu-
jemy natychmiast z prawej strony tego równania, otrzymując

σx(t) =
1

2

√

α2 + β2

α
=
1

2

√

~2

σ2p
+

(

σpt

m

)2

. (4.14)



W szczególności, widzimy, że dla dużych czasów rozpływanie jest liniowe w czasie, mianowicie

σx(t)
t≫ ~

σ2p
m

−−−−−→ 1
2

σpt

m
. (4.15)

Na końcu zauważmy, że zasada nieoznaczoności daje nam

σx(t)σp(t) =
~

2

√

1 +

(

σ2pt

~m

)2

, (4.16)

jest ona zatem nasycana tylko w t = 0.

4.2 Oscylator harmoniczny

Kolejnym zagadnieniem, które “bierzemy na warsztat” jest jeden z kluczowych problemów w jed-
nociałowej mechanice kwantowej — jednowymiarowy oscylator harmoniczny. Hamiltonian dla tego
zagadnienia ma postać

Ĥ =
p̂2

2m
+
1

2
mω2x̂2. (4.17)

Naszym zadaniem będzie przedyskutować zagadnienie niezależne od czasu, czyli znaleźć rozwiązanie
zagadnienia własnego

Ĥ|ψn〉 = En|ψn〉. (4.18)

Rozwiązanie można wyznaczyć na dwa podstawowe sposoby: analitycznie i algebraicznie. Rozwią-
zania analitycznego poszukamy na ćwiczeniach, tu przedstawimy rozumowanie algebraiczne. Rozu-
mowanie zaczynamy od spostrzeżenia, że z kwantowym oscylatorem harmonicznym związana jest
jednostka długości

a0 =

√

~

mω
. (4.19)

Korzystając z tej wielkości, konstruujemy niehermitowski, bezwymiarowy operator

â =
1√
2

(

x̂

a0
+ i

p̂a0
~

)

. (4.20)

Operator ten, zwany operatorem anihilacji, wraz ze swym sprzężeniem hermotowskim (operatorem
kreacji) daje następującą regułę komutacyjną

[

â, â†
]

= 1. (4.21)

Odwrac relację (4.20), czyli wyznaczając x̂ i p̂ w funkcji â i â†, i podstawiając do Hamiltonianu (4.17),
dostajemy

Ĥ = ~ω

(

â†â+
1

2

)

. (4.22)



Załóżmy, że znaleźliśmy rozwiązanie równania (4.18). Musi być zatem tak, że

â†â|ψn〉 =
1

~ω

(

En −
1

2

)

|ψn〉 ≡ En|ψn〉. (4.23)

Zauważmy następnie, że stan â|ψn〉 też jest stanem własnym operatora. który oznaczymy przez
n̂ = 0â†â. Albowiem, korzystając z reguły komutacyjnej (4.21) otrzymujemy

n̂ (â|ψn〉) = (En − 1)â|ψn〉 (4.24)

i analogicznie dla â† tylko z +1. Zatem działając wielokrotnie operatorem anihilacji na |ψn〉 możemy,
co jeden, dowolnie zmniejszać energię. Jednak ta nie może być dowolnie mała, gdyż prowadziłoby
to do niefizycznych konsekwencji. Zatem musi być tak, że En jest liczbą całkowitą. W szczególności
istnieje stan podstawowy, któremu nie można już zmniejszyć energii. Oznaczmy go przez |0〉. Musi
mieć on tę własność, że n̂|0〉 = 0, zatem jego energia wynosi

Ĥ|0〉 = 1
2
~ω|0〉. (4.25)

. Kolejne stany otrzymujemy poprzez działanie operatorem kreacji, zatem n-ty stan własny |n〉 ma
energię

Ĥ|n〉 = ~ω

(

n+
1

2

)

|n〉. (4.26)

. Tłumaczy to zatem oznaczenie n̂ = â†â. Ponieważ zachodzi

n̂|n〉 = n|n〉, (4.27)

. jest to zatem operator, który informuje na którym poziome energetycznym się znajdujemy. Nazy-
wamy go “operatorem liczby wzbudzeń”. Zauważmy jeszcze, że

〈n|n̂|n〉 = 〈n|â†â|n〉 = n, (4.28a)

〈n|ââ†|n〉 = 〈n|(â†â+ 1)|a〉 = n+ 1. (4.28b)

Zatem mamy, zauważając, że lewa strona jest kwadratem normy stanu â|n〉

â|n〉 =
√
n|n− 1〉, (4.29a)

â†|n〉 =
√
n+ 1|n+ 1〉. (4.29b)



Rozdział 5

Zagadnie trójwymiarowe i moment

pędu

Zakończyliśmy wstępne rozważania oraz dyskusję kanonicznych przykładów jednowymiarowych.
Czas przejść do zagadnień trójwymiarowych. Zaczniemy ten rozdział od prostego przykładu, w
którym następuje separacja zmiennych kartezjańskich. Następnie omówimy przykład o symetrii sfe-
rycznej, by “wyłuskać” z Hamiltonianu operator momentu pędu.

5.1 3D — separacja zmiennych kartezjańskich

Zaczijmy od stacjonarnego równania Schrödingera w trzech wymiarach, mającego postać

− ~
2

2m

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

ψ(~r) + V (~r)ψ(~r) = Eψ(~r). (5.1)

Załóżmy następnie, że potencjał ten jest sumą funkcji trzech zmiennych kartezjańskich, czyli

V (~r) = Vx(x) + Vy(y) + Vz(z). (5.2)

Zapostulujmy, że w takim przypadku funckja falowa się “faktoryzuje”, czyli można ją zapisać jako
iloczyn fukncji każdej ze zmiennych z osobna

ψ(~r) = ψx(x)ψy(y)ψz(z), (5.3)

Podstawiając to wyrażenie do równania Schrödingera (5.1) otrzymujemy

[

− ~
2

2m

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

+ Vx(x) + Vy(y) + Vz(z)

]

ψx(x)ψy(y)ψz(z) = Eψ(~r). (5.4)

Dzieląc stronami przez funkcję falową, dostajemy

[

− ~
2

2m

∂2ψx(x)

∂x2
1

ψx(x)
+ Vx(x)

]

+

[

− ~
2

2m

∂2ψy(y)

∂y2
1

ψy(y)
+ Vy(y)

]

+

[

− ~
2

2m

∂2ψz(z)

∂z2
1

ψz(z)
+ Vz(z)

]

= E. (5.5)
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Aby równanie to spełnione było dla każdej wartości x, y oraz z, musi być tak, że każda z osobnych
części jest stała, czyli zachodzi

[

− ~
2

2m

∂2ψx(x)

∂x2
1

ψx(x)
+ Vx(x)

]

= Ex. (5.6)

i analogicznie dla dwu pozostałych zmiennych. Zatem otrzymujemy trzy oddzielne jednowymiarowe
równania Schrödingera postaci

[

− ~
2

2m

∂2

∂x2
+ Vx(x)

]

ψx(x) = Exψx(x) (5.7)

oraz warunek

Ex + Ey + Ez = E. (5.8)

Na przykład, trójwymiarowy oscylator harmoniczny o potencjale

V (~r) =
1

2
mω2xx

2 +
1

2
mω2yy

2 +
1

2
mω2zz

2 (5.9)

da energie własne postaci

Enx,ny,nz = ~ωx

(

nx +
1

2

)

+ ~ωy

(

ny +
1

2

)

+ ~ωz

(

nz +
1

2

)

. (5.10)

5.2 Moment pędu

Przygotujemy teraz grunt pod szczególną rodzinę zagadnień: gdy potencjał jest sferycznie syme-
tryczny (w języku klasycznym powiedzielibyśmy o polu siły centralnej). Zanim skupimy się na takim
zagadnieniu — a będzie to atom wodoru z kulombowskim oddziaływaniem elektron-proton — przyj-
żyjmy się samemu laplasjanowi. We współrzędnych sferycznych mamy

∆ =
1

r2
∂r
(

r2∂r
)

+
1

r2 sin θ
∂θ(sin θ∂θ) +

1

r2 sin2 θ
∂2φ =

1

r2
∂r
(

r2∂r
)

− L̂2

~2r2
. (5.11)

Wykażemy teraz, że oznaczenie to nie jest przypadkowe, to znaczy

L̂2 = L̂2x + L̂
2
y + L̂

2
z, (5.12)

gdzie

L̂x = ŷp̂z − ẑp̂y (5.13)

i analogicznie dla pozostałych dwu składowych. We współrzędnych sferycznych mamy dla wektora
położenia

~r = r(sin θ cosφ, sin θ sinφ, cos θ) (5.14)

oraz dla operatorów pędu

p̂x = −i~
(

sin θ cosφ∂r +
cos θ cosφ

r
∂θ −

sinφ

r sin θ
∂φ

)

(5.15a)

p̂y = −i~
(

sin θ sinφ∂r +
cos θ sinφ

r
∂θ +

cosφ

r sin θ
∂φ

)

(5.15b)

p̂z = −i~
(

cos θ∂r −
sin θ

r
∂θ

)

. (5.15c)



Korzystając z tych wyrażeń, możemy wyznaczyć wszystkie trzy składowe momentu pędu, podnieść
je do kwadratu, by otrzymać

L̂2 = −~2
[

1

r2 sin θ
∂θ(sin θ∂θ) +

1

r2 sin2 θ
∂2φ

]

. (5.16)

Zatem Hamiltonian dla zagadnienia sferycznie symetrycznego ma postać

Ĥ = − ~
2

2m

1

r2
∂r
(

r2∂r
)

+
L̂2

2mr2
+ V (r). (5.17)

Hamiltonian ten komutuje z L̂2 oraz z każdą ze składowych L̂i.
Jego postać sugeruje, by poszukiwać rozwiązania w postaci iloczynowej

ψ(~r) = R(r)Y (θ, φ). (5.18)

Podstawiamy tę postać o obustronnie dzielimy przez ψ(~r)/(2mr2), otrzymując równanie Schrödin-
gera

− ~
2

R(r)
∂r
(

r2∂rR(r)
)

+ 2mr2(V (r)− E) + L̂2Y (θ, φ)

Y (θ, φ)
= 0. (5.19)

Równanie to separuje się, otrzymujemy w szczególności wyrażenie na część kątową

L̂2Y (θ, φ)

Y (θ, φ)
= const. (5.20)

Jest to zatem zagadnienie właśne dla kwadratu operatora hermitowskiego L̂2. Ponieważ operator
hermitowski ma rzeczywiste wartości własne, jego kwadrat jest dodatnio określony. Wprowadźmy
oznaczenie na wartość własną i odpowiadający jej wektor własny

L̂2Y (θ, φ) = ~
2l(l + 1)Y (θ, φ), (5.21)

gdzie l > 0. Otzrymujemy wtedy układ równań

~
2

2mr2
∂r
(

r2∂rR(r)
)

=

(

V (r)− E + l(l + 1)~2

2mr2

)

R(r) (5.22a)

−
[

sin θ∂θ(sin θ∂θ) + ∂
2φ
]

Y (θ, φ) = l(l + 1) sin2 θY (θ, φ). (5.22b)

Rozwiązanie równania (5.22a) zależy od postaci potencjału, lecz to drugie jest ogólne i nie pojawia
się w nim V (r). Możemy zatem podać ogólne rozwiązanie równania (5.22b). Widać, że w równaniu
tym znów separują się zmienne, piszemy zatem Y (θ, φ) = T (θ)F (φ) is otrzymujemy

∂2φF (φ) = −m2F (φ), (5.23)

gdzie m ∈ Z, aby funkcja F (φ) ∝ eimφ była periodyczną funkcją φ. Równanie na funkcję T przyjmuje
postać

−
[

∂ξ(1− ξ2)∂ξ + l(l + 1)−
m2

1− ξ2
]

T (ξ) = 0, (5.24)



gdzie ξ = cos θ. Równanie to daje normalizowalne rozwiązanie tylko, gdy l ∈ Z i −m 6 l 6 m.
Rozwiązaniem są harmoniki sferyczne, które wyrażają się przez stowarzyszone funkcje Legendre’a
Pml (ξ) w następulący sposób

Ylm(θ, φ) =

√

(2l + 1)(l − |m|)!
4π(l + |m|)! Pml (cos θ)e

imφ. (5.25)

Funkcje te są ortonormalne

∫

dΩYlm(θ, φ)Yl′m′(θ, φ) = δll′δmm′ (5.26)

i spełniają równania własne

L̂2Ylm(θ, φ) = ~
2l(l + 1)Ylm(θ, φ) (5.27)

L̂zYlm(θ, φ) = ~mYlm(θ, φ). (5.28)

Podać parę przykładów

5.3 Algebra momentu pędu

Przechodzimy teraz to opisu operatorów momentu pędu, ich wartości własnych i reguł komutacyjnych
— innymi słowy, do ich algebry — w bardziej abstrakcyjnym, ale w grunice rzeczy prostszym języku.
Przywołajmy na początku jawne wyrażenia na składowe operatora momentu pędu w reprezentacji
położeniowem. Mamy

L̂x = i~(sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ
) (5.29a)

L̂y = i~(− cosφ
∂

∂θ
+ cot θ sinφ

∂

∂φ
) (5.29b)

L̂z = −i~
∂

∂φ
. (5.29c)

Zauważmy na przykład, że biorąc φ = 0, operator L̂y ma postać analogiczną do operatora pędu, tak

jak i L̂z. Jako że pęd generuje przesunięcie, zatem

Û~n(φ) = e
−iφ~n~̂L/~ (5.30)

generuje obrót o kąt φ wokół osi ~n. Możemy następnie się przekonać, na przykład bezpośrednio z
definicji (5.13), że składowe operatora wektora momentu pędu spełniają regułę komutacyjną

[

L̂i, L̂j

]

= i~ǫijk~L̂l. (5.31)

Odrywamy się teraz od reprezentacji położeniowej i rozważamy trzy operatory Ĵx, Ĵy, Ĵz, spełniające
regułę, jak powyżej, a co za tym idzie (co można wykazać bezpośrednim rachunkiem)

[

Ĵi, Ĵ
2
]

= 0, (5.32)



gdzie

Ĵ2 = Ĵ2x + Ĵ
2
y + Ĵ

2
z . (5.33)

Jako że każda ze składowych komutuje z operatorem całkowitego momentu pędu, możemy zdiago-
nalizować, na przykład Ĵz i Ĵ2 jednocześnie, czyli

Ĵz|a, b〉 = b|a, b〉, Ĵ2|a, b〉 = a|a, b〉. (5.34)

W następnym kroku wprowadzamy operatory “podnoszące” i “obniżające”, które mają postać

Ĵ± = Ĵx ± iĴy. (5.35)

Ich nazwa stanie się jasna, gdy zadziałamy jednym z nich na stan własny. Mmianowicie, na mocy
reguły komutacyjnej, mamy

ĴzĴ±|a, b〉 = (Ĵ±Ĵz ± ~Ĵz)|a, b〉 = (b± ~)Ĵ±|a, b〉, (5.36)

zatem zadziałanie operatorem Ĵ± na stan własny |a, b〉 daje również stan własny ale z wartością
własną większą/mniejszą o ~. W kolejnym kroku zauważamy, że operator Ĵ2 − Ĵ2z = Ĵ2x + Ĵ

2
z jest

nieujemy, zatem wartości własne muszą spełniać a−b2 > 0. Stąd płynie wniosek: nie można podnosić
/ obniżać ad infinitum, gdyż dostalibyśmy w pewnym momencie wartość własną z-towej składowej,
która nie spełnia tego ograniczenia. Istnieje zatem jakiś wektor, który daje

Ĵ+|a, bmax〉 = 0 (5.37)

i analogicznie dla pary Ĵ−, bmin. Zauważmy następnie, że

0 = Ĵ−Ĵ+|a, bmax〉 =
[

Ĵ2x + Ĵ
2
y + i[Ĵx, Ĵy]

]

|a, bmax〉 = (a− b2max − ~bmax)|a, bmax〉. (5.38)

Stąd mamy związki a = bmax(bmax+~) = bmin(bmin−~). Równoważnie można zapisać (bmin−bmax−
~)(bmin+bmax) = 0, ale jako że bmax > bmin, stąd bmin = −bmax. Związki te można spełnić tylko, gdy
bmax = j~, gdzie j = {0, 12 , 1, 32 , . . .}. Dla ustalonego j mamy 2j + 1 elementów, zaś wartość własna

Ĵ2 wynosi a = bmax(bmax + ~) = ~
2j(j + 1). Mamy zatem komplet relacji

Ĵ2|j,m〉 = ~
2j(j + 1)|j,m〉, j = {0, 1

2
, 1,
3

2
, . . .} (5.39a)

Ĵz|j,m〉 = ~m|j,m〉, m = −j,−j + 1 . . . , j − 1, j (5.39b)

Ĵ±|j,m〉 = ~

√

j(j + 1)−m(m± 1)|j,m± 1〉, (5.39c)

gdzie ostatnia relacja wynika z wyliczenia

〈j,m|Ĵ†+Ĵ+|j,m〉 = 〈j,m|(Ĵ2 = Ĵ2z ∓ ~Ĵz)|j,m〉. (5.40)

5.4 Atom wodoru

Wykonawszy te wszystkie kroki, jesteśmy gotowi zmierzyć się z zagadnieniem równania Schrödingera
dla atomu wodoru. Formalnie, jest to zagadnienie dwuciałowe, gdzie proton i elektron oddziałują
potencjałem kulombowskim. Rozwiazać będziemy zagadnienie stacjonarne, zatem mamy

(

− ~
2

2me
∆1 −

~
2

2mp
∆2 + V (|~r1 − ~r2|)

)

ψ(~r1, ~r2) = Eψ(~r1, ~r2) (5.41)



gdzie ∆i oznacza różniczkowanie po położeniu ~ri elektronu / protonu (i = 1, 2), zaś potencjał ma
postać

V (|~r1 − ~r2|) = −
e2

4πεo

1

|~r1 − ~r2|
(5.42)

Poprzez analogię do zagadnienia klasycznego (np. ruch w polu centralnym siły grawitacyjnej), wpro-
wadzamy zmienną względną i środka masy

~r = ~r2 − ~r1, ~R =
~r1m1 + ~r2m2
m1 +m2

, (5.43)

co przeksrzałca zagadnienie do
(

− ~
2

2M
∆~R −

~
2

2m
∆~r + V (r)

)

ψ(~r, ~R) = Eψ(~r, ~R), (5.44)

gdzie m = (m1 + m2)/m1m2 jest masą zredukowaną, zaś M = m1 + m2. Widzimy, że zmienne
względna i środka masy się separują. Od tej pory interesuje nas tylko równanie Schrödingera na
zmienną względną. Ponadto korzystamy z rozkładu operatora Lapace’a na część radialną i ką-
tową (5.11) i zapisujemy równanie tylko na częś radialną Rl(r), które ma postać

~
2

2m
∂r(r

2∂rRl(r)) =

[

V (r)− E + ~
2

2mr2
l(l + 1)

]

Rl(r). (5.45)

Ponieważ poszukujemy stanów związanych, więc E < 0. Wygodnie jest wprowadzić zmienną ρ = αr
oraz dwie stałe

α =

√

8m|E|
~2

, λ =
e2

4πε0~

√

m

2|E| . (5.46)

Analiza wymiarowa pokazuje, że α ma wymiar m−1, zatem ρ jest wielkością bezwymiarową, zaś λ
jest bezwymiarowa. Równanie Schrödingera wyraża się przy pomocy tych wielkosci w następujący
sposób

1

ρ2
∂ρ(ρ

2∂ρRl(ρ)) +

(

λ

ρ
− 1
4
− l(l + 1)

ρ2

)

El(ρ) = 0. (5.47)

Ostatnie przekształcenie jest postaci Rl(ρ) = F (ρ)e
− ρ2 , co daje

∂2ρF +

(

2

ρ
− 1
)

∂ρF +

(

λ− 1
ρ
− l(l + 1)

ρ2

)

F = 0. (5.48)

Poszukujemy rozwiązania w postaci

F (ρ) =

∞
∑

ν=0

aνρ
ν+s, a0 6= 0, s ∈ N. (5.49)

Podstawiamy tę postać do równania Schrödingera i po przemnożeniu przez ρ2 otrzymujemy nastę-
pujące równanie algebraiczne

∞
∑

ν=0

[(ν + s)(ν + s− 1) + 2(ν + s)− l(l + 1)] aνρs+ν − ρ
∞
∑

ν=0

[(ν + s) + (λ− 1)] aνρs+ν = 0. (5.50)



Widzimy, że wyraz dla ν = 0 z pierwszej sumy nie ma odpowiednika w prawej sumie, musi się on
więc niezależnie zerować, dając

s(s+ 1) = l(l + 1). (5.51)

Równanie to ma dwa rozwiązania: s = l i s = −(l + 1), ale jako że musi być s > 0, więc drugie z
nich odrzucamy. W kolejnym kroku postawiamy ten wynik i otrzymujemy związek rekurencyjny

aν+1
aν
=

ν + l − λ+ 1
(ν + l)(ν + l + 1)− l(l + 1)

ν≫l,λ−−−−→ 1
ν
. (5.52)

Widać zatem, że szereg ten ma zerowy promień zbieżności. Musi zatem być tak, że rekurencja ta w
pewnym momencie się urywa. Możliwe to jest tylko wtedy, gdy λ = n ∈ N z warunkiem n > l + 1.
Korzystając z definicji λ otrzymujemy stąd energię

En = −
me4

32π2ε20~
2

1

n2
, (5.53)

a zatem wynik identyczny z tym wyprowadzonym w ramach fenomenologicznego modelu Bohra.
Wielkośc n nazywamy główną liczbą kwantową i zachodzi l ∈ {0, 1, 2, . . . n − 1}. Każdy poziom

energetyczny jest
∑n−1
l=0 (2l + 1) = n

2 razy zdegenerowany (co wynika z braku zależności od l i m).
Radialna funkcja falowa ma postać

Rnl(ρ) = e
− ρ2
n−l−1
∑

ν=0

aνρ
ν+l, (5.54)

gdzie współczynniki wyznaczamy z rekurencji (5.52). Ogólne wyrażenie na funkcję falową jest postaci

ψnlm(~r) =

(

2

nr0

)
3
2

√

(n− l − 1)!
2n(n+ l)!

(

2r

nr0

)l

e−
r
nr0 L2l+1n−l−1

(

2r

nr0

)

Ylm(θ, φ), (5.55)

gdzie

r0 =
4πε0~

2

me2
(5.56)

nazywamy promieniem Bohra atomu wodoru. Wielomian Laguerre’a dany jest, na mocy rekuren-
cji (5.52) przez

Lpk(ρ) =

k−p
∑

ν=0

(−1)ν+p k!2

(k − p− ν)!(p+ ν)!ν!ρ
ν . (5.57)

Funkcja radialna stanu podstawowego ma postać

R10(r) =
2

r
3/2
0

e−
r
r0 . (5.58)

Wszystkie (i tylko te) funkcje o l = 0 są sferycznie symetryczne.





Rozdział 6

Metody przybliżone

W tym rozdziale skonfrontujemy się z okrutną rzeczywistością, mianowicie nauczymy się, jak można
sobie radzić w niektórych przypadkach, gdy nie ma możliwości ścisłego wyznacznia widma Hamilto-
nianu.

6.1 Stacjonarny rachunek zaburzeń

Zaczynamy od najprostszego zagadnienia. Wyobraźmy sobie, że Hamiltonian, którego spektrum
chcemy znaleźć składa się z dwu części

Ĥ = Ĥ0 + λĤ
′. (6.1)

Zakładamy, że znamy spektrum Hamiltonianu niezaburzonego Ĥ0, czyli potrafimy rozwiązać stacjo-
narne równanie Schrödingera

Ĥ0|n(0)〉 = E(0)n |n(0)〉, (6.2)

gdzie zachodzi warunek ortonormalności 〈n(0)|m(0)〉 = δnm. Do tego Hamiltonianu dodane jest
zaburzenie Ĥ ′ proporcjonalne do λ ∈ R, co do której zakładamy, że jest na tyle mała, że można
się spodziewać, że wpływ λĤ ′ na energie całości będzie niewielki. Oznacza to, że sensownie jest
poszukiwać pełnego rozwiązania w postaci szeregu potęgowego w zmiennej λ, czyli

|n〉 =
∞
∑

k=0

λk|n(k)〉 (6.3)

En =

∞
∑

k=0

λkE(k)n . (6.4)

Zakładamy, że stany w kolejnych rzędach są ortogonalne do siebie na wzajem. Wielkości |n(k)〉 i E(k)n
będziemy rozumieć jako poprawki k-tego rzędu (w λ) do stanu i energii niezaburzonej. Zakładamy na

tym etapie, że spektrum niezaburzone jest niezdegenerowane, czyli E
(0)
n 6= E(0)k ∀n 6= k. Postępujemy

zgodnie z rozumiem, to znaczy podstawiamy powyższe wyrażenia do równania Schrödingera

(

Ĥ0 + λĤ
′
)

∞
∑

k=0

λk|n(k)〉 =
∞
∑

k,l=0

λk+lE(k)n |n(l)〉. (6.5)
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i poszokujemy rozwiązań przy kolejnych potęgach λ, czyli otrzymujemy związki rekurencyjne

λ0 : Ĥ0|n(0)〉 = E(0)n |n(0)〉, (6.6a)

λ1 : Ĥ0|n(1)〉+ Ĥ ′|n(0)〉 = E(0)n |n(1)〉+ E(1)n |n(0)〉, (6.6b)

λ2 : Ĥ0|n(2)〉+ Ĥ ′|n(1)〉 = E(0)n |n(2)〉+ E(1)n |n(1)〉+ E(2)n |n(0)〉, (6.6c)

λ3 : Ĥ0|n(3)〉+ Ĥ ′|n(2)〉 = E(0)n |n(3)〉+ E(1)n |n(2)〉+ E(2)n |n(1)〉+ E(3)n |n(0)〉 (6.6d)

i tak w koło Macieju. Korzystając z ortonormalności stanów niezaburzonych otrzymujemy

E(k)n = 〈n(0)|Ĥ ′|n(k−1)〉. (6.7)

W szczególności poprawka pierwszego rzędu będzie postaci

E(1)n = 〈n(0)|Ĥ ′|n(0)〉. (6.8)

Korzystając z faktu, że poprawka pierwszego rzędu do n-tego stanu jest prostopadła do wektora
“zerowego”, możemy ją rozłożyć w bazie wszystkich ortogonalnych stanów, czyli

|n(1)〉 =
∑

k 6=n
ak|k(0)〉. (6.9)

Podstawiamy ten rozkład do równania (6.6b) i korzystamy z faktu, że |k(0)〉 są stanami własnymi
Ĥ0, co daje, po przemnożeniu stronami przez 〈k(0)| wyrażenie na współczynnik rozkładu

ak =
〈k(0)|Ĥ ′|n(0)〉
E
(0)
n − E(0)k

, (6.10)

a co za tym idzie, poprawka do stanu ma postać

|n(1)〉 =
∑

k 6=n

〈k(0)|Ĥ ′|n(0)〉
E
(0)
n − E(0)k

|k(0)〉. (6.11)

Dysponując wyrażeniem na poprawkę do stanu w pierwszym rzędie, możemy skorzystać z wyraże-
nia (6.7) by otrzymać

E(k)n = 〈n(0)|Ĥ ′
∑

k 6=n

〈k(0)|Ĥ ′|n(0)〉
E
(0)
n − E(0)k

|k(0)〉 =
∑

k 6=n

|〈n(0)|Ĥ ′|k(0)〉|2

E
(0)
n − E(0)k

. (6.12)

Kolejne rzędy otrzymujemy iterując tę procedurę.

6.1.1 Przypadek z degeneracją

Do tej pory rozważaliśmy zagadnienie z degeneracją, co pozwoliło nam dzielić bez obaw przez róż-

nicę niezaburzonych energii, jak w równaniu (6.11). Załóżmy teraz, że stan |n(0)i 〉 jest d-krotnie
zdegenerowany, to znaczy istnieje

Ĥ0|n(0)i 〉 = E(0)n i ∈ {1, . . . , d}. (6.13)



Zdegenerowaną podprzestrzeń możemy rozpisać w dowolnej bazie, w szczególności wybieramy taką,
która jest bazą własną operatora Ĥ ′, a zatem zachodzi

〈n(0)i |Ĥ ′|n
(0)
j 〉 = δijE(1)ni . (6.14)

Oznacza to, że w pierwszym rzędzie poprawkę energetyczną otrzymujemy poprzez zdiagonalizowanie
Hamiltonianu Ĥ ′ w podprzestrzeni zdegenerowanej.

Dla przykładu rozważmy liniowy efekt Starka, to znaczy zagadnienie, gdy atom wodoru umiesz-
czony jest w stałym, liniowo spolaryzowanym polu elektrycznym. Zaburzenie ma wtedy postać

Ĥ ′ = −eEz = −er cos θ. (6.15)

Zaburzenie to nie ma wkładu do stanów sferycznie symetrycznych, zatem rozważmy jego wpływ na
stany o n = 2. Jest to podprzestrzeń poczwórnie zdegenerowana, gdyż mamy tu stany |2, 0, 0〉 oraz
|2, 1, 0〉 i |2, 1,±1〉. Naszym celem jest zdiagonalizowanie Ĥ ′ w tej bazie. Bezpośredni rachunek daje

Ĥ ′ = eE









0 3ro 0 0
3r0 0 0 0
0 0 0 0
0 0 0 0









. (6.16)

Energie i stany własne to

|±〉 = 1√
2
(|2, 0, 0〉 ± |2, 1, 0〉), E

(1)
± = ±3eEr0. (6.17)

Zatem zniesienie degeneracji jest tylko częściowe, w podprzestrzeni o m = 0.

6.2 Metoda wariacyjna

Kolejna metoda opiera się na spostrzeżeniu, że dowolny stan “próbny” daje zawsze górne ograniczenie
na energię stanu podstawowego, gdyż

〈ψ|Ĥ|ψ〉 =
∑

n

|an|2En >
∑

n

|an|2E0 = E0. (6.18)

Zatem warto poszukiwać ograniczenia górnego poprzez zaproponowanie jakiejś funkcji próbnej zależ-
nej od parametru, a następnie zminimalizować wartość oczekiwaną Hamiltonianu po tym parametrze.
A zatem liczymy

〈ψ(λ)|Ĥ|ψ(λ)〉 = E(λ) (6.19)

i szukamy λ0, które spełnia warunek

d

dλ
E(λ)

∣

∣

∣

λ=λ0
= 0 (6.20)

zapewniwszy, że jest to minimum.
Najprostszy przykład to poszukiwanie stanu podstawowego oscylatora harmonicznego w postaci

ψλ(x) =
1

(2πλ)
1
4

e−
x2

4λ . (6.21)



Obłożenie nim Hamiltonianu i wycałkowanie po przestrzeni daje

〈Ĥ〉λ =
~
2

8mλ
+
1

2
mω2λ, (6.22)

co daje minimum dla wartości λ0 = ~/(2mω) wynoszące 〈Ĥ〉min = 1/2~ω, zgodne z wynikiem
ścisłym. W ogólności nie znamy, rzecz jasna, wyniku ścisłego, musimy zatem poszukiwać dobrych
funkcji próbnych.

6.3 Zagadnienie zależne od czasu

Kolejny typ zagadnienia, z jakim należy się zmierzyć to sytuacja, gdy zaburzenie zależne jest od
czasu. W ogólności, gdy Hamiltonian zależy od t problem, który się pojawia jest taki, że nie koniecznie
w różnych chwilach czasu komutuje on sam ze sobą, czyli może zachodzić

[

Ĥ(t1), Ĥ(t2)
]

6= 0. (6.23)

Łatwo się przekonać, że z tego powodu równanie Schrödingera

i~∂t|ψ(t)〉 = Ĥ(t)|ψ〉(t) (6.24)

“naiwnie” rozwiązane popprzez próbę formalnego odcałkowania stronami

|ψ(t)〉 = e−
i
~

∫

t

0
dτĤ(τ)|ψ(0)〉 (6.25)

daje niepoprawny wynik, gdyż — na mocy równania (6.23) — nie jest w ogólności prawdą, że

∂t

(

e
− i

~

∫

t

0
dτĤ(τ)

)

= − i
~
Ĥ(t)

(

e
− i

~

∫

t

0
dτĤ(τ)

)

. (6.26)

Niemniej, równanie (6.24) można scałkować stronami, dostając niejawną postać rozwiązania

|ψ(t)〉 = |ψ(0)〉 − i

~

∫ t

0

dτĤ(τ1)|ψ(τ1)〉. (6.27)

Dodanie dolnego indeksu przy zmiennej całkowania wynika z tego, że rozwiązanie to będziemy teraz
iterować, mianowicie podstawiamy po prawej stronie otrzymane właśnie wyrażenie na |ψ(t)〉, co daje

|ψ(t)〉 = |ψ(0)〉+
(

− i
~

)∫ t

0

dτĤ(τ1)|ψ(0)〉+
(

− i
~

)2 ∫ t

0

dτ1

∫ τ1

0

dτ2Ĥ(τ1)Ĥ(τ2)|ψ(τ2)〉. (6.28)

Iterowanie tej procedury będzie dawało kolejne potęgi i kolejne wielkokrotności całki po czasie. To,
czego nam brakuje do szczęścia (czyli do zwinięcia tego wyrażenia do funkcji wykładniczej), to czyn-
nika n! w mianowniku. Niemniej zauważmy, że czynnik ten można “wypropdukować” wprowadzając
symbol uporządkowania czasowego, T . Mianowicie, mając iloczyn n funkcji zależnych od czasu po-
staci

Âi(t) =

∫ t

0

dτÂi(τ) (6.29)



każda, operator T działa nań w następujący sposób

T
n
∏

i=1

Âi(t) =

∫

d~τÂ1(τ1)Â2(τ2) . . . Ân(τn) +

∫

d~τÂ2(τ1)Â1(τ2) . . . Ân(τn) + . . . , (6.30)

gdzie symbol całkowania po dτ oznacza

∫

d~τ . . . =

∫ t

0

dτ1

∫ τ1

0

dτ2 . . .

∫ τn−1

0

dτn. (6.31)

Kropki po Prawej stronie równania (6.30) informują, że należy wziąć wszystkie możliwe n! kombinacji
ustawień. Ponieważ w naszym przypadku funkcja Âi(t) zawsze jest taka sama, to znaczy

Âi(t) =

∫ t

0

dτĤ(τ), (6.32)

stąd mamy pełne rozwiązanie

|ψ(t)〉 = T e−
i
~

∫

t

0
dτĤ(τ)|ψ(0)〉 = e−

i
~
T
∫

t

0
dτĤ(τ)|ψ(0)〉. (6.33)

Pozażemy teraz, w jaki sposób poszukiwać przybliżonego rozwiązania tego równania. W tym celu
zakładamy, że Hamiltonian ma postać

Ĥ = Ĥ0 + V̂ (t), (6.34)

gdzie Ĥ0 jest niezależnym od czasu Hamiltonianem, którego rozkład spektralny jest znany.

6.3.1 Obrazy

Zanim ruszymy do boju, warto zapoznać się z tak zwanymi “obrazami” ewolucji, czyli trzema podsta-
wowymi metodami poszukiwania ogólnych rozwiązań równania Schrödingera niezależnego od czasu.
Standardowym jest ten, gdzie ewoluuje stan, czyli gdy liczymy

|ψ(t)〉 = Û†(t)|ψ(0)〉, (6.35)

zaś operator ewolucji dany jest przez równanie

Û(t) = e−i
t
~
Ĥ . (6.36)

Metoda ta nazywana jest “obrazem Schrödingera”. Wszelkie wielkości mierzalne, czyli wartości ocze-
kiwane obserwabli Â, otrzymujemy poprzez obłożenie tego operatora z obu stron przez stan, czyli

A(t) = 〈ψ(t)|Â|ψ(t)〉. (6.37)

Alternatywnie, możemy “przerzucić” ewolucję na obserwablę, czyli zauważając, że

A(t) = 〈ψ(0)|Û†(t)ÂÛ(t)|ψ(0)〉 (6.38)

potraktować operator jako zmienny w czasie,

Â(t) = Û†(t)ÂÛ(t), (6.39)



zaś stan jako ustalony. Podejście to, niezwykle wygodne w niektórych obliczeniach, nazywamy “obra-
zem Heisenberga”. Zauważmy, że w tym podejściu równanie, które spełnia operator Â(t) ma postać

i~∂tÂ(t) = −ĤÂ(t) + Â(t)Ĥ = [Â(t), Ĥ]. (6.40)

Równanie to nazywamy “równaniem Heisenberga”.

Ostatnia metoda stosuje się do przypadków, gdy Hamiltonian dzieli się na dwie części

Ĥ = Ĥ0 + V̂ , (6.41)

a my znamy zagadnienie Schrödingera dla Hamiltonianu swobodnego Ĥ0. W “obrazie oddziaływania”
staramy się pozbyć części swobodnej i skupić tylko na V̂ . Jednak nie jest to w pełni możliwe, gdyż
każde nietrywialne zagadnienie to takie, gdy obie te części nie komutują. Pewnym uproszczeniem
jest wprowadzenie operatora

V̂I(t) = Û
†
0 (t)V̂ Û0(t), (6.42)

gdzie Û0(t) to operator ewolucji generowany przez Ĥ0. Zauważmy, że jeżeli zapiszemy równania
Schrödingera

i~∂t|ψ(t)〉 =
(

Ĥ0 + V̂
)

|ψ(t)〉 (6.43)

a następnie podziałamy nań z lewej strony przez Û†0 (t) to otrzymamy, wprowadzając |ψI(t)〉 =
U†0 (t)|ψ(t)〉

i~Û†0 (t)∂t|ψ(t)〉 = i~∂t|ψI(t)〉+ Ĥ0|ψI(t)〉 = Ĥ0|ψI(t)〉+ V̂I(t)|ψI(t)〉. (6.44)

Zatem, upraszczając stronami człon swobodny dostajemy

i~∂t|ψI(t)〉 = V̂I(t)|ψI(t)〉. (6.45)

Jest to obraz mieszany, bo za razem ewoluuje w nim stan, jak i operator V̂ . Okazuje się on również
niezwykle przydatny w niektórych przypadkach.

Zauważmy, że równanie (6.45) ma postać równania (6.24), zatem stosuje się do niego argumen-
tacja z poprzedniej części. W szczególności oznacza to, że w pierwszym rzędzie rachunku zaburzeń,
stan będzie ewoluował zgodnie z wyrażeniem

|ψI(t)〉 = |ψ(0)〉 −
i

~

∫ t

0

dτV̂I(τ)|ψI(0)〉 = |ψI(0)〉 −
i

~

∫ t

0

dτe
i
~
Ĥ0τ V̂ (τ)e−

i
~
Ĥ0τ |ψ(0)〉, (6.46)

gdyż |ψI(0)〉 = |ψ(0)〉. Załóżmy teraz, że interesuje nas następujące zagadnienie: jakie jest prawdo-
podobieństwo przejścia ze stanu początkowego |k〉 do końcowego |n〉, gdzie oba te stany są stanami
własnymi Ĥ0 i są wzajemnie ortogonalne. W tym przypadku mamy amplitudę prawdopodobieństwa
daną przez

ak→n(t) ≡ 〈n|ψI(t)〉 = −e−
i
~
Ent

i

~

∫ t

0

dτ〈n|V̂ (τ)|k〉e− i~ (Ek−En)τ . (6.47)



Przykład

Dla ilustracji tego, jak wykonywać obliczenia w ramach zależnego od czasu rachunku zaburzeń,
rozważmy następujące zaburzenie Hamiltonianu atomu wodoru Ĥ0, mianowicie

Ĥ(t) = Ĥ0 + 2V̂ sinωt, (6.48)

gdzie V̂ nie zależy od czasu. W takim przypadku otrzymujemy, że amlituda prawdopodobieństwa
przejścia między dwoma ortogonalnymi stanami własnymi elektronu w atomie wodoru dana jest
przez

ak→n(t) = −2
i

~
〈n|V̂ |k〉e− i~Ent

∫ t

0

dτe−
i
~
(Ek−En)τ sinωτ = (6.49)

= 2〈n|V̂ |k〉
(

e−
i
2~ (Ek−En+~ω)t

sin
(

t
2~ (Ek − En + ~ω)

)

Ek − En + ~ω
− e− i

2~ (Ek−En−~ω)t
sin
(

t
2~ (Ek − En − ~ω)

)

Ek − En − ~ω

)

.

Gdy częstość ω jest dostrojona do przejścia między poziomami, czyli ~ω ≃ ±(En − Ek), jeden z
powyższych dwóch członów powoli zmienia się w czasie, drugi zaś szybko oscyluje, zaś jego mia-
nownik jest dużo większy od mianownika pierwszego. W takim przypadku otrzymujemy przybliżone
wyrażenie

pn(t) ≃ 4|〈n|V̂ |k〉|2
sin2

(

t
2~ (Ek − En − ~ω)

)

(Ek − En − ~ω)2
.

Dla t→∞ korzystamy ze wzoru

lim
y→

sin2(xy)

x2y
= πδ(x) (6.50)

co daje

pn(t) ≃
2πt

~
|〈n|V̂ |k〉|2δ(Ek − En − ~ω). (6.51)

Pochodna tej wielkości, czyli tempo przejścia ze stanu k do n, dane jest przez złotą regułę Fermiego,
czyli

wn(t) ≃
2π

~
|〈n|V̂ |k〉|2δ(Ek − En − ~ω). (6.52)





Rozdział 7

Spin

7.1 Doświadczenie Sterna-Gerlacha

Doświadczenie Sterna-Gerlacha pokazuje, że wiązka elektronów przechodząca przez obszar, w którym
występuje gradient pola magnetycznego, zawsze dzieli się na dwie części. Dzieje się tak niezależnie od
własności kinetycznych tej wiązki. Wniosek, który nasuwa się na tej podstawie jest zaskakujący—
otóż wydaje się, że elektron zawiera jakiś wewnętrzny moment magnetyczny, który oddziałuje z
polem za pomocą Hamiltonianu (na razie piszemy bez daszków, stosując klasyczne rozumowanie i
zapisując klasyczną energię oddziaływania)

H = −~µ · ~B. (7.1)

Jeżeli pole zależy od położenia, pojawia się siła, która działa na elektrony. Kluczowa jest “dwo-
istość” tego zjawiska, to znaczy doświadczenie wskazuje, że elektron może mieć dwa różne momenty
magnetyczne ~µ = ±µ0~ez. Da to, w efekcie, siłę działającą w przeciwnych kierunkach na każdą ze
składowych, zgodnie z obserwowanymi wynikami. Wewnętrzny moment pędu elektronu jest “nie do
wyhamowania”, to znaczy nie jest on konsekwencją ruchu obrotowego żadnego ładunku. Stąd podej-
rzenie, które z czasem okazało się być wieloktornie zweryfikowaną hipotezą: na poziomie kwantowym
cząstki opisujemy dodatkowym stopniem swobody (stanowiacym uzupełnie do tych występujących
w fizyce klasycznej, jak masa czy ładunek), a jest nim spin (czy, jak mawiają w Krakowie, kręt).

Jako że spin zachowuje się tak jak tradycyjny moment pędu, wydaje się rozsądne, by opisywać go
w mechanice kwantowej tak, jak opisujemy moment pędu cząstki nieklasycznej. Niemniej, na mocy
równania (5.39a) jest oczywiste, że jeżeli ten stopień swobody ma dwa stany, to spin elektronu musi
wynosić 1/2. Tylko wtedy można będzie otrzymać dwa rzuty, które oznaczymy przez ms = ± 12 .
Odpowiadające im stany własne operatora ŝz będziemy oznaczać przez | ↑〉 i | ↓〉.

Dramat spinu rozgrywa się w dwuwymiarowej przestrzeni Hilberta, rozpiętej przesz te dwa wek-
tory, a oznaczanej przez H2. Dowolną macierz hermitowską działającą w tej przestrzeni możemy
zapisać jako

Â =

(

a c+ id
c− id b

)

, a, b, c, d ∈ R. (7.2)

Zauważmy, że każdą taką macierz możemy rozpisać przy pomocy hermitowskich “operatorów bazo-
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wych”, czyli

σ̂x =

(

0 1
1 0

)

, σ̂y =

(

0 i
−i 0

)

, σ̂z =

(

1 0
0 −1

)

, 1̂ =

(

1 0
0 1

)

, (7.3)

Pierwsze trzy nazywamy “macierzami Pauliego”. Czwarta to oczywiście identyczność. Macierz Â
możemy przedstawić jako

Â = cσ̂x + dσ̂y +
1

2
(a− b)σ̂z +

1

2
(a+ b)1̂. (7.4)

Kwestią umowną jest to, której z macierzy Pualiego przypiszemy wektory | ↑〉 i | ↓〉. Jeżeli ustalimy,
zgodnie z zazwyczaj stosowaną konwencją, że są to stany własne operatora z-towego, to zapisujemy

| ↑〉 =
(

1
0

)

, | ↓〉 =
(

0
1

)

. (7.5)

Mamy wtedy, rzecz jasna

σ̂z| ↑〉 = +1| ↑〉, σ̂z| ↓〉 = −1| ↓〉. (7.6)

Aby nadać tym operatorom sens analogiczny do operatorów momentu pędu, wprowadzamy operatory
spinu, które powstają poprzez pomnożenie macierzy Pauliego przez 12~. Wtedy wartości własne
powstałych operatorów ŝi (i = x, y, z) wynoszą ± 12~, tak jak należy oczekiwać od połówkowego
momentu pędu.

Łatwo się przekonać, że macierze Pauliego spełniają następujące reguły

[σ̂i, σ̂j ] = 2iǫijk
∑

k

σ̂k, {σ̂i, σ̂j} = 21̂δij , Tr [σ̂i] = 0. (7.7)

Niekomutowanie macierzy Pauliego oznacza, że nie da się przygotować elektronu w takim stanie, by
spin był określony we wszystkich kierunkach na raz.

Zauważmy, że wektory własne, na przykład x-owej macierzy Pauliego dane są przez

| ↑〉x =
1√
2

(

1
1

)

, | ↓〉x =
1√
2

(

1
−1

)

. (7.8)

Prawdopodobieństwo tego, że cząstkę przygotowaną w stanie | ↑〉x znajdziemy w którymś z z-towych
stanów własnych, wynosi 1/2, jest ona zatem zupełnie niespolaryzowana w tej bazie.

7.2 Atom wodoru w polu magnetycznym

Wprowadziwszy pojęcie spinu możemy zastanowić się nad tym, jak cząstka obdarzona spinem i
(ewentualnie) ładunkiem zachowuje się w zewnętrznym polu elektromagnetycznym. Zacznijmy od
przywołania Hamiltonianu minimalnego sprzężenia w fizyce klasycznej, który ma postać

H =
(~p− e ~A)2
2m

− eϕ, (7.9)

gdzie ~A jest potencjałem wektorowym, zaś ϕ skalarnym pola elektromagnetycznego. Jest to najpro-
strza postać sprzężenia naładowanej cząstki z polem, dająca poprawne równania ruchu (to jest siłę
Lorentza) oraz niezmienniczość ze względu na zmianę cechowania, czyli transformację

ϕ→ ϕ− ∂tχ, ~A→ ~A+∇ϕ, (7.10)



która, jak wiemy, nie zmienia pól EM. W przypadku skalarnej (to jest nieposiadającej spinu) cząstki
naładowanej, postulujemy, że odpowiadające równaniu (7.9) równanie Schrödingera będzie miało
postać

i~∂tψ(~r, t) =

(

(−i~∇− e ~A)2
2m

− eϕ+ V (~r)
)

φ(~r, t). (7.11)

Kolejnym etapem jest dodanie spinu, który sprzęga się z polem magnetycznym analogicznie do tego,
jak sprzęga się moment magnetyczny w klasycznej fizyce. Dla cząstki o spinie 1/2, spinowa przestrzeń
Hilberta jest dwuwymiarowa, możemy zatem napisać

i~∂t

[

ψ↑(~r, t)
ψ↓(~r, t)

]

=

(

(−i~∇− e ~A)2
2m

− eϕ+ e~

2m
~̂σ · ~B

)

[

ψ↑(~r, t)
ψ↓(~r, t)

]

. (7.12)

Można wykazać (ćwiczenia), że równanie to jest—z dokładnością do fazy—niezmiennicze ze względu
na transformację cehcowania, dodając wyłącznie czynnik fazowy

[

ψ↑(~r, t)
ψ↓(~r, t)

]

−→
[

ψ↑(~r, t)
ψ↓(~r, t)

]

ei
i
~
eχ. (7.13)

7.2.1 Przykład 1

Rozważmy teraz prosty przypadek, gdy pole elektromagnetyczne składa się wyłącznie z jednorodnego
pola magnetycznego skierowanego wzdłuż osi z. Wtedy ϕ = 0, zaś Â = (−By, 0, 0) (jest to jedno z
możliwych cechowań). Równanie Pauliego rozsprzęga się wtedy na dwie niezależnie ewoluujące rzuty
spinu. Na przykład dla składowej ψ→ otrzymujemy

i~∂tψ↑(~r, t) =

(

(−i~∂x − eBy)2 − ~
2∂2y − ~

2∂2y
2m

+
e~

2m
B

)

ψ↑(~r, t). (7.14)

Poszukujemy rozwiązania równania stacjonarnego w postaci

ψ↑(~r) = e
i
~
(pxx+pzyzΥ(y), (7.15)

co prowadzi do równania

[

−
~
2∂2y
2m
+
e2B2

2m

(

y − px
eB

)

]

Υ(y) =

(

E − e~B

2m
− p2z
2m

)

Υ(y). (7.16)

Rozpoznajemy od razu Hamitlonian jednowymiarowego uscylatora harmonicznego, zatem energie w
kierunku y będą skwantowane i dane przez

En =
e~B

m

(

n+
3

2

)

+
p2z
2m

, (7.17)

które — jak widać — nie zależą od px.



7.2.2 Przykład 2

Dla ilustracji dynamiki spinu (która w powyższym przypadku była “zamrożona”), rozważmy sytu-
ację, gdy cząstka nie posiada ładunku, niemniej posiada wewnętrzny moment magnetyczny µ (na

przykład neutron), który sprzęga się ze stałym polem ~B. Na mocy ogólnego równania Pauliego (7.12)
otrzymujemy

i~∂t

[

ψ↑(~r, t)
ψ↓(~r, t)

]

=

(

− ~
2

2m
∆+

µ

2
~̂σ · ~B

)[

ψ↑(~r, t)
ψ↓(~r, t)

]

. (7.18)

Możemy, przez analogię do obrazu oddziaływania, “odwirować” część swobodną i poszukiwać roz-
wiązania w postaci

[

ψ↑(~r, t)
ψ↓(~r, t)

]

=

[

ψ↑(t)
ψ↓(t)

]

e
i
~

(

~p~r− p
2

2m t

)

[

ψ↑(~r, t)
ψ↓(~r, t)

]

. (7.19)

Otrzymujemy następujące związki dynamiczne

[

ψ↑(t)
ψ↓(t)

]

= ei
µt
2~ ~̂σ· ~B

[

ψ↑(0)
ψ↓(0)

]

. (7.20)

Widzimy, że operator działający na spinor jest operatorem obrotu spinu wokół osi wyznaczonej przez
~B. Zatem spin ewoluuje w jedyny możliwy sposób: obraca się, a zjawisko to nazywamy precesją spinu.
• ew. faza Berry’ego (efekt Aharonova-Bohma)

7.3 Dodawanie momentu pędu

Przechodzimy teraz do ostatniego ze spinowych zagadnień, czyli do problemu dodawania spinu czy
orbitalnego momentu pędu. W tym celu rozważymy najprostszy możliwy przypadek, czyli dwie
cząstki o spinie s = 1/2 każda. Zadajemy sobie pytanie: gdyby cząstki te traktować jako dwie części
jednego układu, jaki jest całkowity spin i możliwe jego rzuty? Zauważmy, że zgodnie z postulatami
mechaniki kwantowej, całkowita przestrzeń Hilberta dwu cząstek jest iloczynem tensorowym każ-
dej z nich, zatem oznasczając przez H2 dwuwymiarową przestrzeń rozpinaną przez jednocząstkowe
wektory |s = 1/2,ms = ±1/2〉 ≡ ±12 otrzymujemy

H = H2 ⊗H2, dimH = 4. (7.21)

Oczywiście, przestrzeń tę można rozpiąć przed dowolną kombinację iloczynów jednocząstkowych
wektorów bazowych, na przykład

|ψi〉 = | ± 1/2,±1/2〉, i = 1 . . . 4. (7.22)

Niemniej, istnieje pewna wyróżniona baza, którą tworzą wektory własne kwadratu operatora całko-
witego momentu pędu

~̂S = ~̂s1 + ~̂s2. (7.23)

Kwadrat tego operatora to

Ŝ2 = Ŝ2x + Ŝ
2
y + Ŝ

2
z = ŝ

2
1 ⊗ 1̂2 + ŝ

2
2 ⊗ 1̂1 + 2~̂s1 ⊗ ~̂s2. (7.24)



Zauważmy teraz, że człon mieszany ma postać

~̂s1 ⊗ ~̂s2 = ŝ(1)x ⊗ ŝ(2)x + ŝ(1)y ⊗ ŝ(2)y + ŝ(1)z ⊗ ŝ(2)z . (7.25)

Korzystamy teraz ze związków

ŝ(i)x =
1

2

(

ŝ
(i)
+ + ŝ

(i)
−

)

, ŝ(i)y =
1

2i

(

ŝ
(i)
+ − ŝ

(i)
−

)

, (7.26)

by otrzymać

ŝ(1)x ⊗ ŝ(2)x + ŝ(1)y ⊗ ŝ(2)y =
1

2
ŝ
(1)
+ ⊗ ŝ

(2)
− +

1

2
ŝ
(1)
− ⊗ ŝ

(2)
+ . (7.27)

Zatem ostateczne wyrażenie na kwadrat operatora całkowitego momentu pędu przyjmuje postać

Ŝ2 = ŝ21 ⊗ 1̂2 + ŝ
2
2 ⊗ 1̂1 + ŝ

(1)
+ ⊗ ŝ

(2)
− + ŝ

(1)
− ⊗ ŝ

(2)
+ + 2ŝ

(1)
z ⊗ ŝ(2)z . (7.28)

Zadziałajmy tym operatorem na stan |ψ〉 = |1/2, 1/2〉. Mamy

Ŝ2|1/2, 1/2〉 =
[

2
1

2

(

1

2
+ 1

)

+
1

2

]

|1/2, 1/2〉 = 2|1/2, 1/2〉. (7.29)

Jest to zatem stan własny operatora Ŝ2 o wartości własnej S = 1. Następnie zbadajmy jego rzut na
oś z, czyli

Ŝz|1/2, 1/2〉 =
[

Ŝ(1)z + Ŝ
(2)
z

]

|1/2, 1/2〉 = |1/2, 1/2〉. (7.30)

Identyfikujemy zatem ten stan, jako stan własny

|1/2, 1/2〉 ↔ |S = 1,mS = 1〉. (7.31)

Kolejne dwa stany własne o S = 1 konstruujemy poprzez zadziałanie operatorem obniżającym, czyli

Ŝ−|S = 1,mS = 1〉 =
(

ŝ
(1)
− + ŝ

(2)
−

)

|1/2, 1/2〉 = 1√
2
(| − 1/2, 1/2〉+ | − 1/2, 1/2〉) . (7.32)

Można się przekonać, że jest to stan własny o mS = 0. Jeszcze jedno obniżenie daje stan o ms = −1,
zatem mamy “tryplet” stanów o S = 1

∣

∣

∣

∣

1

2
,
1

2

〉

↔ |S = 1,mS = 1〉 (7.33a)

1√
2

(∣

∣

∣

∣

−1
2
,
1

2

〉

+

∣

∣

∣

∣

1

2
,−1
2

〉)

↔ |S = 1,mS = 0〉 (7.33b)

∣

∣

∣

∣

−1
2
,−1
2

〉

↔ |S = 1,mS = −1〉. (7.33c)

Łatwo się przekonać, że jedynym możliwym stanem, który jest ortogonalny do tej trójki jest “singlet”,
który daje

1√
2

(∣

∣

∣

∣

−1
2
,
1

2

〉

−
∣

∣

∣

∣

1

2
,−1
2

〉)

↔ |S = 0,mS = 0〉. (7.34)



Procedurę pokazaną powyżej można uogólnić na parę cząstek o momentach pędu j1 i j2. Analo-
gicznie do dwu połówkowych spinów, mamy

|jj , j2〉 ↔ |J = j1 + j2,mJ = j1 + j2〉. (7.35)

Pozostałe stany z tej podprzestrzeni (o ustalonym J) otrzymujemy działając operatorem obniżają-
cym rzut. Na przykład

1√
J

(

√

j1 |j1 − 1, j2〉+
√

j2 |j1, j2 − 1〉
)

↔ |J = j1 + j2,mJ = j1 + j2 − 1〉. (7.36)

By przejść do innej podprzestrzeni, postulujemy stan prostopadły do powyższego i łatwo identyfi-
kujemy go następująco

1√
J

(

√

j2 |j1 − 1, j2〉 −
√

j1 |j1, j2 − 1〉
)

↔ |J = j1 + j2 − 1,mJ = j1 + j2 − 1〉. (7.37)

Procedurę tę można kontytuować aż otrzymamy pełen rozkład przestrzeni Hilberta w postaci sumy
prostej

j1 ⊗ j2 = |j1 − j2| ⊕ |j1 − j2|+ 1⊕ . . .⊕ j1 + j2. (7.38)

Tym sposoobem kończymy rozważania o spinie i momentu pędu i przechodzimy do zagadnień zwią-
zanych z informacją kwantową.



Rozdział 8

Macierz gęstości

Już w poprzednim rozdziale, w ramach dyskusji o spinie, rozważaliśmy układy dwucząstkowe i sko-
rzystaliśmy z faktu, że przestrzeń Hilberta jest iloczynem tensorowym przestrzeni jednocząstkowych.
Rozważmy teraz układ składający się z dwu części, które ozaczać będziemy przez A i B. Całkowita
przestrzeń Hilberta jest iloczynem tensorowym

H = HA ⊗HB. (8.1)

Rozpinana jest ona przez wektory będące iloczynem tensorowym wektorów |ψ(A)n 〉 ∈ HA i |φ(B)m 〉 ∈
HB z każdej podprzestrzeni, na przykład tworzących bazy ortonormalne, czyli

|n,m〉 ∈ H : |n,m〉 = |ψ(A)n 〉 ⊗ |φ(B)m 〉 (8.2a)
∑

n

|ψ(A)n 〉〈ψ(A)n | = 1̂
(A), 〈ψ(A)n |ψ

(A)
n′ 〉 = δnn′ (8.2b)

∑

m

|ψ(B)m 〉〈φ(B)m | = 1̂
(B), 〈φ(B)m |φ

(B)
m′ 〉 = δmm′ . (8.2c)

Rozważmy teraz obserwablę, która działa tylko na podprzestrzeni A, zaś stopnie swobody związane
z B pozostawia nietknięte. Obserwabla taka będzie miała postać

ÔAB = Ô(A) ⊗ 1̂
(B). (8.3)

W następnym kroku policzmy jej wartość oczekiwaną na dowolnym stanie |ψ〉 ∈ H, który zawsze
możemy zapisać jako

|ψ〉 =
∑

nm

anm|nm〉,
∑

nm

|anm|2 = 1. (8.4)

Mamy

〈ÔAB〉 ≡ 〈ψ|ÔAB |ψ〉 =
∑

nm

∑

nn′

a∗n′m′anm〈n′m′|Ô(A) ⊗ 1̂
(B)|nm〉. (8.5)

Zauważamy teraz, że jedynka operatorowa działająca w podprzestrzeni B sprawia, że 〈m′| spotyka
się z |m〉, a jako że stany te są ortonormalne, otrzymujemy

〈ÔAB〉 =
∑

nn′

∑

m

a∗n′manm〈n′|Ô(A)|n〉. (8.6)
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Wprowadźmy teraz oznaczenie

̺nn′ ≡
∑

m

a∗n′manm. (8.7)

Widać od razu, że zachodzi

̺∗nn′ =
∑

m

an′ma
∗
nm = ̺n′n. (8.8)

W kolejnym kroku zauważamy, że powyższą średnią można wyrazić w następujący sposób

〈ÔAB〉 =
∑

n′′

〈n′′|
∑

nn′

̺nn′ |n〉〈n′|Ô(A)|n′′〉 (8.9)

a to dlatego, że gdy 〈n′′| trafia na |n〉, wykonuje się δnn′′ i sumowanie po n′′ znika. Powyższe
“obłożenie” operatora działającego w podprzestrzeni HA to nic innego jak ślad tego operatora (czyli
suma elementów diagonalnych). Możemy zatem zapisać to wyrażenie jako

〈ÔAB〉 = Tr
[

ˆ̺AÔ(A)
]

, (8.10)

gdzie wprowadziliśmy jeden z fundamentalnych obiektów mechaniki kwantowej, czyli macierz gęsto-
ści, daną wzorem

ˆ̺A =
∑

nn′

̺nn′ |n〉〈n′|. (8.11)

Jak widać, jest to operator działający na wektory w podprzestrzeni HA i mający następujące wła-
sności. Po pierwsze, na mocy związku (8.8)

ˆ̺†A =
∑

nn′

̺∗nn′ |n′〉〈n| =
∑

nn′

̺n′n|n′〉〈n| = ˆ̺ ⇒ ˆ̺†A = ˆ̺A, (8.12)

czyli ˆ̺A jest operatorem hermitowskim. Po drugie,

Tr [ˆ̺A] =
∑

n′′

〈n′′|
(

∑

nn′

̺nn′ |n′〉〈n|
)

|n′′〉 =
∑

n

̺nn =
∑

nm

|anm|2 = 1. (8.13)

Jest to zatem operator unormowany, ponadto jego elementy na diagonali są nieujemne, bo ̺nn =
|anm|2 > 0. Jako że sumują się one do jedynki, można im nadać interpretację prawdopowdobieństwa.
Podsumowując, macierz gęstości to operator hermitowski, ˆ̺A > 0 (operator nieujemnie określony),
oraz o unormowanym śladzie. Ostatnim krokiem jest diagonalizacja ˆ̺A, czyli doprowadzenie macierzy
gęstości (co zawsze jest możliwe dla operatorów hermitowskich) do postaci

ˆ̺A =
∑

n

pn|n〉〈n|,
∑

n

pn = 1, pn > 0 ∀n. (8.14)

Jeżeli tylko dla jednej wartości indeksu, n0, odpowiadające mu pn0 jest niezerowe, to musi ono
wynosić 1, zatem macierz gęstości sprowadza się wtedy do

ˆ̺A = |n0〉〈n0|. (8.15)



W tym przypadku ˆ̺A niesie tyle samo informacji co samo |n0〉 i mówimy wtedy, że jest to macierz
gęstości stanu czystego. Jeżel pn 6= 0 co najmnej dla dwu wartości n, nie da się przedstawić ˆ̺Aw
postaci operatora rzutowego na pojedynczy stan czysty, jest to zatem struktura inna, bardziej złożona
od każdego ze stanów z osobna. Mówimy wtedy, że operator ˆ̺A reprezentuje macierz gęstości stanu
mieszanego.

Z powyższych obserwacji wynikają zasadnicze konsekwencje dla interpretacji tego obiektu. Zanim
do nich przejdziemy, prześledźmy to, jak doszliśmy do definicji macierzy gęstości (8.11). Zaczęliśmy
od stanu (8.4), następnie założyliśmy, że obserwabla “dotyka” tylko stopni swobody związanych
z A [patrz równanie (8.3)] by ostatecznie dostać macierz gęstości podukładu A, tak jak w równa-
niu (8.11). Obiekt ten często nazywamy “zredukowaną macierzą gęstości”. Pochodzenie tej nazwy jest
następujące. Zauważmy, że macierz gęstości ˆ̺A można otrzymać w następujących krokach. Najpierw
bierzemy stan czysty z równania (8.4) i konstruujemy z niego operator rzutowy

|ψ〉〈ψ| =
∑

nm

∑

n′m′

anma
∗
n′m′ |nm〉〈n′m′|. (8.16)

Następnie policzmy ślad tej wielkości po stopniach swobody związanych z B. Mamy

Tr [|ψ〉〈ψ|]B =
∑

m′′

〈m′′|
∑

nm

∑

n′m′

anma
∗
n′m′ |nm〉〈n′m′||m′′〉 =

∑

nn′

∑

m

anma
∗
n′m|n〉〈n|. (8.17)

Przypomnijmy, że zdefiniowaliśmy
∑

m anma
∗
n′m ≡ ̺nn′ , zatem powyższe wyrażenie to po prostu

macierz gęstości podukładu A. Zachodzi zatem

ˆ̺A = Tr [|ψ〉〈ψ|]B . (8.18)

Zatem operację śladowania po pewnych stopniach swobody (w tym przypadku B) można rozumieć
jako “zapominanie” o tym podukładzie, ewentualnie jako konsekwencję braku do niego dostępu.
Powstaje w ten sposób operator, który opisuje tylko część podukładu, stąd mówimy, że jest to
zredukowana (względem całości) macierz gęstości.

8.1 Dodatkowe uwagi

8.1.1 Splątanie i stan separowalny

Po tym, jak wprowadziliśmy pojęcie stanu mieszanego możemy zmierzyć się z jednym z ważnych
pojęć, które pojawia się w ramach opsiu układów kwantowych. Dla stanów czystych sprawa jest
prosta. Stanem separowalnym (produktowym) nazywamy takie |ψ〉, które można przedstawić w
postaci

|ψ〉 = |ψA〉 ⊗ |ψB〉. (8.19)

Stan, którego nie da się zapisać w tej postaci nazywamy stanem splątanym.
Dla stanów mieszanych, sytuacja jest bardziej złożona. Co prawda natychmiast narzuca się de-

finicja stanu separowalnego jako takiego, który możemy przedstawić jako iloczyn macierzy gęstości
każdego z podukładów

ˆ̺ = ˆ̺A ⊗ ˆ̺B . (8.20)

Niemniej definicja ta nie dopuszcza istnienia klasycznych korelacji między podukładami. Przez taki

związek rozumiemy sytuację, gdy na A i B mierzone są w i-tym doświadczeniu wielkości I
(i)
A oraz



I
(i)
B , a następnie ich iloczyn uśredniany jest po zespole statystycznym n → ∞ powtórzeń pomiaru.

Układ klasycznie skorelowany to taki, gdy

〈IAIB〉 =
1

n

n
∑

i=1

I
(i)
A I
(i)
B
n→∞−−−−→

∫

dαIA(α)IB(α)p(α), (8.21)

gdzie p(α) jest rozkładem prawdopodobieństwa zmiennej losowej α. Gdy p(α) = δ(α − α0), układ
jest nieskorelowany. Łatwo się przekonać, że jeżeli stan możemy zapisać w postaci

ˆ̺ =

∫

dαp(α)ˆ̺A(α)⊗ ˆ̺B(α), (8.22)

wtedy funkcja korelacji policzona na tym stanie, która zgodnie z definicją wynosi

〈IAIB〉 = Tr
[

Â⊗ B̂ ˆ̺
]

=

∫

dαp(α)Tr
[

Â ˆ̺A(α)
]

A
Tr
[

B̂ ˆ̺B(α)
]

B
(8.23)

jest postaci takiej, jak w równaniu (8.21). Stąd rozszerzenie definicji stanów separowalnych w przy-
padku stanów mieszanych na wszystkie dwuczęściowe macierze gęstości postaci (8.22). Jeżeli ˆ̺ nie
da sie zapisać w ten sposób, mówimy że układ jest splątany.

Detekcja splątania

W wielu przypadkach ważne jest, by znać odpowiedź na pytanie: czy dany stan jest splątany. W
przypadku stanów czystych, sprawa jest stosunkowo prosta. Jeżeli stan jest w postaci iloczynowej, jak
w równaniu (8.19), wystarczy wykonać ślad po jednym z podukładów (na przykład B), by otrzymać

ˆ̺A = |ψA〉〈ψA|, (8.24)

zatem stan czysty. A zatem, jeżeli stan zredukowany jest mieszany, oznacza to, że nie miał on
wyjściowo postaci iloczynowej, był zatem splątany.

Sytuacja dramatycznie się komplikuje, gdy stan ˆ̺ jest mieszany. Dla przypadku A+ B, to zna-
czy gdy chcemy przekonać się o istnieniu splątania między dwoma podukłaami, możemy zastosować
kryterium PPT (Positive Partial Transpose) zwane również kryterium Peresa-Horodockiego. Mia-
nowicie, jeżeli stan jest separowlany, czyli postaci (??), to wykonanie częściowej transpozycji na
podprzestrzeni B, czyli

ˆ̺TB =

∫

dαp(α)ˆ̺A(α)⊗ (ˆ̺B(α))TB , (8.25)

nie dotyka stopni swobody A. Jeżeli odśladujemy stopnie swobody związane z B, otrzymujemy wtedy

ˆ̺̃
A = Tr

[

ˆ̺TB
]

B
=

∫

dαp(α)ˆ̺A(α). (8.26)

Jest to nadal zwykła macierz gęstości, więc w szczególności jej wartości własne są nieujemnie. Jeżeli w
wyniku tej procedury (częściowa transpozycja + częsciowy ślad) otrzymujemy operator działający
na HA, który ma co najmniej jedną ujemną wartość własną, wnioskujemy, że nie mógł być on
postaći (8.22), a zatem był splątany.

Niestety, w większości przypadków, z jakimi mamy do czynienia w pracy doświadczalnej i teore-
tycznej, układy nie mają binarnej struktury i wykrycie splątania staje się znacznie trudniejsze.



8.1.2 Sprzęganie z otoczeniem

Zauważmy, że gdy pełen (A+B) stan początkowy jest separowalny (więcej o tym pojęciu jeszcze w
tym rozdziale), czyli można go zapisać jako

|ψ〉 = |n〉 ⊗ |m〉 (8.27)

to zredukowana macierz gęstości jest postaci

ˆ̺A = Tr [|ψ〉〈ψ|]B =
∑

m′

〈m′||nm〉〈nm||m′〉 = |n〉〈n|, (8.28)

a zatem reprezentuje ona stan czysty. Można zatem podać następującą interpretację tego, czemu
w opisie układów kwantowych pojawia się macierz gęstości. Wyobraźmy sobie, że A jest układem,
na którym wykonywany jest pomiar/doświadczenie, zaś B reprezentuje jego całe otoczenie. Jeżeli
układ wchodzi w kontakt z otoczeniem, niechybnie, jak się przekonamy, stan powstały w wyniku
tego oddziaływania jest nieseparowalny, czyli nie można go przedstawić w postaci równania (8.27).

Gdy wykonujemy pomiar tylko na A i liczymy wartość średnią jakiejś obserwabli tak, jak zapisano
w równaniu (8.3), nieseparowalny stan |ψ〉 doprowadzi do efektywnego opisu samego układu A
przy pomocy stanów mieszanych. Zatem interpretacja pojawiania się macierzy gęstości wiąże się z
oddziaływaniem układu z otoczeniem i wypływem części informacji. Jej utrata prowadzi do bardziej
złożonego, względem stanów czystych, i “brudnego” opisu układów kwantowych.

8.1.3 Interpretacja probabilistyczna

Na macierz gęstości można również spojrzeć z innej perspektywy. Mianowicie przywołajmy jej roz-
kład spektralny, czyli wyrażenie

ˆ̺A =
∑

n

pn|n〉〈n|. (8.29)

Często spotyka się takie wyjaśnienie: czasem nie wiemy, jaki stan czysty |n〉 został przygotowany
(na przykład dlatego, że nie mamy pełnej informacji dotyczącej tego, jak działają nasze urządzenia
laboratoryjne). Niemniej, jeżeli jesteśmy w stanie określić prawdopodobieństwo pn tego, że powstaje
|n〉 (choćby na podstawie tego, że wiemy jakie są fluktuacje pola magnetycznego albo fazy lasera), to
stosujemy opis statystyczny, który utożsamiamy z wyrażeniem (8.29). Głębszego uzasadnienia tego,
że to właśnie macierz gęstości jest odpowiednim opisem w takim przypadku, dostarcza kwantowa
mechanika statystyczna.

8.1.4 Macierz gęstości qubitu

Pewną szczególną macierzą gęstości, ważną dla dziedzin takich jak optyka kwantowa, fizyka ciała
stałego czy szeroko pojęta informacja kwantowa, jest macierz gęstości qubitu, czyli układu dwupo-
ziomowego, którego przestrzeń Hilberta rozpinana jest przez dwa wektory

H2 = span (| ↑〉, | ↓〉) . (8.30)

Macierz taką zawsze możemy zapisać w postaci

ˆ̺ =
1

2

(

1 + nz nx + iny
nx − iny 1− nz

)

, nx, ny, nz ∈ R. (8.31)



Dzięki przedstawieniu ˆ̺w tej postaci zapewniliśmy, że jej ślad jest 1. Natomiast nieujemność wartości
własnych otrzymujemy z równania wiekowego, czyli

(1 + nz − 2λ)(1− nz − 2λ)− n2x − n2y = 0⇒ 4λ2 − 4λ+ 1− n2 = 0, (8.32)

gdzie n2 = n2x + n
2
y + n

2
z. Stąd otrzymujemy

λ± =
1

2
(1± n). (8.33)

A zatem musi zachodzić n ≡
√

n2x + n
2
y + n

2
z 6 1. Gdy nierówność ta jest nasycona, stan jest czysty

(gdyż wtedy λ− = 0). W ogólności możemy posłużyć się macierzami Pauliego z równania (7.3) by
zapisać dowolną macierz gęstości qubitu w postaci

ˆ̺ =
1

2

(

1̂+ nxσ̂x + nyσ̂y + nzσ̂z
)

=
1

2

(

1̂+ ~n~̂σ
)

. (8.34)

Wektor ~n nazywamy wektorem Blocha, a powyższa postać sprawia, że każdy stan qubitu możemy
przedstawić na sferze (zwanej sferą Blocha) bądź w jej wnętrzu (wtedy jest to stan mieszany).
• o obrotach



Rozdział 9

Nierówności Bella

Wprowadziwszy pojęcia takie jak separowalność i splątanie, możemy przejść do dyskusji jednej z bar-
dziej zagadkowych własności mechaniki kwantowej, opisywanej ilościowo przez “nierówności Bella”.
Nierówności te zostały sformułowane przez Johna Bella w 1964 roku i są pokłosiem dyskusji, jaka
toczyła się w środowisku naukowym od 1935 roku, kiedy Einstein, Podolsky i Rosen (EPR) opubli-
kowali pracę sugerującą, że opis rzeczywistości, jakiego dostarcza mechanika kwantowa, jest niekom-
pletny. W tym samym roku Erwin Schrödinger wprowadził pojęcie splątania, do którego odwołuje
się praca EPR.

Argument EPR był następujący. Wyobraźmy sobie dwuciałowy stan splątany

|ψ〉 =
∑

n

an|ψ(A)n 〉 ⊗ |φ(B)n 〉. (9.1)

Załóżmy, mówią EPR, że “użytkownik” A postanawia dokonać pomiaru obserwabli w bazie rozpiętej

przez wektory |ψ(A)n 〉. Otrzymawszy wynik związany z operatotem rzutowym |ψ(A)m 〉〈ψ(A)m |, natych-

miast rzutuje wynik w B na |φ(B)m 〉. Jeżeli A rozważałby ten stan w innej bazie

|ψ〉 =
∑

n

ãn|ψ̃(A)n 〉 ⊗ |φ̃(B)n 〉. (9.2)

i w niej wykonywałby pomiar, to natychmiast jego decyzja miałaby wpływ na możliwe wyniki w B.
Wydaje się zatem, że splątanie dopuszcza “upiorne działanie na odległość” (jak to ujął Einstein). To
z kolei łamie postulaty lokalnego realizmu, czyli:
• stan układu jest określony w momencie jego powstawania [realizm];
• lokalne decyzje podjęte w A nie mają natychmiastowego (czyli szybszego, niż zajęłoby dotarcie

z A do B impulsowi świetlnemu) wpływu na wyniki pomiarów w B [lokalność].
EPR postulowali, że należy uzupełnić mechanikę kwantową o teorię spełniającą postulaty lokal-

nego realizmu. Innymi słowy twierdzili, że opis, jakiego dostarcza teoria kwantów, jest niekompletny.
Minęło aż 29 lat do momentu, gdy w 1964 roku John Bell bardzo prostym rachunkiem wykazał,

że nie da się pogodzić niektórych wyników mechaniki kwantowej z żadną lokalnie realistyczną teorią.
Tym samym wykluczył powrót do statej dobrej fizyki klasycznej. Przedstawimy tu jego argumenty
w wersji zaproponowanej parę lat później przez Clausera, Horne’go, Shimonny’ego i Holtza (stąd
mówimy o nierówności CHSH).

Załóżmy, na razie abstahując od mechaniki kwantowej, że A i B mierzą wielkości fizyczne IA oraz
IB. Ponadto, by móc odwołać się do powyższego przykładu, dajmy im swobodę zmiany lokalnych
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ustawień, takich jak dobór bazy, orientacja polaryzatora itp. Zatem pełne oznaczenie na mierzone

wielkości to I
(n)
A oraz I

(m)
B . Postulat realizmu oznacza, że nawet jeżeli wielkości mierzone zmieniają

się od eksperymentu do eksperymentu, to nie jest to fundamentalna losowość układu, lecz wynik na-
szej niepełnej wiedzy o szczegółach przygotowania doświadczenia. Tę niewiedzę można odwzorować
poprzez wprowadzenie zmiennej losowej λ (na przykład opisującej wynik rzutu monetą, w zależności
od którego ustalane są własności układu).

Następnie, konstruujemy funkcję korelacji między wynikami w A i B rozumianą jako średnią po
wielu pomiarach z iloczynu wyników. Jeżeli średnia ta spełnia postulat realizmu, to możemy zapisać
ją w postaci

E(n,m) =

∫

dλp(λ)I
(n)
A (λ)I

(m)
B (λ). (9.3)

Postulat realności “zakodowany” jest w tym, że lokalne ustawienia n i m nie mają na siebie — na
wzajem — wpływu. Innymi słowy, IA nie zależy od m i na wzajem. Celem poniższego rozumowania
jest, po pierwsze, wykazanie, że pewna szczególna kombinacja E dla różnych ustawień może przyjmo-
wać wartości tylko z określonego przedziału, a, po drugie, układy kwantowe łamią te ograniczenia.
Oznacza to tyle, że nie wszystkie korelacje kwantowe da się opisać przy pomocy funkcji (9.3).

Wyprowadzenie zaczyna się od założenia, że lokalne wyniki są binarne, czyli IA/B = ±1. Odpo-
wiada to wynikom pomiarów dla dwu cząstek o spinie 1/2 każda, gdyż wartości własne macierzy
Pauliego to właśnie ±1. Następnie rozważamy po dwa możliwe ustawienia na podukład, czyli n i n′

dla A oraz m i m′ dla B i konstruujemy wielkość

C = E(n,m) + E(n′,m)− E(n,m′) + E(n′,m′). (9.4)

Korzystając z postaci (9.3), otrzymujemy

C =
∫

dλp(λ)
[(

I
(n)
A (λ) + I

(n′)
A

)

I
(m)
B (λ) +

(

I
(n)
A (λ)− I

(n′)
A (λ)

)

I
(m′)
B (λ)

]

. (9.5)

Łatwo się przekonać, że jeżeli zawsze I
(n)
A (λ) = I

(n′)
A (λ), to wartość korelatora jest ograniczona przez

|C| 6 2. Tak jest też dla I
(n)
A (λ) = −I

(n′)
A (λ) i dla wszystkich wartości pośrednich. Stąd otrzymujemy,

że dla korelatora C spełniającego postulaty lokalnego realizmu zachodzi

|C| 6 2. (9.6)

Wyrażenie to nazywamy nierównością Bella albo nierównością CHSH.

Kluczowe jest to, że istnieją stany kwantowe, które je łamią. Rozważmy układ dwu spinów 1/2
(na przykład parę elektronów albo fotonów — wtedy rolę spinu odgyrwa polaryzacja) w stanie

|ψ〉 = 1√
2
(|+ 1,−1〉 − | − 1,+1〉) , (9.7)

gdzie | ± 1〉 są stanami własnymi operatorów σ̂z. Lokalne obserwable niech będą parametryzowane
kątami θ i φ i niech mają postać

Î
(θ)
A = σ̂

(A)
x cos θ + σ̂

(A)
y sin θ (9.8a)

Î
(φ)
B = σ̂

(B)
x cosφ+ σ̂

(B)
y sinφ. (9.8b)



Funkcja korelacji, którą badamy, jest zatem średnią iloczynu tych operatorów policzoną na sta-
nie (9.7) i ma postać

E(θ, φ) =
〈

Î
(θ)
A Î

(φ)
B

〉

. (9.9)

Bezpośredni rachunek daje

C = E(0, π/4) + E(π/2, π/4)− E(0,−π/4) + E(π/2,−π/4) = 2
√
2, (9.10)

co łamie nierówność CHSH. Stąd wniosek: albo mechanika kwantowa albo lokalny realizm.


