

Jan M. Antosiewicz

Zakład Biofizyki Instytut Fizyki Doświadczalnej Wydział Fizyki

Wykład 9

15 kwietnia, 2025

Błądzenie losowe w procesach biomolekularnych

http://www.fuw.edu.pl/~jantosi/

jantosi@fuw.edu.pl

Howard Curtis Berg (1934-2021) był profesorem fizyki oraz biologii molekularnej i komórkowej na Uniwersytecie Harvarda, gdzie wykładał biofizykę i badał ruchliwość bakterii Escherichia coli (E. coli). Berg był członkiem Wydziału Biologii Molekularnej i Komórkowej Uniwersytetu Harvarda od 1986 r. oraz Wydziału Fizyki Uniwersytetu Harvarda od 1997 r. W komórkach organizmów żywych nieustannie zachodzą reakcje chemiczne oraz procesy tworzenia (rozpadu) kompleksów molekularnych bez wytwarzania (zrywania) wiązań chemicznych.

Molekuły tworzące nowy związek chemiczny lub kompleks molekularny, w ośrodku materialnym, zazwyczaj odnajdują się w procesie nazywanym dyfuzją. Dopiero po utworzeniu "kompleksu spotkaniowego" w wynku dyfuzji mogę nastąpić dalsze etapy tworzenia kompleksu czy też reakcji chemicznej.

Dyfuzja to proces samorzutnego rozprzestrzeniania się cząsteczek lub energii w danym ośrodku (np. w gazie, cieczy lub ciele stałym), będący konsekwencją bezładnego ruchu cieplnego cząsteczek ośrodka.

Błądzenie losowe jest matematyczną formalizacją procesu przemieszczania się, który składa się z wykonania kolejnych kroków przypadkowych, czyli każdy następny w losowo wybranym kierunku (Karl Pearson 1905).

Ruch Browna jest rodzajem ruchu losowego. Podczas gdy prosty ruch losowy jest modelem ruchu w przestrzeni dyskretnej (liczby całkowite) i w czasie dyskretnym, ruch Browna jest modelem w przestrzeni ciągłej i w czasie ciągłym.

W 1828 roku Robert Brown opisał bezładne ruchy cieplne amyloplastów (ziarna skrobi) i sferosomów (organella występujące w komórkach roślinnych, magazynujące tłuszcze) zawartych w ziarenkach pyłków kwiatowych Klarkii nadobnej (Clarkia pulchella). Nazwał je molekułami. W 1831 roku, na posiedzeniu Towarzystwa Linneusza w Londynie, Robert Brown opisuje jądra w komórkach orchidei.

Czy Brown naprawdę mógł dokonać opisanych przez siebie obserwacji, używając swojego prymitywnego mikroskopu jednosoczewkowego?

What Brown saw and you can too

Philip Pearle, Brian Collett, Kenneth Bart, David Bilderback, Dara Newman, and Scott Samuels

Citation: American Journal of Physics 78, 1278 (2010); doi: 10.1119/1.3475685

Tak Brown widział amyloplasty i sferosomy w swoim mikroskopie ...

... a tak amyloplasty wyglądają w mikroskopie elektronowym.

Brian J. Ford (ur 1939) jest niezależnym biologiem, autorem i wykładowcą, który publikuje publikacje dotyczące zagadnień naukowych dla ogółu społeczeństwa.

NATURE, vol. 359, p. 265, (1992) Brown's observations confirmed

Współczynnik dyfuzji D

Niech J będzie liczbą netto cząsteczek przemieszczających się z prawej strony na lewą stronę w jednostce czasu na jednostkę powierzchni dzielącej i niech c będzie stężeniem cząsteczek wyrażonym w ich liczbie na jednostkę objętości. Strumień J jest proporcjonalny do gradientu stężenia c, a stała proporcjonalności nazywana jest współczynnikiem dyfuzji D:

$$J = -D \frac{c(x + \Delta x) - c(x)}{\Delta x} \xrightarrow{\rightarrow} -D \frac{\partial c}{\partial x}$$

I prawo dyfuzji Ficka.

Jednowymiarowe równanie dyfuzji

а

X

(Wyprowadzenie równania dyfuzji z sumowania po mikrotrajektoriach indywidualnych cząstek, przypadek kroków o stałej długości)

p(x,t)

 $p(x,t) \cdot a$

gęstość prawdopodobieństwa znalezienia cząstki w położeniu x w chwili t.;

prawdopodobieństwo znalezienia cząstki w przedziale o długości a centrowanym na x, w chwili t;

założenie: prawdopodobieństwo wykonania skoku w prawo bądź lewo o a jest proporcjonalne do wielkości przedziału czasu Δt;

prawdopodobieństwo, że cząstka przeskoczy w przedziale czasu Δt dalej niż do sąsiedniego przedziału, wynosi 0;

prawdopodobieństwo, że cząstka pozostanie w tym samym miejscu w przedziale czasu Δt ;

Dzieląc oś x na małe sekcje o długości a, z mikroskopowej perspektywy, możemy opisać jednowymiarową losową trajektorię ruchu cząstki jako wynik wystąpienia w kolejnych odstępach czasu Δt jednego z trzech możliwych zdarzeń: cząstka przesuwa się w prawo o a, w lewo o a lub pozostaje w tej samej pozycji do następnego momentu. Czas Δt jest długi w porównaniu do czasu między kolejnymi zderzeniami z cząsteczkami rozpuszczalnika, podczas gdy a jest algebraiczną sumą wszystkich przemieszczeń w czasie Δt . Wprowadzamy gęstość prawdopodobieństwa p(x, t) znalezienia cząstki w położeniu x w czasie t. Prawdopodobieństwo znalezienia cząstki w przedziale długości a, której środkiem jest x w czasie t, wynosi zatem p(x, t)a. Zakładając, że prawdopodobieństwo wykonania skoku w prawo lub w lewo o wartość a jest proporcjonalne do rozmiaru przedziału czasu Δt , możemy wyprowadzić jednowymiarowe równanie dyfuzji dla p(x, t) oraz obliczyć średnie przemieszczenie i jego wariancję.

$$p(x,t+\Delta t) = (1-2k\Delta t) \cdot p(x,t) + k\Delta t \cdot p(x-a,t) + k\Delta t \cdot p(x+a,t)$$

$$p(x,t+\Delta t) = p(x,t) + \frac{\partial p(x,t)}{\partial t} \Delta t + \dots$$

$$p(x\pm a,t) = p(x,t) \mp \frac{\partial p(x,t)}{\partial x} a + \frac{\partial^2 p(x,t)}{\partial x^2} a^2 \mp \dots$$

$$\frac{\partial p(x,t)}{\partial t} = (a^2k) \frac{\partial^2 p(x,t)}{\partial x^2} \equiv D \frac{\partial^2 p(x,t)}{\partial x^2}$$

$$(\Delta x) = (+a) \cdot k\Delta t + (-a) \cdot k\Delta t + 0 \cdot (1-2k\Delta t) = 0$$

$$var \equiv \langle (\Delta x - \langle \Delta x \rangle)^2 \rangle = \langle (\Delta x)^2 \rangle = (+a)^2 \cdot k\Delta t + (-a)^2 \cdot k\Delta t + 0^2 \cdot (1-2k\Delta t) = 2a^2k\Delta t$$

$$\frac{\partial p(x,y,x,t)}{\partial t} = D \left(\frac{\partial^2 p(x,y,z,t)}{\partial x^2} + \frac{\partial^2 p(x,y,z,t)}{\partial y^2} + \frac{\partial^2 p(x,y,z,t)}{\partial z^2} \right) = D \nabla^2 p(\vec{r},t)$$

$$\langle (\Delta x)^2 \rangle = \langle (\Delta y)^2 \rangle = \langle (\Delta z)^2 \rangle = 2D\Delta t \qquad \langle (\Delta x)^2 \rangle + \langle (\Delta y)^2 \rangle + \langle (\Delta z)^2 \rangle = 6D\Delta t$$

Dyfuzja w obecności siły zewnętrznej (równanie Smoluchowskiego).

 $p_{\rightarrow,\Delta t} = k_+ \cdot \Delta t$ prawdopodobieństwo, że cząstka przeskoczy do sąsiedniego przedziału po prawej stronie w przedziale czasu Δt , jest proporcjonalne do Δt ; stała proporcjonalności k.

$$p_{\leftarrow,\Delta t} = k_{-} \cdot \Delta t$$

prawdopodobieństwo, że cząstka przeskoczy do sąsiedniego przedziału po lewej stronie w przedziale czasu Δt, jest proporcjonalne do Δt; stała proporcjonalności k

 $p_{\uparrow,\Delta t} = 1 - (k_+ + k_-) \cdot \Delta t$ prawdopodobieństwo, że cząstka pozostanie w tym samym miejscu w przedziale czasu Δt ;

$$p(x,t+\Delta t) = (1 - (k_{+}+k_{-})\cdot\Delta t) \cdot p(x,t) + k_{+}\Delta t \cdot p(x-a,t) + k_{-}\Delta t \cdot p(x+a,t)$$

$$\frac{\partial p(x,t)}{\partial t} = v \frac{\partial p(x,t)}{\partial x} + D \frac{\partial^{2} p(x,t)}{\partial x^{2}}; \quad v \equiv a(k_{+}-k_{-}); \quad D \equiv (k_{+}+k_{-})a^{2}/2$$

$$v \text{ jest nazyware predkością unoszenia}$$

Dyfuzja cząsteczek w warunkach zatłoczenia molekularnego.

Załóżmy, że cząsteczki crowdera mają taki sam rozmiar jak cząsteczka dyfundująca i że ułamek objętości układu zajmowany przez cząsteczki zatłaczacza wynosi φ. Cząsteczka dyfundująca nie może znajdować się w jednowymiarowej klatce o długości a zajmowanej przez cząsteczkę crowdera.

$$p_{\rightarrow,\Delta t} = p_{\rightarrow,\Delta t} = k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

$$p_{\downarrow,\Delta t} = 1 - 2k \cdot \Delta t (1-\phi)$$

Gdy cząstki zatłaczacza są r razy mniejsze od cząstki dyfuzyjnej: $D = a^2 k (1 - \phi)^r = D_o (1 - \phi)^r$ gdy cząsteczki zatłaczacza są r razy większe zostaje czynnik 1 – ϕ .

Zawartość molekularna bakterii E. coli. Ilustracja po lewej stronie przedstawia zatłoczoną cytoplazmę komórki bakteryjnej. Rysunek po prawej stronie przedstawia spis molekularny rzędu wielkości bakterii E. coli z przybliżoną liczbą różnych cząsteczek w E. coli (ilustracja wnętrza komórki wzięta od D. Goodesella).

[liczba molekuł na ml na sek]; aby zmienić na jednostki [M⁻¹ sec⁻¹] trzeba pomnożyć przez 10⁻³ N_A

Reakcje i dyfuzja

$$\begin{array}{cccc} A+B & \stackrel{k_d}{\leftrightarrow} & [AB]^{\#} & \stackrel{k_{cat}}{\leftrightarrow} & K \\ & k_b & k_{-cat} \end{array}$$

- *k_d* stała szybkości tworzenia kompleksu spotkaniowego poprzez dyfuzję;
- k_b stała szybkości dysocjącji kompleksu spotkaniowego poprzez dyfuzję;
- k_{cat} katalityczna stała szybkości tworzenia wiązania;
- k_{-cat} katalityczna stała szybkości zerwania wiązania;

$$K_{cat} = K = K_{R} + B \stackrel{k_{R}}{\leftrightarrow} K_{L}$$

$$k_{-cat} = K + B \stackrel{k_{R}}{\leftrightarrow} K_{L}$$

$$k_{D}$$

$$\frac{\mathrm{d}\mathbf{c}_{\mathrm{K}}}{\mathrm{d}t} = \mathbf{k}_{\mathrm{cat}} \mathbf{c}_{[\mathrm{AB}]^{\#}} - \mathbf{k}_{-\mathrm{cat}} \mathbf{c}_{\mathrm{K}} \qquad \frac{\mathrm{d}\mathbf{c}_{\mathrm{K}}}{\mathrm{d}t} = \mathbf{k}_{\mathrm{R}} \mathbf{c}_{\mathrm{A}} \mathbf{c}_{\mathrm{B}} - \mathbf{k}_{\mathrm{D}} \mathbf{c}_{\mathrm{K}}$$

Gdy k_b 🖗 k_{cat}, wtedy k_R=k_d, a reakcję nazywa się kontrolowaną przez dyfuzję.

Pomiary dyfuzji w roztworach

Najpowszechniej stosowaną metodą wyznaczania współczynników dyfuzji polimerów jest dynamiczne rozpraszanie światła (DLS), znane również jako quasielastyczne rozpraszanie światła (QELS). Inne, rzadziej stosowane metody, to dyfuzyjny jądrowy rezonans magnetyczny (d-NMR), wymuszone rozpraszanie Rayleigha przez dyfuzję termiczną (TDFRS), analiza dyspersji Taylora (TDA) oraz metody chromatograficzne, takie jak chromatografia hydrodynamiczna (HDC), frakcjonowanie przepływowe w polu przepływu (FFFF) i chromatografia wykluczania (SEC) [Journal of Polymer Science: Part B: Polymer Physics, Vol. 37, 593– 603 (1999)].

Dynamiczne rozpraszanie światła (DLS) opiera się na ruchach Browna rozproszonych cząstek. W podstawowej konfiguracji instrumentu DLS laser o pojedynczej częstotliwości jest kierowany na próbkę znajdującą się w kuwecie. Jeśli w próbce znajdują się cząstki, padające światło lasera zostaje rozproszone we wszystkich kierunkach. Rozproszone światło jest wykrywane pod pewnym kątem w czasie i sygnał ten służy do określenia współczynnika dyfuzji i wielkości cząstek za pomocą równania Stokesa-Einsteina:

$$D = \frac{kT}{6\pi\eta\sigma_H}$$

 σ_H = promień hydrodynamiczny dyfundujących cząstek

Spektroskopia korelacyjna fluorescencji (Fluorescence Correlation Spectroscopy)

FCS to metoda analizy, która umożliwia pomiar dynamiki procesów molekularnych na podstawie obserwacji spontanicznych mikroskopowych fluktuacji stężenia cząsteczek. Pomiary te są powszechnie wykonywane w równowadze termicznej, gdzie spontaniczne wahania cząsteczek wynikają z ruchów Browna.

 $2 \cdot \omega_v$

 $2 \cdot \omega_x$

Obrazowanie w czasie rzeczywistym ścieżek infekcji przez pojedyncze cząstki wirusa z rodziny partowirusów* SCIENCE VOL 294, 1929-1932 (2001)

Wirus stowarzyszony z adenowirusem (AAV) to mały wirus z genomem jednoniciowego DNA, który zakaża ludzi i niektóre inne gatunki naczelnych i który może wprowadzić materiał genetyczny w określonym miejscu na chromosomie 19 z niemal 100% pewnością. Obecnie nie wiadomo, czy AAV jest chorobotwórczy, wiadomo że powoduje bardzo łagodną odpowiedź immunologiczną. Wektory do terapii genowej wykorzystujące AAV mogą infekować tylko dzielące się komórki i utrzymywać się w stanie pozachromosomalnym bez integracji z genomem komórki gospodarza. Cechy te czynią AAV bardzo atrakcyjnym kandydatem do tworzenia wektorów wirusowych do terapii genowej oraz do tworzenia izogenicznych modeli chorób ludzkich.

Vaxzevria (wcześniej szczepionka przeciwko COVID-19 AstraZeneca) to szczepionka przeznaczona do zapobiegania chorobie koronawirusowej 2019 (COVID-19) u osób w wieku 18 lat i starszych. Szczepionka AstraZeneca wykorzystuje wektor szczepionkowy adenowirusa szympansa.

*dosłownie wirus stowarzyszony z adenowirusem

Struktura krystaliczna AAV; PNAS August 6, 2002 vol. 99 10405-10410 i obraz z mikroskopu elektronowego

http://www.genetherapynet.com/viral-vectors/adeno-associated-viruses.html

http://en.wikipedia.org/wiki/Adeno-associated_virus

Grupy R nie muszą być identyczne. W stosowanych barwnikach są to krótkie łańcuchy alifatyczne, z których jeden lub oba kończą się wysoce reaktywnymi ugrupowaniami, takimi jak maleimid.

AAV znakowano kowalencyjnie barwnikiem Cy5, przy stosunku pojedynczego do podwójnego znakowania wynoszącym 82:18. Cy5 jest czerwonym barwnikiem fluorescencyjnym o długości fali wzbudzenia 649 nm i długości fali emisji 670 nm.

Roztwór wirusa AAV-Cy5 o niskim stężeniu (10⁻⁹ do 10⁻¹¹ mol l⁻¹) dodano do pożywki hodowlanej komórek HeLa. Zwykle dawało to od 10 do 1000 cząstek wirusa na komórkę.

Obszar o wymiarach 20 µm na 20 µm, zawierający pojedynczą komórkę, obrazowano za pomocą mikroskopu epifluorescencyjnego z obiektywem 100× (Plan-Neofluar, NA 1.3, Zeiss) i systemem kamer o wysokiej czułości ze sprzężeniem ładunkowym (CCD) (Pentamax, Instrumenty Princeton).

Cząsteczki Cy5 mogą przed fotouszkodzeniem przejść średnio 10⁶ fotocykli w buforze/żelu agarozowym. W opisanych tutaj eksperymentach intensywność wzbudzenia została starannie dostosowana, aby uzyskać jasność wystarczającą do wykrywania fluorescencji, ale także długie trajektorie przed fotouszkodzeniem. Przy skuteczności detekcji około ε=1% i intensywności fluorescencji na plamkę wynoszącej kilkaset zliczeń, można było uzyskać trajektorie od 1 do 10 s.

http://en.wikipedia.org/wiki/Cyanine SCIENCE VOL 294, 1929-1932 (2001)

Trajektorie pojedynczych cząstek AAV-Cy5 wskazujące zakaźne drogi wnikania AAV do żywej komórki HeLa. Przeanalizowano 1009 trajektorii pojedynczych cząstek AAV-Cy5 w 74 komórkach na różnych etapach infekcji.

Aby zademonstrować, w jaki sposób określono składniki komórek, trajektorie są rzutowane na obraz przekroju poprzecznego badanej komórki z kontrastem fazowym, wykonany za pomocą dostępnej w handlu matrycy CCD przymocowanej do tubusu lornetki mikroskopu

Ślady pokazujące pojedyncze dyfundujące cząsteczki wirusa rejestrowano w różnym czasie. Opisują różne etapy zakażenia AAV, m.in. dyfuzja w roztworze (1 i 2), kontakt z błoną komórkową (2), penetracja błony komórkowej (3), dyfuzja w cytoplazmie (3 i 4), penetracja otoczki jądrowej (4) i dyfuzja w nukleoplazma.

Ruch AAV poza komórką może scharakteryzować jako dyfuzję normalną z a współczynnik dyfuzji D=7,5 µm²/s

SCIENCE VOL 294, 1929-1932 (2001)

"Wydarzenia dotykające" błony AAV na powierzchni żywej komórki HeLa. Powiększony szkie trajektorii 2 pobrany z rysunku pokazanego na poprzednim slajdzie. Ścieżka pokazuje pięć dotknięć powierzchni komórki. Te trafienia są zaznaczone kółkami i reprezentują krótkie okresy bezruchu.

Dyfuzja AAV w cytoplazmie. Każda trajektoria zaczyna się od utworzenia endosomu.

(A i B) Dwie serie obrazów fluorescencyjnych przedstawiających jedną i dwie plamki fluorescencyjne, każda wskazująca pojedynczą cząstkę AAV.

Preparaty obrazowano co 40 ms. Rozmiar obrazowanego obszaru wynosi 5 µm na 5 µm. Zobrazowano i przeanalizowano 113 trajektorii w cytoplazmie. We wszystkich eksperymentach nie zaobserwowano wolnego wirusa, a jedynie dyfuzję endosomu bezpośrednio po penetracji błony i każdy endosom zawierał jedną cząstkę wirusa.

Pięćdziesiąt trzy trajektorie wykazały liniową zależność średniokwadratowego przemieszczenia w czasie.

Pięćdziesiąt jeden trajektorii wykazało odchylenia od liniowej zależności średniego kwadratu przemieszczenia od czasu, wskazując na anomalne procesy dyfuzji.

Wykresy czasowe intensywności fluorescencji (I) plamek pokazanych na rysunkach (A) i (B) na poprzednim słajdzie (skorelowane kolorem).

Wykresy charakteryzują się charakterystyczną dynamiką włączania/wyłączania (miganie) i jednoetapowym przebiegiem procesu fotowybielania, typowym dla pojedynczych cząsteczek.

Fluktuacje sygnału w czasie są wynikiem ruchu dyfuzyjnego prostopadłego do płaszczyzny ogniskowej.

Wizualizacja trzech trajektorii zarejestrowanych jako sygnał fluorescencji, rzutowanych na obraz komórki uzyskany w świetle przechodzącym. Położenia błony komórkowej i błony jądra komórkowego, pokazane kolorem żółtym, określono za pomocą obrazowania z kontrastem fazowym.

Średnie przemieszczenie kwadratowe w funkcji czasu. Krzywą magenta dającą współczynnik dyfuzji D = 1,4 μ m²/s przypisano wolnej cząstce AAV podlegającej normalnej dyfuzji w osoczu komórkowym. Krzywe zieloną i żółtą przypisano ruchom endosomalnym. Jedna wykazuje dyfuzję normalną (D = 0,55 μ m²/s kolor zielony), a druga dyfuzję anomalną (D = 0,2 μ m²/s, α = 0,6 żółty; <x²>=4Dt^{\alpha}).

Funkcja gęstości prawdopodobieństwa pdD dla współczynników dyfuzji uzyskanych dla ruchu cząstek w cytopiazmie z 53 trajektorii przy pH = 7 (H) i 10 trajektorii przy pH = 9 (I). Dla pH 7, funkcja ma dwa maksima funkcji gęstości prawdopodobieństwa. Przypisano je wolnemu AAV (D = 1,3 μ m²/s) i AAV wewnątrz endosomu (D = 0,57 μ m²/s). To ostatnie maksimum jest podobne do maksimum (D = 0,64 μ m²/s) stwierdzonego dla pH = 9, przy którym uwolnienie endosomalne nie jest możliwe. Dlatego też niską wartość D w (H) przypisano AAV wewnątrz endosomu. Histogramy pokazują rozkład stałych dyfuzji.

Transport AAV-Cy5 w jądrze komórkowym.
(A) Wizualizacja pięciu trajektorii rzutowanych na obraz jądra komórkowego w świetle białym.
Położenie jądra zaznaczonego na żółto określono za pomocą obrazowania z kontrastem fazowym.
Dwie dolne trajektorie biegną kolejno tą samą ścieżką. W tym przypadku wszystkie trajektorie wykazały ruch skierowany od lewej do prawej strony, czyli były "jednokierunkowe".
(B) Średnie przemieszczenie kwadratowe wykreślone w czasie. Paraboliczny kształt krzywych wskazuje na dyfuzję z dryfem, jak opisano w równaniu

 $\langle r^2 \rangle = 4 \text{Dt} + (vt)^2$

o współczynnikach dyfuzji D = 0,25 do 0,35 μ m²/s i prędkościach w zakresie v = 0,2 do 1,4 μ m/s.