ZnMnTe/ZnMgTe nanowires studied by magneto-photoluminescence

K. Gałkowski, J. Suffczyński, J. Papierska, T. Kazimierczuk, P. Kossacki

Institute of Experimental Physics, University of Warsaw

P. Wojnar, E. Janik, T. Wojtowicz

Institute of Physics, Polish Academy of Sciences

- Motivation & experimental
- CW measurements
- Polarization
- TR measurements
- summary
Motivation

Potential of DMS nanowires: DMS + shape anistropy:

- Magnetooptical switches
- Spin filters
- ...

What characterizes the system?

- Emission polarization performance in magnetic field
- Photoexcitation decay and relaxation channels
- ...

Our investigations:

- Polarization of emission
- PL dynamics in magnetic field
Optically active ZnMnTe/ZnMgTe core/shell nanowires (NWs):

- MBE Vapour-Liquid-Solid growth
Optically active ZnMnTe/ZnMgTe core/shell nanowires (NWs):

- MBE Vapour-Liquid-Solid growth
- Core/shell ~70/35 nm
- x_{Mn} up to 4 %
Experimental Setup

- **Excitation**: 442 nm (cw) and 410 nm (pulsed) lasers, focused to $d = 3 \, \mu m$
- **Magnetic field up to 10 T**, temperature of 2 K
Excitation: 442 nm (cw) and 410 nm (pulsed) lasers, focused to $d = 3 \, \mu m$

Magnetic field up to 10 T, temperature of 2 K

Detection: CCD or a streak camera

K. Gałkowski, JEMS 2012
Luminescence: Following the single NW

Linewidth of single NW emission $\sim 2 - 5$ meV

K. Gałkowski, JEMS 2012
NW excitonic transition in magnetic field:

- **Energy**: redshift due to the Zeeman splitting
- **PL intensity**: increase up to 5x
- **Linewidth**: decrease (down to 60 %)
Emission in Magnetic Field

- Zeeman splitting
 \[\Delta E(B) = E_s B_S \left(\frac{g_{\text{Mn}} \mu_B B}{kT_{\text{eff}}} \right) \]
 \[E_s = \frac{1}{2}(N_0 \alpha - N_0 \beta)x_{\text{Mn}} S_0 \]
- fit yields \(E_s = 56 \text{ meV} \)
- \(\Rightarrow x_{\text{Mn}} = 3.6\% \)

\(T_{\text{eff}} = 5.7 \text{ K} \)
\(x_{\text{Mn}} = 3.6\% \)
Emission in Magnetic Field

PL Intensity enhancement:
- Brillouin – like dependence
- saturation at about $B = 3$ T

1. Zeeman splitting

$\Delta E(B) = E_s B S \left(\frac{g_{Mn} \mu_B B}{kT_{eff}} \right)$

$E_s = \frac{1}{2} (N_0 \alpha - N_0 \beta) x_{Mn} S_0$

- fit yields $E_s = 56$ meV
- $=> x_{Mn} = 3.6 %$

$T_{eff} = 5.7$ K

$x_{Mn} = 1.8 %$

K. Gałkowski, JEMS 2012
Emission in Magnetic Field

PL Intensity enhancement:
gradual quenching of non-radiative, spin–dependent recombination channel related to Mn ions

\[\text{slope} = 1.13 \]

K. Gałkowski, JEMS 2012
Our NWs: High degree of LPD (av. 40 % at 0 T)

K. Gałkowski, JEMS 2012
Polarization in magnetic field

Linear Polarization Degree

polarization direction

Voigt: altered by magnetic field

Faraday: negligible impact of magnetic field

K. Gałkowski, JEMS 2012
Time resolved study of Photoluminescence

- ZnMnTe sample: Magnetic field induced exciton lifetime increase (up to 60% in 10 T)
- Saturation at $B = 3 - 4$ T

K. Gałkowski, JEMS 2012
Time resolved study of Photoluminescence

- Non-radiative processes inhibited
- consistency with cw measurements.

K. Gałkowski, JEMS 2012
Time resolved study of Photoluminescence

ZnTe sample:

- excitonic lifetime independent of the magnetic field
- Decay time – order of magnitude longer.

K. Gałkowski, JEMS 2012
Polarization and emission dynamics of optically active magnetic ZnMnTe/ZnMgTe nanowires determined

High degree of linear polarization due to anisotropic geometry of nanowire

Polarization of emission affected by magnetic field in Voigt configuration

cw and TR measurements: Spin dependent, non-radiative channel of photocreated carriers recombination quenched by magnetic field
Time resolved study of Photoluminescence

NW’s Excitonic Emission

Photon wavelength (nm)

Time (ns)

K. Gałkowski, JEMS 2012
Emission dynamics in magnetic field

LPD alters in Voigt configuration

Emission polarization direction

Projection on NW’s axis

$B = 0$

$B > 0$

K. Gałkowski, JEMS 2012