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p-d exchange integral — chemical trends
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Beyond Virtual Crystal Approximation

antibonding
1 : non-bonding
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Virtual crystal
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justified

Strong coupling
- virtual crystal
approximation
does not work

(an analogue of Kondo effect in metals)
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Samples
(Ga,Mn)N (Zn,Mn)O

(Ga,Mn)N (<700 nm) EREREEY(E (Zn,Mn)O (<1 um) EEEEENE

Xun < 0.9 % (SQUID and SIMS) Xpn < 3 % (SIMS)
MOVPE grown (one series) MOCVD or MBE grown
from: ﬁ JKU from: cr;r:;-._cfpea
J. Kepler University, Linz, Austria CNRS-Université de Versailles, Meudon, France

CNRS, Valbonne, France
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Zero fleld spectroscopy

(Ga,Mn)N (Zn,Mn)0O
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» Well resolved excitonic transitions in reflectivity
« EXxcitons shift towards higher energies with increasing Mn content



Band gap energy vs Mn concentration

(Ga,Mn)N (Zn,Mn)0O
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- Increase of the band gap with increasing Mn concentration:
(contrary to e. g. ZnMnSe case)
In agreement with the recent theoretical predictions



Reflectivity in magnetic field — (Ga,Mn)N
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Reflectivity in magnetic field confirms identification of excitonic transitions

 Well resolved excitonic shifts



Model of the Reflectivity spectra

Dielectric function for GaN and (Ga,Mn)N layers:

2 2 2

5j(E)=80

+excitonic excited states + continuum of unbound states

+ i + — + A +
(Ey—E)—-1-E-Ty (Eyz-E) —-i-E-Ty (Eg—E) —I1-E-T

Fitting parameters: energies, widths and polarizabilites of excitons A, B, C:
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Reflectivity in magnetic field — (Zn,Mn)O
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Clear observation of the giant Zeeman splitting of 1S and 2S excitons

Correct model description



Modelling of the of the excitonic shifts in
magnetic field

Effective Hamiltonian:

Zeeman H dia

H=E,+H, +Heh+HSpd+H

Hamiltonian of exchange interaction between Mn3* ions and free carriers:

(B—a O 0 )
H? =2>NXy(~S;)| 0 a-p8 O

—> Free parameters of the fit: Nyo,, N, band gap energy, splittings A,, A,



Excitonic splitting in magnetic field

(Ga,Mn)N (Zn,Mn)O
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* Quantitative description of excitonic shifts in magnetic field
« Anticrossing of A and B excitons due to e-h exchange interaction
« Magnitude of A and B exciton splittings:

- exciton Ain (Zn,Mn)O has r; symmetry



Exchange constants

(Ga,Mn)N
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N,B@P) = + 0.8 £0.2 eV
Noa PPl = 0.0+ 0.1eV

 Apparent N,B@P) - reduced and ferromagnetic as expected from
« Apparent Nya @PP) in (Ga,Mn)N - small the recent theories



Exchange constants

(Ga,Mn)N (Zn,Mn)0O
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Photoluminescence

Photoluminescence in magnetic field — (Zn,Mn)O
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* No e-h exchange - no exciton anticrossing
« T, shiff larger than I'; shift



Conclusions

 Band gap of (Ga,Mn)N and (Zn,Mn)O increases with Mn concentration

» Apparent p-d exchange energies N,3 much reduced and ferromagnetic:
NoB@P) =+ 0.8 = 0.2 for (Ga,Mn)N and + 0.5 += 0.15 eV for (Zn,Mn)O

« Apparent s-d exchange energy in (Ga,Mn)N small: N,a@P=+ 0.0+ 0.1 eV
» Opposite circular polarization of reflectivity in ZnO as compared to GaN

due to reversed valence band ordering

> Recent models /T. Dietl, PRB (2008).: C. Sliwa and T. Dietl, PRB (2008)./
of wide gap DMSs confirmed

« Mutually opposite polarization of excitonic photoluminescence and

reflectivity from (Zn,Mn)O explained



Strong coupling regime

0.2 ']')I'I'I'I'l'l'l'I'l'l’l'l'
a <SZ>=O
anti-bondin
0.1— \'J =
0
3 s bandiig)
3-0.1. 4 s, =-1/2
)
c
L
-0.2 | : 1evV. | 4 2
bonding 16
’
-0.3 1 S - "
4
2
-0.4 L) N2 I U ) LA LT L I T LS B L L T o el BT Sl SRy by
1.0 2.0 3.0 1.0 2.0 3.0
Coupling strength U/U_ Coupling strength U/U,

Dietl, PRB’08



