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Samples 

(Ga,Mn)N   (<700 nm) 

GaN   (1300 nm) 

Sapphire 

xMn < 0.9 % (SQUID and SIMS) 

c - axis  (Zn,Mn)O   (<1 mm) 

Sapphire 

MOVPE grown (one series)   MOCVD or MBE grown   

xMn < 3 % (SIMS) 

c - axis 

(Ga,Mn)N  (Zn,Mn)O  
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Zero field spectroscopy 
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• Well resolved excitonic transitions  in reflectivity 

• Excitons shift towards higher energies with increasing Mn content 
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Band gap energy vs Mn concentration 

   Increase of the band gap with increasing Mn concentration: 

(contrary to e. g.  ZnMnSe case) 

in agreement with the recent theoretical predictions 
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0.0 0.4 0.8
3480

3490

3500

3510

 

 

 REF

 PL

 Linear fit of PLP
h
o
to

n
 E

n
e
rg

y
 (

m
e

V
)

Mn concentration (%)



Reflectivity in magnetic field – (Ga,Mn)N 
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• Reflectivity in magnetic field confirms identification of excitonic transitions 

• Well resolved excitonic shifts 
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Model of the Reflectivity spectra 
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Dielectric function for GaN and (Ga,Mn)N layers: 

Fitting parameters: energies, widths and polarizabilites of excitons A, B, C: 
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Reflectivity in magnetic field – (Zn,Mn)O 

• Clear observation of the giant Zeeman splitting of 1S and 2S excitons 

• Correct model description 

x = 0.14% 



Modelling of the of the excitonic shifts in 

magnetic field 
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Effective Hamiltonian: 

Hamiltonian of exchange interaction between Mn3+ ions and free carriers: 

  Free parameters of the fit: N0a, N0, band gap energy, splittings D1,D2 



Excitonic splitting in magnetic field 
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• Quantitative description of excitonic shifts in magnetic field 

• Anticrossing of A and B excitons due to e-h exchange interaction 

• Magnitude of A and B exciton splittings:  

  exciton A in (Zn,Mn)O has г7 symmetry 
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Exchange constants 

(Ga,Mn)N  
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• Apparent N0β(app)  - reduced and  ferromagnetic 

• Apparent N0α (app) in (Ga,Mn)N - small 

N0β(app)  = + 0.8 ± 0.2 eV 
N0α (app)  =    0.0 ± 0.1 eV 

as expected from 

 the recent theories 
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• Apparent N0β(app)  - reduced and  ferromagnetic 

• Apparent N0α (app) in (Ga,Mn)N - small 

N0(β(app)-α(app)) = + 0.2 eV and N0α(app) = + 0.3 eV 
 

N0β(app)= + 0.5 eV 

β(app) > 0 
Like for GaN DMS 

N0β(app)  = + 0.8 ± 0.2 eV 
N0α (app)  =    0.0 ± 0.1 eV 

as expected from 

 the recent theories 



Photoluminescence in magnetic field – (Zn,Mn)O 
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• No e-h exchange  no exciton anticrossing 

• 9 shift larger than 7 shift  
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Conclusions 

• Band gap of  (Ga,Mn)N and (Zn,Mn)O increases with Mn concentration 

• Apparent p-d exchange energies N0β much reduced and ferromagnetic: 

N0β
(app)  = + 0.8 ± 0.2 for (Ga,Mn)N and + 0.5 ± 0.15 eV for (Zn,Mn)O 

• Apparent s-d exchange energy in (Ga,Mn)N small: N0a
(app)= + 0.0± 0.1 eV 

• Opposite circular polarization of reflectivity in ZnO as compared to GaN 

due to reversed valence band ordering 

 Recent models /T. Dietl, PRB (2008).; C. Śliwa and T. Dietl, PRB (2008)./ 

of wide gap DMSs confirmed 
 

• Mutually opposite polarization of excitonic photoluminescence and 

reflectivity from (Zn,Mn)O explained 

 



Strong coupling regime 

Dietl, PRB’08 


