Exact dynamics of two ultra-cold bosons in a one-dimensional double-well potential

Jacek Dobrzyniecki¹, Tomasz Sowiński²

1. Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University in Warsaw

2. Institute of Physics, Polish Academy of Sciences

J. Dobrzyniecki, T. Sowinski: "Exact dynamics of two ultra-cold bosons confined in a one-dimensional double-well potential", EPJ D 70, 83 (2016).

Double-well potential

We consider dynamical properties of two ultra-cold bosons in a double-well potential:

$$V(x) = \hbar\Omega \left[\frac{m\Omega}{2\hbar} x^2 + \lambda \exp\left(-\frac{m\Omega}{2\hbar} x^2\right) \right]$$

 λ – dimensionless parameter controlling the height of the potential barrier

Two-particle Hamiltonian

We assume a short-range pointlike interparticle interaction potential:

$$V_{int} = g\delta(x - x')$$

x, x' – boson positions; g – interaction strength

The two-body Hamiltonian can be written in the second-quantized form:

$$\hat{\mathcal{H}} = \int \!\! \mathrm{d}x \left[\hat{\varPsi}^{\dagger}(x) H_0 \hat{\varPsi}(x) + \frac{g}{2} \hat{\varPsi}^{\dagger}(x) \hat{\varPsi}^{\dagger}(x) \hat{\varPsi}(x) \hat{\varPsi}(x) \right]$$

 $\hat{\Psi}(x)$ – field operator annihilating a particle in position x. Obeys bosonic commutation $\left[\hat{\Psi}(x),\hat{\Psi}^{\dagger}(x')\right]=\delta(x-x')$

particle in
$$\left[\hat{\varPsi}(x),\hat{\varPsi}^{\dagger}(x')\right]=\delta(x-x')$$
 mmutation $\left[\hat{\varPsi}(x),\hat{\varPsi}(x')\right]=0$

 H_0 – single-particle Hamiltonian, which has $H_0 = \sum \mathcal{E}_i |\varphi_i\rangle\langle\varphi_i|$ diagonal and off-diagonal elements when expressed in the "left-right" basis:

$$H_0 = \sum_{i} \mathcal{E}_i |\varphi_i\rangle \langle \varphi_i|$$

$$= \sum_{i} E_i (|\phi_{Li}\rangle \langle \phi_{Li}| + |\phi_{Ri}\rangle \langle \phi_{Ri}|)$$

 σ denotes the well (*L*,*R*); $i = 0, 1, 2, \dots$ is the excitation index $-\sum J_i(|\phi_{Ri}\rangle\langle\phi_{Li}|+|\phi_{Li}\rangle\langle\phi_{Ri}|)$

Two-mode models

Two-mode models resulting from the approximation where only the lowest two states are taken into account in the one-particle basis. This is equivalent to limiting the "left-right" basis to the lowest-energy state for either well: $\hat{\Psi}(x) = \hat{a}_{L0}\phi_{L0}(x) + \hat{a}_{R0}\phi_{R0}(x)$

The two-mode Hamiltonian:

$$\begin{split} \hat{\mathcal{H}}_{\text{2Mode}} &= -J(\hat{a}_{L0}^{\dagger}\hat{a}_{R0} + \hat{a}_{R0}^{\dagger}\hat{a}_{L0}) \\ &+ \frac{U}{2} \left(\hat{a}_{L0}^{\dagger 2}\hat{a}_{L0}^{2} + \hat{a}_{R0}^{\dagger 2}\hat{a}_{R0}^{2} \right) + V\hat{a}_{L0}^{\dagger}\hat{a}_{L0}\hat{a}_{R0}^{\dagger}\hat{a}_{R0} \\ &+ T \left(\hat{a}_{L0}^{\dagger}\,\hat{n}_{0}\,\hat{a}_{R0} + \hat{a}_{R0}^{\dagger}\,\hat{n}_{0}\,\hat{a}_{L0} \right) \\ &+ \frac{V}{4} \left(\hat{a}_{L0}^{\dagger 2}\hat{a}_{R0}^{2} + \hat{a}_{R0}^{\dagger 2}\hat{a}_{L0}^{2} \right) & \hat{n}_{\sigma i} = \hat{a}_{\sigma i}^{\dagger}\hat{a}_{\sigma i} \\ &\hat{n}_{i} = \hat{n}_{Li} + \hat{n}_{Ri} \end{split}$$

Here $J = J_0$ and the interaction parameters are:

$$U = g \int dx [\phi_{L0}(x)]^4 = g \int dx [\phi_{R0}(x)]^4$$
$$V = 2g \int dx [\phi_{L0}(x)\phi_{R0}(x)]^2$$

$$T = g \int dx \phi_{L0}(x) [\phi_{R0}(x)]^3$$

Further approximation – neglect V and T. This is valid in the deep well limit, as V and T are small compared to U:

Then we get the Bose-Hubbard-like Hamiltonian:

$$\hat{\mathcal{H}}_{R} = -J(\hat{a}_{L0}^{\dagger} \hat{a}_{R0} + \hat{a}_{R0}^{\dagger} \hat{a}_{L0}) + \frac{U}{2} \left(\hat{a}_{L0}^{\dagger 2} \hat{a}_{L0}^{2} + \hat{a}_{R0}^{\dagger 2} \hat{a}_{R0}^{2} \right)$$

The dynamics is dependent only on the U/J ratio

Abstract

The dynamics of two ultra-cold bosons confined in a onedimensional double-well potential is studied.

We compare an exact dynamics governed by a full two-body Hamiltonian with the dynamics obtained in a two-mode model approximation.

We show that for sufficiently large interactions the two-mode model breaks down and higher single-particle states have to be taken into account to describe dynamical properties of the system correctly.

Single-particle basis

Dimensionless Schrödinger equation:

$$\left[-\frac{1}{2} \frac{d^2}{dx^2} + V(x) \right] \varphi_i(x) = \mathcal{E}_i \varphi_i(x)$$

The resulting one-particle eigenenergies \mathcal{E}_i , depending on well depth λ , are shown:

x (oscillator units)

We introduce the "left-right" basis, in which individual wavefunctions have density profiles localized in the left (L) or the right (*R*) well:

$$\phi_{Li}(x) = \frac{\varphi_{2i}(x) - \varphi_{2i+1}(x)}{\sqrt{2}}$$
$$\phi_{Ri}(x) = \frac{\varphi_{2i}(x) + \varphi_{2i+1}(x)}{\sqrt{2}}$$

Two-boson Hamiltonian in the single-particle basis

x (oscillator units)

We decompose the field operator in the single-particle "left-right" basis: $\hat{\Psi}(x) = \sum_{\sigma} \sum_{i} \hat{a}_{\sigma i} \phi_{\sigma i}(x)$ $\sigma \in \{L, R\}$

The resulting form of the Hamiltonian:

$$\hat{\mathcal{H}} = \sum_{\sigma} \sum_{i} E_{i} \hat{a}_{\sigma i}^{\dagger} \hat{a}_{\sigma i} - \sum_{i} J_{i} (\hat{a}_{Li}^{\dagger} \hat{a}_{Ri} + \hat{a}_{Ri}^{\dagger} \hat{a}_{Li})$$

$$+ \frac{1}{2} \sum_{ABCD} U_{ABCD} \hat{a}_{A}^{\dagger} \hat{a}_{B}^{\dagger} \hat{a}_{C} \hat{a}_{D},$$

where:

$$U_{ABCD} = g \int dx \, \phi_A^*(x) \phi_B^*(x) \phi_C(x) \phi_D(x) \qquad J_i = \frac{\mathcal{E}_{2i+1} - \mathcal{E}_{2i}}{2}, \qquad E_i = \frac{\mathcal{E}_{2i+1} + \mathcal{E}_{2i}}{2}$$

A, B, C, D: special indices that represent index pairs (σ,i) .

 E_i , J_i : the diagonal and off-diagonal elements of the single-particle

Hamiltonian in the "left-right" basis J_i are called the tunneling amplitudes

The initial state and its evolution

Initial state: two bosons located in the left well: $|\mathtt{ini}\rangle = \frac{1}{\sqrt{2}}\hat{a}_{L0}^{\dagger 2}|\mathtt{vac}\rangle$

Time evolution of the state is obtained straightforwardly: $|\psi(t)\rangle=\sum \alpha_i e^{-i\epsilon_i t}|i\rangle$

where $|i\rangle$ are the eigenstates of the two-particle Hamiltonian, ϵ_i are their corresponding eigenenergies, and $\alpha_i = \langle i | \mathtt{ini} \rangle$

> Properties of the state of the system can be characterized through well populations.

Right well population:
$$\hat{N}_R = \int_0^\infty dx \, \Psi^{\dagger}(x) \Psi(x)$$

Left well population:
$$\hat{N}_L = \int_{-\infty}^0 \mathrm{d}x \, \Psi^\dagger(x) \Psi(x)$$

Population
$$I(t) = \langle \psi(t) | \hat{N}_L - \hat{N}_R | \psi(t)
angle$$

The interparticle correlations

The inaccuracy of the two-mode model becomes evident when interparticle correlations are considered.

Evolution of the probability of finding two bosons in opposite wells:

$$\mathcal{P}(t) = \sum_{ij} \langle \psi(t) | \hat{n}_{Lj} \hat{n}_{Ri} | \psi(t) \rangle$$

Two-mode models ignore tunneling via excited states, giving false results.

However, the $\mathcal{H}_{2\mathsf{Mode}}$ model at first glance seems to reproduce the exact dynamics properly