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Abstract

The dynamics of two ultra-cold bosons confined in a one-

dimensional double-well potential is studied.

We compare an exact dynamics

governed by a full two-body Hamiltonian
with the dynamics obtained in a two-mode model

approximation.

We show that for sufficiently large interactions
the two-mode model breaks down and higher
single-particle states have to be taken into account

to describe dynamical properties of the system correctly.

We consider dynamical properties of two ultra-cold bosons in a
double-well potential:
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The resulting one-particle eigenenergies &;,
depending on well depth A, are shown:
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We introduce the ,left-right”
basis, in which individual
wavefunctions have density
profiles localized in the left (L) or
the right (R) well:
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The lowest-energy , left-right” basis
wavefunctions are shown below:
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X, X' — boson positions; g — interaction strength

The two-body Hamiltonian can be written in the second-quantized form:
H= [do |0 (2)Hob(z) + giﬂ‘ (2)0 (2) (2)0 ()

w(ﬂ? ) — field operator annihilating a particle in
position x. Obeys bosonic commutation
relations:
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Hy - single-particle Hamiltonian, which has
diagonal and off-diagonal elements when
expressed in the ,left-right” basis:
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Two-particle Hamiltonian

We assume a short-range pointlike
interparticle interaction potential:
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Two-boson Hamiltonian in the single-particle basis
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the single-particle ,left-right” basis:

We decompose the field operatorin () = Z Z (i Do (1)

The resulting form of the Hamiltonian:
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E, J: the diagonal and off-diagonal

elements of the single-particle
Hamiltonian in the ,left-right” basis

A, B, C, D: special indices that
represent index pairs (0O,1).
O denotes the well (L,R);

(= 0,1,2,... Is the excitation index J. are called the tunneling amplitudes

Two-mode models

Two-mode models resulting from the approximation where only the lowest two states are
taken into account in the one-particle basis. This is equivalent to limiting the , left-right” basis

to the lowest-energy state for either well: ij( r) = arodro(r) + arodro(x)

The two-mode Hamiltonian:
T. This is valid in the deep well limit,
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Further approximation — neglect V and
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Here J = J, and the interaction parameters are: Then we get the Bose-Hubbard-like
A . Hamiltonian:
U= g/diﬂlqﬁm(ﬂf)] — Q/dﬂ?[ﬁbﬂo(fﬂ)] - T - 1
Ha = —J(afro + dpgiro)

The dynamics is dependent
only on the U/J ratio
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The 1nitial state and its evolution
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Initial state: two bosons located in the left well: |ini) = \—/Qﬂl LO [vac)

Time evolution of the state is obtained B et
straightforwardly: |¢(t)> — E e
()

where ‘z) are the eigenstates of the two-particle Hamiltonian, €; are
their corresponding eigenenergies, and «o; = (i|ini)

Properties of the state of the system
can be characterized through well populations.
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Population
imbalance:

I(t) = ((t)|NL — Ng|v(t))

Evolution of the population imbalance I(t)
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The Hr model fails for shallow wells and strong interactions.

However, theHomoqe model at first glance seems to

reproduce the exact dynamics properly

The interparticle correlations

The inaccuracy of the two-mode model becomes evident
when interparticle correlations are considered.

Evolution of the probability of finding two bosons in opposite wells:

P(t) =) ((t)|Aririld(t))
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Two-mode models ignore tunneling via excited states,
giving false results.



	Slajd 1

