Quantum simulation of the central spin model with a Rydberg atom and polar molecules in optical tweezers

Jacek Dobrzyniecki and Michał Tomza

jdobrzyniecki@fuw.edu.pl

Abstract

Central spin models, where a single spinful particle interacts with a spin environment, find wide application in quantum information technology and can be used to model e.g. the decoherence of a qubit in a disordered environment. We propose a method of realizing an ultracold quantum simulator for the central spin model. The proposed system consists of a single Rydberg atom (central spin) and polar molecules (environment spins), coupled via dipole-dipole interactions. By mapping internal particle states to spin states, spin-exchanging interactions can be simulated. Precise control over the model can be exerted by directly manipulating the placement of environment spins. As an example, we consider a ringshaped arrangement of environment spins, and show how the system's time evolution is affected by the tilt angle of the ring.

The proposed setup

The setup: Ultracold system of a Rydberg atom and N polar molecules, arranged into the desired geometry by optical tweezers

Ring layout of environment spins

We consider environment spins arranged on a ring boundary, with central spin in the middle.

FACULTY OF

- PHYSICS

An uniform external field E_{dc} defines the direction of permanent dipole moments

Largest length scale: ~1 µm (Tweezer spacing) **Longest time scale:** $\sim 10^{-5}$ s (Rydberg state lifetime)

Spin-1/2 particle simulation:

Molecules = "environmental 1/2-spins" $S^{(1)}$, $S^{(2)}$... $S^{(N)}$

Atom = "central 1/2-spin" \mathbf{T}

Electric dipole-dipole interactions = "spin" interactions

1/2 pseudospin states

Tilt angle: Simply by changing the direction of E_{dc} , the ring can be effectively "tilted" with respect to the direction of the particles' dipole moments.

At $\beta = 0$, all atom-molecule coupling strengths C_i are equal.

At $\beta > 0$, anisotropy of dipolar interactions makes C_i different for various molecules j = 1...N.

Thus, the non-uniformity of interactions can be tuned.

Example dynamics

Depending on the initial state and the ring tilt angle β , different dynamical processes can be realized.

• Central spin decay: For an initial state with small bath polarization $|\downarrow\rangle \otimes |\uparrow\uparrow\uparrow\uparrow\downarrow\downarrow\downarrow\downarrow\rangle$, central spin T_Z decays to zero with time; the effectiveness of this decay depends on β . (Analogue of qubit decoherence in various environments.)

- Quantum state transfer: Initial state: $|\uparrow\rangle \otimes |\uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \rangle$. During the time evolution, environment spin 1 (initially \uparrow) exchanges its state with the
- oppositely-placed spin 4. (Analogue of state transfer in quantum networks.)

Deriving the effective spin Hamiltonian

Atom-molecule system Hamiltonian: $\hat{H} = \hat{h}_{\text{atom}} + \sum_{j=1}^{j=1} \hat{h}_{\text{mol}}^{(j)} + \hat{V}_{\text{atom-mol}} + \hat{V}_{\text{mol-mol}}$

 project all Hamiltonian terms on the ↑,↓ / ↑,↓ state basis • only consider energy-conserving interaction processes • discard terms with small magnitude < [Rydberg lifetime]⁻¹

Summary

- propose an ultra-cold atom/molecule quantum We simulator for a central spin model.
- If environment spins are arranged into a ring shape, the non-uniformity of central-environment couplings can be easily tuned.
- This setup can simulate various experimentally significant phenomena.