Quantum simulation of the central spin model with a Rydberg atom and polar molecules in optical tweezers Jacek Dobrzyniecki and Michał Tomza

jdobrzyniecki@fuw.edu.pl

Abstract

Central spin models, where a single spinful particle interacts with a spin environment, find wide application in quantum information technology and can describe e.g. the decoherence of a qubit in a disordered environment. We propose a method of realizing an ultracold quantum simulator for such a model. The proposed system consists of a single Rydberg atom ("central spin") and polar molecules ("environment spins"), coupled via dipole-dipole interactions. By mapping internal particle states to spin states, spin-exchanging interactions can be simulated. The model can be precisely controlled by directly manipulating the placement of environment spins. As an example, we consider a ring-shaped arrangement of environment spins, and show how the system's time evolution is affected by the tilt angle of the ring.

The proposed setup

The setup: Ultracold system of a Rydberg atom and N polar molecules, arranged into

Ring layout of environment spins

We consider environment spins arranged on a ring, with the central spin in the middle.

the desired geometry by optical tweezers. Uniform external magnetic/electric fields (B/E_{dc}) define the direction of the quantization axis **Largest length scale:** ~1 µm (Tweezer spacing) **Longest time scale:** $\sim 10^{-4}$ s (Rydberg state lifetime)

Spin-1/2 particle simulation:

Molecules = "environmental 1/2-spins" $S^{(1)}$, $S^{(2)}$... $S^{(N)}$

Atom = "central 1/2-spin" $S^{(0)}$

Electric dipole-dipole interactions = "spin" interactions

1/2 pseudospin states

Atom states

Molecule states

Tilt angle: Simply by changing the direction of external fields, the ring can be effectively "tilted" with respect to the quantization axis.

At $\beta = 0$, all atom-molecule coupling strengths C_k are equal.

At $\beta > 0$, couplings C_k vary among different molecules k = 1...N, because of the anisotropy of dipolar interactions.

Thus, the non-uniformity of interactions can be tuned.

Example dynamics

Depending on the initial state and the ring tilt angle β , different scenarios can be simulated.

Central spin decay. Initial state: central spin polarized, minimal environment polarization: $|\downarrow\rangle \otimes |\uparrow\uparrow\uparrow\uparrow\uparrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\rangle$. As the system evolves, the central spin $S^{(0)}_{Z}$ decays to zero; the time scale of this decay depends on β . (Analogous to a qubit undergoing decoherence in a disordered environment.)

Two internal Rydberg states act as pseudospin states ↑, ↓

↑, ↓ can be coupled by electric dipole interaction

Two molecular rotational states act as pseudospin states ↑,↓

↑,↓ can be coupled by electric dipole interaction

The magnetic/electric field is used to tune the atomic transition $\uparrow \leftrightarrow \downarrow$ into resonance with the molecular transition $\downarrow \leftrightarrow \uparrow$ so as to minimize the mismatch Δ ,

allowing resonant "central/environment spin exchange" via dipolar interaction

Deriving the effective spin Hamiltonian

• State transfer. Initial state: $|\uparrow\rangle\otimes|\uparrow\downarrow\downarrow\downarrow\downarrow\downarrow\rangle$. During the time evolution, environment spin 1 (initially ↑) exchanges its state with the oppositely-placed spin 4. (Analogous to quantum state transfer in quantum networks.)

Ring tilt angle $\beta = 0.00\pi$

Ring tilt angle $\beta = 0.05\pi$

spin 1 spin 4 -

Atom-molecule system Hamiltonian:

$$\hat{H} = \hat{h}_{atom} + \sum_{k=1}^{N} \hat{h}_{mol}^{(k)} + \hat{V}_{atom-mol} + \hat{V}_{mol-mol}$$

 project all Hamiltonian terms on the ↑,↓ / ↑,↓ state basis • only consider energy-conserving interaction processes • discard terms with small magnitude < [Rydberg lifetime]⁻¹

> $\hat{H}_{\text{eff}} = c_T \hat{S}_z^{(0)} + c_S \sum_{k=1}^{N} \hat{S}_z^{(k)} + \sum_{k=1}^{N} \left[C_k \hat{S}_+^{(0)} \hat{S}_-^{(k)} + \text{H.c.} \right]$ XX central spin model / "Spin star"

-0.5 0.0002 0.0001 0.0001 0.0002 0.0001 0.0002 0 t [sec] t [sec] t [sec]

Summary

- We propose a quantum simulator for a central spin model, built of ultracold atoms and molecules.
- If environment spins are arranged into a ring shape, the non-uniformity of central-environment couplings can be easily tuned.
- This setup can simulate various experimentally significant phenomena.

More details: *arXiv*:2302.14774 (2023)

