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Mid-term exam (kolokwium) Statistical Physics B

Monday, 25 November 2024, 9:00-13:00

• Read every question carefully before answering. The exam consists of four problems and a
total of 100 points can be earned.

• Make sure to answer every question as complete as possible. When you do calculations,
make sure to provide sufficient explanation for all steps.

• Write clearly and structured, unreadable work cannot be corrected.

• Make sure to divide your time on the problems equally, considering the amount of points
you can earn for each question. If you think you made somewhere a calculational mistake,
point it out in words, and do not spend too much time on correcting e.g. minus signs.

• You are allowed to use a hand-written single-sided sheet of notes during this exam.

Problem 1: Classical ideal gases (25 points)
Consider N classical particles in a volume V at temperature T . We assume that the particles
are non-interacting with Hamiltonian,

H(pN ) =

N∑
i=1

g(pi),

where g is an arbitrary function. We used the notation pN = (p1, ...,pN ), with pi the momentum
of particle i = 1, ..., N .

(a) (5 points) What is the appropriate ensemble for this system? What is the corresponding
thermodynamic potential? Compute this thermodynamic potential in the thermodynamic
limit.

(b) (5 points) Compute the equation of state for this system, i.e., p(ρ, T ) with ρ = N/V . How
does your expression depend on the specific form of g? Explain your answer.

Consider now the specific case where g(p) = c|p| with c the speed of light. We consider this
so-called ultrarelativistic gas in the grand-canonical ensemble.

(c) (5 points) Find the grand canonical partition function for this system and the correspon-
ding thermodynamic potential.

(d) (10 points) Determine the average number of particles ⟨N⟩. Compute the internal energy,
the entropy, and the pressure for this system and express them in terms of ⟨N⟩ (i.e.,
eliminate µ from your expressions). Are the values of these thermodynamic quantities
different in the canonical ensemble? Why or why not?

Problem 2: Keesom interactions (20 points)
Consider two fixed classical dipoles (i = 1, 2) with dipole moments µi = µiei with µi = |µi|

and ei a unit vector indicating the orientation of the dipole. The dipole-dipole interaction
potential is

v(r, e1, e2) =
µ1µ2

4πϵ0r3
[e1 · e2 − 3(e1 · r̂)(e2 · r̂)].

Here r is the separation vector between the two dipoles with r = |r| and r̂ = r/r.
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(a) (5 points) Write down an expression for the potential of mean force w(r) by integrating
out the orientational degrees of freedom for the dipoles. Show that the far-field, high-
temperature result is given by

βw(r) = −1

2

(
1

4π

)2

β2

∫
de1

∫
de2 v(r, e1, e2)

2,

where we have neglected any radius-independent terms (why can we do this?).

(b) (10 points) Evaluate the expression found in (a) explicitly for the dipole-dipole interaction
potential. (Hint: First compute

∫
dei eiei.) Show that

βw(r) = −1

3
β2

(
µ1µ2

4πϵ0

)2 1

r6
.

(c) (5 points) Identifying w(r) as a free energy for dipoles at a fixed separation r, compute
the entropy associated with w(r). How do you interpret this result?

Problem 3: The first Yvon-Born-Green equation (10 points)
Consider the potential energy Φ(rN ) =

∑N
i=1 Vext(ri) +

∑
i<j v(ri, rj). Prove that

∇ρ(r) + βρ(r)∇Vext(r) = −β

∫
dr′ ρ(2)(r, r′)∇v(r, r′).

What is the physical interpretation of this equation? As usual, ρ(r) is the one-particle density,
and ρ(2)(r, r′) is the ensemble average of the two-body density operator.

Problem 4: The hard-rod fluid in one spatial dimension (40 points)
For a one-dimensional hard-rod fluid the intrinsic Helmholtz free energy functional F [ρ]

functional is analytically known. It is given by

βF [ρ] =

∫ ∞

−∞
dz ρ(z)

{
ln

[
ρ(z)Λ

1− t(z)

]
− 1

}
, t(z) =

∫ z

z−σ
dz′ ρ(z′).

Here ρ(z) is the one-body density profile and Λ is the thermal wavelength.

(a) (5 points) Derive from F [ρ] the Helmholtz free energy density and pressure for the ho-
mogeneous hard-rod fluid. Express your result in terms of the one-dimensional packing
fraction η = ρσ, with ρ the number density and σ the length of the rods. Interpret the
result for the pressure in terms of the free volume available to the centres of the rods.

(b) (5 points) Derive an expression for the isothermal compressibility κT = −L−1(∂L/∂p)N,T

for the homogeneous hard-rod fluid. What happens to κT when η → 1? Give a physical
interpretation of your results.

The excess functional can be expressed in terms of weighted densities {nα|α = 0, 1},

βFex[ρ] =

∫ ∞

−∞
dzΦ({nα(z)}), Φ({nα}) = −n0(z) ln[1− n1(z)].

This relation is exact. The weighted densities are defined by

nα(z) =

∫ ∞

−∞
dz′ ρ(z′)w(α)(z − z′), α ∈ {0, 1},

with weight functions

w(0)(z) =
1

2
[δ(z −R) + δ(z +R)], w(1)(z) = Θ(R− |z|),

with Θ the Heaviside step function and R = σ/2.
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(c) (5 points) Consider Vext(z) = 0. In this case, show that Φ({nα}) is the excess Helmholtz
free energy density (per kBT ) for a homogeneous fluid.

(d) (10 points) Prove for general Vext(z) that

c(2)(z1, z2) = −
∫ ∞

−∞
dz

∑
α,β=0,1

∂2Φ

∂nα(z)nβ(z)
ω(α)(z − z1)ω

(β)(z − z2),

Evaluate this expression explicitly in terms of n0(z) and n1(z) and the weight functions.

(e) (5 points) Prove that∫ ∞

−∞
dz

∫ ∞

−∞
dz′w(α)(z′)w(β)(z′ − z)e−ikz = w̃(α)(k)w̃(β)(k), α, β ∈ {0, 1}.

where we defined the Fourier transform of a function f as f̃(k) =
∫∞
−∞ dz f(z)e−ikz.

(f) (10 points) Consider the case where Vext(z) = 0. Show that the structure factor is given
by

S(k) =

[
1 +

2η

1− η

(
sin q

q
+

η

1− η

1− cos q

q2

)]−1

, q = kσ.

(Hint: Use the result from (e).)

(g) (5 points) Show that this expression for S(k) reproduces the result in (b). Give represen-
tative sketches of S(k) for some values of η. Do you observe crystallisation? Explain.

⌣̈ END OF EXAM ⌣̈
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