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• Read every question carefully before answering. The exam consists of four problems and a
total of 100 points can be earned.

• Make sure to answer every question as complete as possible. When you do calculations,
make sure to provide sufficient explanation for all steps.

• Write clearly and structured, unreadable work cannot be corrected.

• Make sure to divide your time on the problems equally, considering the amount of points
you can earn for each question. If you think you made somewhere a calculational mistake,
point it out in words, and do not spend too much time on correcting e.g. minus signs.

• You are allowed to use a hand-written single-sided sheet of notes during this exam.

Problem 1: Velocity correlations within the Langevin equation (40 points)
The Langevin equation is given by

v(t) = ẋ(t), mv̇(t) = −ζv(t) + f(t),

with ζ a constant friction constant, and we consider white noise ⟨f(t)⟩ = 0 and ⟨f(t)f(t′)⟩ =
Γδ(t − t′), with Γ a constant. Here ⟨...⟩ is defined as the average over a subensemble with the
same initial velocity v0 = v(0) but a different realisation of the noise.

(a) (5 points) What kind of physical situation does the Langevin equation describe? Give
sufficient details.

(b) (5 points) Determine explicitly v(t) for a given v0. What is ⟨v(t)⟩? Conclude from your
expression why the Brownian particle is out of equilibrium.

(c) (15 points) Determine the equal-time correlation function ⟨v2(t)⟩. The limit limt→∞⟨v2(t)⟩
is well defined. What is the corresponding value? From it, determine the constant Γ and
relate your result to the fluctuation-dissipation theorem.

(d) (5 points) Determine the correlator ⟨v(t)f(t)⟩ for t > 0.

(e) (10 points) Show that ⟨v2(t)⟩ satisfies the differential equation

m
d

dt
⟨v2(t)⟩ = −2ζ⟨v2(t)⟩+ 2⟨v(t)f(t)⟩.

Show that your answers in (c) and (e) are consistent with this differential equation.

Problem 2: Zwanzig model (30 points)
Consider a system of rectangular cuboidal particles with length L and a square base of size

D by D. We only allow discrete orientations for these particles: the long axes can only point in
the x̂1 = x̂, x̂2 = ŷ, or x̂3 = ẑ direction as measured from the laboratory frame. A particle with
orientation α has its long axis pointed in direction x̂α, with α = 1, 2, 3. Within the second-virial
approximation the Helmholtz free energy F of the system is given by

f =
βF

V
=

3∑
α=1

ρα[ln(ραV)− 1] +
3∑

α,α′=1

Bαα′ραρα′ ,
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with ρα the density of particles with orientation α, Bαα′ = (1/2)
∫
dr [1− e−βϕαα′ (r)] the second

virial coefficient for a particle with orientation α interacting with a particle of orientation α′

with interaction potential ϕαα′(r). Furthermore, V is the (irrelevant) thermal volume.

(a) (5 points) We assume that the particles interact via hard interactions, i.e., no overlap
between particles are allowed. There are only two independent virial coefficients B∥ := Bαα

(parallel particles) and B⊥ := Bαᾱ with ᾱ ̸= α (perpendicular particles). Compute B∥
and B⊥ explicitly.

(b) (5 points) Consider the dimensionless free energy ψ = fL2D and the dimensionless density
cα = L2Dρα. Show that in the needle limit L/D → ∞ we find

ψ =
3∑

α=1

cα(log cα − 1) +
∑
α ̸=α′

cαcα′ .

We introduce the nematic order parameter S via c3 = c(1 + 2S)/3 and c1 = c2 = c(1 − S)/3,
with c =

∑3
α=1 cα.

(c) (5 points) Describe in words what is meant by nematic order and make a sketch of such
an ordered system. Why are nematic systems sometimes called partially ordered systems?

(d) (5 points) Show that S is a suitable order parameter for nematic order.

(e) (5 points) Determine ψ(c, S). For a given c one needs to determine S such that it minimises
ψ. Show that S = 0 is a solution of (∂ψ/∂S)c = 0 for any c. With which phase do you
associate S = 0?

(f) (5 points) Argue on the basis of (∂2ψ/∂S2)c at S = 0 that ψ is minimised by S ̸= 0 at
sufficiently high c. Which phase do you associate with S ̸= 0?

Problem 3: Electrostatic screening (20 points)
The Ornstein-Zernike equation for a n-component bulk system is given by

hij(r) = cij(r) +
n∑

k=1

ρk

∫
dr′ cik(r

′)hkj(|r− r′|), i, j = 1, ..., n.

Here, hij(r) and cij(r) are the indirect and direct correlation functions between a pair of particles
of species i and j. Furthermore, ρk is the (bulk) number density of species k.

(a) (5 points) Define Hij(k) =
√
ρiρj

∫
drhij(r)e

−ik·r and Cij(k) =
√
ρiρj

∫
dr cij(r)e

−ik·r.
Show that

H(k) = [I− C(k)]−1 · C(k),

where we defined the matrices [H]ij = Hij , [C]ij = Cij and I is the identity matrix. Are H
and C symmetric? Explain why or why not.

As an approximate closure relation, we take the random-phase approximation cij(r) = −βϕij(r),
with ϕij(r) the pair potential between species i and j. In the following questions you may use
the following result for α ∈ R:∫

dk

(2π)3
eik·r

k2 + α2
=

1

4π

e−αr

r
, α > 0.
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(b) (5 points) Consider a two-component system of monovalent point ions (i = ±) with charges
±e in a medium with dielectric constant ϵ at temperature T . Furthermore, we have
ρ+ = ρ− = ρ. Determine C(k). To compute the Fourier transform, one has to do the
regularisation procedure 1/r → e−γr/r with γ ↓ 0 at the end of the calculation.

(c) (10 points) Show that hij(r) = Dij exp(−κr)/r and determine expressions for Dij and
κ. What does κ physically represent? How does your result compare with Debye-Hückel
theory?

Problem 4: Entropy production (15 points)
Consider an entropy production of the form

σ =
n∑

i=1

JiXi,

where the thermodynamic fluxes Ji are related to thermodynamic forces Xi with i = 1, ..., n via
the linear phenomenological relations

Ji =

n∑
k=1

LikXk,

with Lij being constant phenomenological coefficients.

(a) (5 points) When fluxes and thermodynamic forces form a set of independent variables, the
kinetic coefficients satisfy the Onsager reciprocal relations: Lik = Lki for i, k = 1, ..., n.
What is the physical reason behind these relations?

(b) (10 points) Consider a solid with temperature distribution T = T (r, t) enclosed by iso-
thermal walls. You may neglect any particle transport, convection, and thermal expan-
sion of the solid. Within linear phenemonology we have that the energy flux is given by
Jϵ = Lϵϵ∇(1/T ), which is associated with the internal energy density ϵ. Show that

∂

∂t

∫
drσ = −2

∫
dr ρ

cv
T 2

(
∂T

∂t

)2

,

with ρ the number density of the solid and cv the specific heat capacity at constant volume.
What does this result imply for stationary states?

⌣̈ END OF EXAM ⌣̈
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