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Lecture 15 : The fluctuation : dissipation theorem I .

Systems close to equilibrium E) Linear response regime.

For a dynamical variable XIt) = X(t; M) that linearly couples
m

to
an external force f(t) in the initial conditions

Hamiltonian , i
.

e
.

H= H-fX ,
we found that

↳ =) NH) =
-B toE ⑧
t

Onsager regression hypothesis Fluctuation - dissipation theorem .

The fluctuation - dissipation theorem is often formulated in frequency
space.

Spectral analysis of fluctuations
Recall that we defined the autocorrelation function as
[(t) = ((X(0)(X(t)) =AimX(t)NXl

We introduce a quantity called the spectral density defined as

S(0) = liv+(2) (
Here the windowed Fourier transform is given by :T

(w) = It ecot jX(t) .S
-Th

Here we take @X(t)-IR ET X*w) = OX+ (-w) -
We ask ourselves two questions : (i) Does the limit (P) exist

?

(ii) How does S(c) relate to Cilt) ?



②
Let us evaluate: it T2

P+ (wil) =Sat"fdt" <OXOXI]
iw It"- t)

Th T -Tm T12 + 12 -t

= Jdt" Sat"Cit') eiwHt)JdtdtLittlet
-Th -Thi it

+ 12 - It)/z

=/GteittCT-ADtet
Therefore , Slr) = timJdt)(

=Linit t(T
Lebesque
dominated = Steitt
convergence->
theorem -

Therefore , the limit exists and it turns out that Slu) is the Fourier

transform of GCt) . This is called the Wiener - Khinchin theorem-

This is all wehave to say about the fluctuation part of the fluctuation
dissipation theorem .

What about the dissipative part in Fourier space?

Properties of response function X(t)
We restrict our attentionto cases where flt) and XCt) are real.

By the definition
+ 9

*A) = (X) +JdtXtf(t)Off) it means that
X (t,t) = Xlt-t') is real as well . What does this mean for the

Fourier transform ?



③
We have Ecol=

*

get X() eit and wer write : Y(c) = Fi(w) + i* "(n)
&

where Filw) = Re[Y(r)] and X" (w) = Im[Y(w)] .

· Imaginary part can bewritten as
N

-

&" (w) = -EEX()-**(w)] =-dtX()[int-e- iv+]
↑

X(t) =y * (t)

=-Tiwt[yH)-X
-

not invariant under => X"(w) arises from
- - -t

dissipative processes.

Furthermore
, we observe that X"(-w) = - X "(w) .

Since

· Real part can be written as
-

Y'(w) = ziwt[X(t) +X(-t))
-

11
"mechanical

-
-

Furthermore
, X'l - 2) = X (w).

For this reason Y'Iw) is called the reactive part of the response
function

Y"(w) is called the dissipative part of the
response function.

This becomes especially clear in the context of the fluctuation-
dissipation theorem .

X(t) =
- PAC) to

X(t) =
0 t > 0

S
o to EBilt) to

X(t) - X(- z) =
- BG(t) Xt



④

The Fourier transform of XIt)-X(t) is 2:4"(w) ·
and of C) is iwS(o).

Fluctuation - dissipation theorem#Cowsco) in frequency space -

In last Lecture we considered the absorbed power and have

shown that LHS relates to dissipation
In the quantum-mechanical derivation is a bit more technical

Commutators
, imaginary-time formalism) and we find

-

5(w) = +2 [mz(w) +1])

Mp(w) is the Bose-Einstein distribution -

Remark : Sometimes you see in the Literature the FD theorem with

an opposite sign as the above. This stems from a different definition
of the Fourier transform
Causality and the Kramers-Krozig relations

Recall that we impose the causality condition XIt) =0 for the
We can compute XIt) from its Fourier transform :

+9

X(t) =/E-iwtI
furthermore

,
we take /XIt) <

(Finite force must give afiniterouse



&E contributiontfr
+-

We can compute the integral (1) by closing the sentour in the upper
half complex plane . Since X(E) = 0 for to we conclude that for

the analytic continuation (2) ; z = w+ in ,
there are no poles

for20 : In other words Ylwtin) is analytic for 30.

-

Because X(z) is analytic we can use the following trick :
Im(zS

= GruTrevCe#Met
↑
Rie

-

Because X(z) is analytic in the upper half plane and the contour
G'does not enclose any poles , we find :

- d
↑Re Ge!= o e.g. Jordan's Lemma.
-

Now takeElo
,
then

- -
&

·Sdwli
-a

Cz
.

~
we parametrize using z = Worke

it



⑥

·de
-

=/et[Y(wo) + O(e)] -- in [lwo) foreto
Taylor

We conclude that :=Y '(w) and Y"(w)
are not independentDo

Thegeneralized Langevin equation
One of the most familiar non-equilibrium phenemeron is that of friction.
Consider a particle moving in a fluid :

-

- The fluid exerts a drag force

fara
+

Garag = -ye on the particle.

U : friction constant .

Here
,
we want to provide a simple model for the friction constant y

↑

We consider a "tagged" particle coupled to a
bathFantasgedparticle described by variaba



⑪
We consider the following Hamiltonian :
H = Hp(x) - xf + Hy(y ,.. . . . yx) .

↑ ↓
bath Hamiltonian .Oscillator Hamiltonian

of tagged particle

We assume a linear coupling between bath and particle :

f= Yi GeR i = 1, ..., N .

2 : primary degree of freedom

Ey : S : secondary degrees of freedom.

Ho = Emi + V(x) -

Hb : collection of harmonic oscillators .
Let us denote fp(t) as the force provided by a pure bath.
The presence of the tagged particle changes this behaviour within
Linear response theory as :

f(z) = fo(t) + ) Xy(t - t(ve(t)

Co

and we know from the fluctuation-dissipation theorem that :

Xb(t-t)) = -Byt)Gb(t-t) tyt'3
8 tct'

where Giblt)= [5f(0) if (t) > =&j (Gy : (0) Gyj(t)]b



⑧
Now we find the following equation ofmotion for the primary variable:

+

micht) =- + fb(t)+JdtXb(t-tclt)
Y ↑

nonlocal term
random or

fluctuating force
because tagged particle
influences bath degrees

causality from bath .

of freedom.
t

+ fb(t)+dtXblttl
FDT

=- +fbk)B( Cplttl
f(t)-pacpt-t(t) · Generaliea

Langerin equation.

where V()=(x)-BCb 10) a In Potential of mean force! Ibath-averaged potential
5f(t) = fb(t)-BGp(t)x(o) - on primary coordinate)

Friction is a result of
fluctuating forces&

"Second fluctuation-dissipation theorem
"

The model describes (1D) Brownian motion .

·
&

Suppose we approximate (dt"Cib(t)) ic (t- t) = ci(t) ( dz'Cb(t)
(Markovian approximation) andNo

neglecting memory.



⑨
In the Ma-hovian approximation :

mo(t) = fb(t) = jo(t) hangin equation .

with v(t) = cit) .
(More details on

It turns out that : U
= B((Of()5f(o)) · tutorials) .

Tagged particle experience random forces that buffet the particle
about - Particle gains kinetic energy that is removed by frictional
dissipation.

Within Langevin equation , we find (vdrit)) = (vi) efolmt
.

However if we include the effects of memory , we find
Coult)) ~7-31 Long-time fails

Measured in experimentI
(it)] =2Dt- ....

↑
Diffusion coefficient


