

Lecture 15: The fluctuation-dissipation theorem II.

Systems close to equilibrium \Leftrightarrow linear response regime.

For a dynamical variable $X(t) = X(t; \vec{p}^N, \vec{r}^N)$ that linearly couples to an external force $f(t)$ in the Hamiltonian, i.e.

$H' = H - fX$, we found that

$$\frac{C(t)}{C(0)} = \frac{\bar{X}(t) - \langle X \rangle}{\bar{X}(0) - \langle X \rangle} \Leftrightarrow \chi(t) = \begin{cases} -\beta \frac{d}{dt} C(t) & t > 0 \\ 0 & t \leq 0 \end{cases}$$

Onsager regression hypothesis

Fluctuation-dissipation theorem.

The fluctuation-dissipation theorem is often formulated in frequency space.

Spectral analysis of fluctuations

Recall that we defined the autocorrelation function as

$$C(t) = \langle \delta X(0) \delta X(t) \rangle = \lim_{T \rightarrow \infty} \frac{1}{T} \int_0^T d\tau \delta X(\tau) \delta X(\tau+t)$$

We introduce a quantity called the spectral density defined as

$$S(\omega) = \lim_{T \rightarrow \infty} \left\langle \frac{1}{T} |\tilde{\delta X}_T(\omega)|^2 \right\rangle$$

Here the windowed Fourier transform is given by:

$$\tilde{\delta X}_T(\omega) = \int_{-T/2}^{T/2} dt e^{i\omega t} \delta X(t).$$

Here we take $\delta X(t) \in \mathbb{R} \Leftrightarrow \tilde{\delta X}_T^*(\omega) = \tilde{\delta X}_T(-\omega)$.

We ask ourselves two questions: (i) Does the limit $(*)$ exist?

(ii) How does $S(\omega)$ relate to $C(t)$?

Let us evaluate: $\langle \delta X_T(\omega) \rangle^2$

$$\begin{aligned} \langle \delta X_T(\omega) \rangle^2 &= \int_{-T/2}^{T/2} dt'' \int_{-T/2}^{T/2} dt' \langle \delta X(t'') \delta X(t') \rangle e^{i\omega(t''-t')} \\ &= \int_{-T/2}^{T/2} dt'' \int_{-T/2}^{T/2} dt' G(t''-t') e^{i\omega(t''-t')} = \int_{-T/2}^{T/2} dt' \int_{-T/2}^{T/2} dt G(t) e^{i\omega t} \\ &= \int_{-T}^{T} dt \int_{-T/2+|t|/2}^{T/2-|t|/2} dt' G(t) e^{i\omega t} = \int_{-T}^{T} dt (T-|t|) G(t) e^{i\omega t}. \end{aligned}$$

$$\begin{aligned} \text{Therefore, } S(\omega) &= \lim_{T \rightarrow \infty} \int_{-T}^{T} dt e^{i\omega t} G(t) \left(1 - \frac{|t|}{T}\right) \\ &= \lim_{T \rightarrow \infty} \int_{-\infty}^{+\infty} dt e^{i\omega t} G(t) \left(1 - \frac{|t|}{T}\right) \Theta(T-|t|) \\ &\xrightarrow{\text{Lebesgue dominated convergence}} = \int_{-\infty}^{+\infty} dt e^{i\omega t} G(t). \end{aligned}$$

Therefore, the limit exists and it turns out that $S(\omega)$ is the Fourier transform of $G(t)$. This is called the Wiener-Khinchin theorem.

This is all we have to say about the fluctuation part of the fluctuation dissipation theorem.

What about the dissipative part in Fourier space?

Properties of response function $\chi(t)$

We restrict our attention to cases where $f(t)$ and $X(t)$ are real.

By the definition

$$\bar{X}(t) = \langle X \rangle + \int_{-\infty}^{+\infty} dt' \chi(t, t') f(t') + \mathcal{O}(f^2) \text{ it means that}$$

$\chi(t, t') = \chi(t-t')$ is real as well. What does this mean for the Fourier transform?

3

We have $\tilde{\chi}(\omega) = \int_{-\infty}^{+\infty} dt \chi(t) e^{i\omega t}$ and we write: $\tilde{\chi}(\omega) = \tilde{\chi}'(\omega) + i\tilde{\chi}''(\omega)$

where $\tilde{\chi}'(\omega) = \operatorname{Re}[\tilde{\chi}(\omega)]$ and $\tilde{\chi}''(\omega) = \operatorname{Im}[\tilde{\chi}(\omega)]$.

- Imaginary part can be written as

$$\tilde{\chi}''(\omega) = -\frac{i}{2} [\tilde{\chi}(\omega) - \tilde{\chi}^*(\omega)] = -\frac{i}{2} \int_{-\infty}^{\infty} dt \chi(t) [e^{i\omega t} - e^{-i\omega t}]$$

\uparrow

$$\chi(t) = \chi^*(t)$$

$$= -\frac{i}{\pi} \int_{-\infty}^{+\infty} dt e^{iwt} [\chi(t) - \chi(-t)].$$

not invariant under $t \rightarrow -t$ $\Rightarrow \chi''(w)$ arises from dissipative processes.

Furthermore, we observe that $\chi''(-\omega) = -\chi''(\omega)$. since

- Real part can be written as

$$\tilde{\gamma}'(\omega) = \frac{1}{2} \int_{-\infty}^{+\infty} dt e^{i\omega t} [\chi(t) + \chi(-t)]$$

"mechanical"

Furthermore, $\tilde{\chi}^l(-\omega) = \tilde{\chi}^l(\omega)$. ^{"mechanical"}

For this reason $\tilde{x}'(\omega)$ is called the reactive part of the response function

$\tilde{\chi}''(\omega)$ is called the dissipative part of the response function.

This becomes especially clear in the context of the fluctuation-dissipation theorem.

$$\chi(t) = \begin{cases} -\beta \frac{d}{dt} C(t) & t > 0 \\ 0 & t \leq 0 \end{cases} \quad \chi(-t) = \begin{cases} 0 & t > 0 \\ \beta \frac{d}{dt} C(t) & t \leq 0. \end{cases}$$

$$\chi(t) - \chi(-t) = -\beta \frac{d}{dt} G(t) \quad \forall t$$

The Fourier transform of $\chi(t) - \chi(-t)$ is $2i\tilde{\chi}''(\omega)$.
and of $\frac{d}{dt}G(t)$ is $-i\omega S(\omega)$.

$$\Rightarrow \tilde{\chi}''(\omega) = \frac{\omega\beta}{2} S(\omega)$$

Fluctuation-dissipation theorem
in frequency space.

In last lecture we considered the absorbed power and have shown that LHS relates to dissipation \dagger

In the quantum-mechanical derivation is a bit more technical (commutators, imaginary-time formalism) and we find

$$S(\omega) = \frac{1}{2\hbar} [n_B(\omega) + 1] \tilde{\chi}''(\omega)$$

$n_B(\omega)$ is the Bose-Einstein distribution.

Remark: Sometimes you see in the literature the FD theorem with an opposite sign as the above. This stems from a different definition of the Fourier transform.

Causality and the Kramers-Kronig relations

Recall that we impose the causality condition $\chi(t) = 0$ for $t < 0$

We can compute $\chi(t)$ from its Fourier transform:

$$\chi(t) = \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} e^{-i\omega t} \tilde{\chi}(\omega) \quad (\star)$$

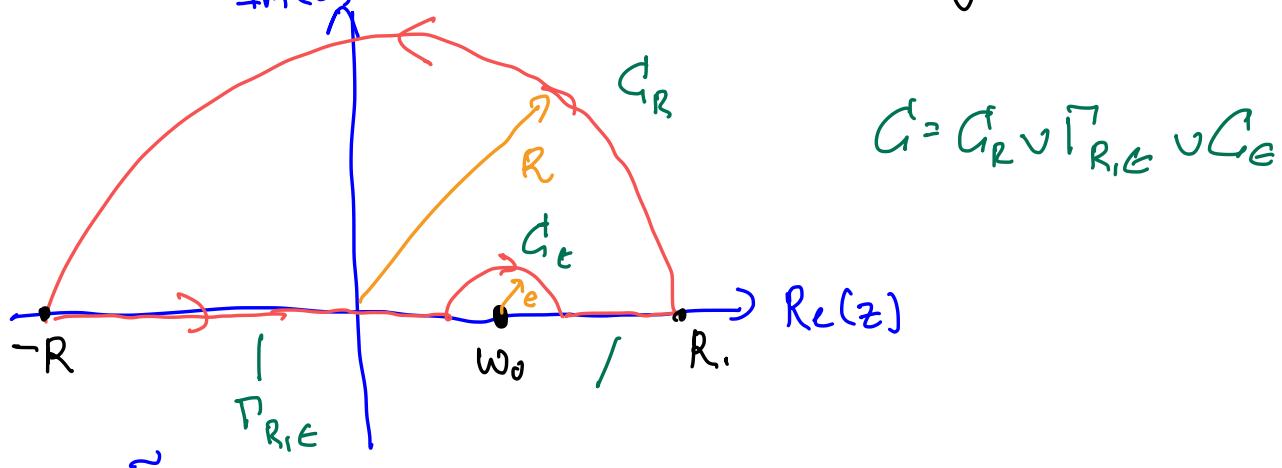
Furthermore, we take $\int_0^{\infty} dt \chi(t) < \infty$

(Finite force must give a finite response)

contribution vanishes for $R \rightarrow \infty$ (5)

We can compute the integral (*) by closing the contour in the upper half complex plane. Since $\chi(t) = 0$ for $t \leq 0$ we conclude that for the analytic continuation $\tilde{\chi}(z)$; $z = w + i\eta$, there are no poles for $\eta > 0$. In other words $\tilde{\chi}(w + i\eta)$ is analytic for $\eta > 0$.

Because $\tilde{\chi}(z)$ is analytic we can use the following trick:



$$C = C_R \cup \Gamma_{R,E} \cup C_e$$

Because $\tilde{\chi}(z)$ is analytic in the upper half plane and the contour C does not enclose any poles, we find:

$$\begin{aligned} 0 &= \oint_C \frac{\tilde{\chi}(z)}{z - w_0} dz \xrightarrow[R \rightarrow \infty]{\text{Jordan's lemma}} \left(\int_{C_R} + \int_{\Gamma_{R,E}} + \int_{C_e} \right) \frac{\tilde{\chi}(z)}{z - w_0} dz, \\ &= \left(\int_{-\infty}^{w_0 - \epsilon} + \int_{w_0 + \epsilon}^{\infty} \right) \frac{\tilde{\chi}(w)}{w - w_0} dw + \int_{C_e} dz \frac{\tilde{\chi}(z)}{z - w_0} \end{aligned}$$

e.g. Jordan's lemma.

Now take $\epsilon \downarrow 0$, then

$$0 \Rightarrow \mathcal{P} \int_{-\infty}^{\infty} dw \frac{\tilde{\chi}(w)}{w - w_0} + \lim_{\epsilon \downarrow 0} \int_{C_e} dz \frac{\tilde{\chi}(z)}{z - w_0} \quad (**)$$

C_e

we parametrize using $z = w_0 + \epsilon e^{i\theta}$

$$\int_{C_C} \frac{\tilde{\chi}(z)}{z - \omega_0} dz = \int_{-\pi}^0 \frac{\tilde{\chi}(\omega_0 + se^{i\theta})}{te^{i\theta}} ie^{i\theta} d\theta$$

$$= -i \int_0^\pi d\theta [\tilde{\chi}(\omega_0) + O(\epsilon)] \rightarrow -i\pi \tilde{\chi}(\omega_0) \text{ for } \epsilon \downarrow 0$$

Taylor

$$\Rightarrow \tilde{\chi}(\omega_0) = \frac{1}{i\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{\tilde{\chi}(\omega)}{\omega - \omega_0} d\omega.$$

We conclude that:

$$\tilde{\chi}'(\omega_0) = \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} d\omega \frac{\tilde{\chi}''(\omega)}{\omega - \omega_0}$$

$$\tilde{\chi}''(\omega_0) = -\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} d\omega \frac{\tilde{\chi}'(\omega)}{\omega - \omega_0}$$

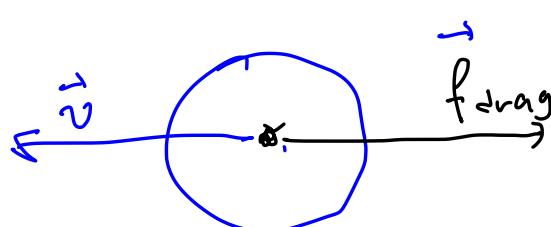
Kramers-Kronig
relations

$\tilde{\chi}'(\omega)$ and $\tilde{\chi}''(\omega)$
are not independent!

The generalized Langevin equation

One of the most familiar non-equilibrium phenomena is that of friction.

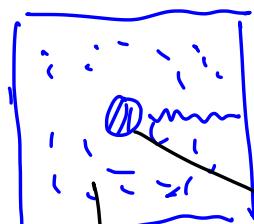
Consider a particle moving in a fluid:



The fluid exerts a drag force
 $\vec{f}_{\text{drag}} = -\gamma \vec{v}$ on the particle.

γ : friction constant.

Here, we want to provide a simple model for the friction constant γ .



We consider a "tagged" particle coupled to a bath

Tagged particle described by variable x -
 Bath with variables y_1, \dots, y_N

We consider the following Hamiltonian:

$$H = H_0(x) - \gamma c f + H_b(y_1, \dots, y_N).$$

\uparrow
oscillator Hamiltonian
of tagged particle

\downarrow
bath Hamiltonian.

We assume a linear coupling between bath and particle:

$$f = \sum_i c_i y_i \quad c_i \in \mathbb{R} \quad i=1, \dots, N.$$

x : primary degree of freedom

y_i, f : secondary degrees of freedom.

$$H_0 = \frac{1}{2} m \dot{x}^2 + V(x).$$

H_b : collection of harmonic oscillators.

Let us denote $f_b(t)$ as the force provided by a pure bath.

The presence of the tagged particle changes this behaviour within linear response theory as:

$$f(t) = f_b(t) + \int_{-\infty}^{t_{\text{CS}}} dt' \chi_b(t-t') x(t')$$

and we know from the fluctuation-dissipation theorem that:

$$\chi_b(t-t') = \begin{cases} -\beta \frac{d}{dt(t-t')} G_b(t-t') & t > t' \\ 0 & t < t' \end{cases}$$

$$\text{where } G_b(t) = \langle Sf(0) f(t) \rangle_b = \sum_{i,j} c_i c_j \langle \delta y_i(0) \delta y_j(t) \rangle_b$$

Now we find the following equation of motion for the primary variable:

$$\ddot{x}(t) = -\frac{dV}{dx} + f_b(t) + \int_{-\infty}^{+\infty} dt' \chi_b(t-t') x(t').$$

random or
fluctuating force
from bath.

causality

$$\Rightarrow -\frac{dV}{dx} + f_b(t) + \int_{-\infty}^t dt' \chi_b(t-t') x(t')$$

$$\stackrel{\text{PPF}}{\Rightarrow} -\frac{dV}{dx} + f_b(t) + \beta \int_{-\infty}^t dt' \frac{d}{dt'} G_b(t-t') x(t')$$

$$\stackrel{\text{P.I.}}{\Rightarrow} -\frac{d\tilde{V}}{dx} + \delta f(t) - \beta \int_0^t dt' G_b(t-t') \dot{x}(t')$$

Generalized
Langwin equation.

$$\text{where } \tilde{V}(x) = V(x) - \beta G_b(0) x^2 / 2$$

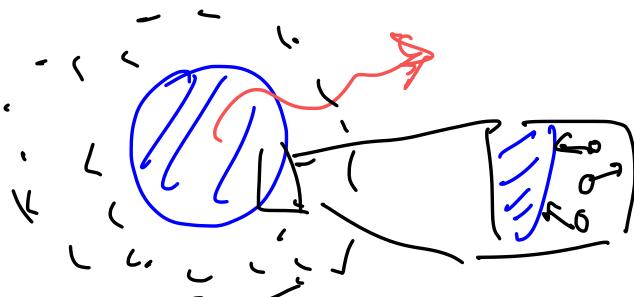
$$\delta f(t) = f_b(t) - \beta G_b(t) x(t).$$

Potential of mean force
(bath-averaged potential
on primary coordinate)

Friction is a result of
fluctuating forces!

"Second fluctuation-dissipation theorem"

The model describes (1D) Brownian motion.



Suppose we approximate

$$\int_0^t dt' G_b(t') \dot{x}(t-t') \approx \dot{x}(t) \int_0^t dt' G_b(t')$$

(Markovian approximation)

neglecting memory.

$$\text{and } \tilde{V} \approx 0$$

In the Markovian approximation:

$$m v(t) \approx f_b(t) - \gamma v(t) \quad \text{Langevin equation.}$$

with $v(t) = \dot{x}(t)$.

It turns out that: $\gamma = \beta \int_0^\infty dt \langle \delta f(t) \delta f(0) \rangle$. (More details on tutorials).

Tagged particle experience random forces that buffet the particle about. Particle gains kinetic energy that is removed by frictional dissipation.

Within Langevin equation, we find $\langle v(0)v(t) \rangle = \langle v^2 \rangle e^{-(\gamma/m)t}$.

However if we include the effects of memory, we find

$$\langle v(0)v(t) \rangle \sim t^{-3/2} \quad \text{Long-time tails.}$$

Measured in experiment!

$$\langle \Delta x^2(t) \rangle = 2Dt - \frac{4D\Delta}{\sqrt{\pi}} t^{1/2} + \dots$$

Δ Diffusion coefficient