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Lecture 2: Phase transitions

statistical
Emicroscopic world -> macroscopis world

klassical mechanics
,

mechanics
(Hermodynamics)

quantum mechanics)

In introductory courses : ideal systems (effectively one-body systems)
If we add interactions : new collective properties such as emergence of

Phases (e .

g .
solids , Liquid crystals , magnets ,

superconductorr... (
in the thermodynamic limits

The occurrence of thermodynamic phases is captured in phase diagrams.

Since there
aretypically many thermodynamic variables,

we candra

various proj

Examples-
·

·Gas-liquid iphase
transition

h M VC

an + 4 T= Tc

I v8
=>

To T
↓ ↓ ↓ paramagnet In red:

- ferromagnet =
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High-temperature all intensive

superconductors thermodynamic
variables are

constant !

To day : first two examples



②
Phase transitions are accompanied by themodynamicinstabilities

As an example ,
we take the vdW gas :

Bf(p) = p[log) - 1] - pap f= free energy
density

=> p
= - f +p=ap Derived by VdW without

knowing the existence
of atoms and molecules.

Recall thermodynamic stability criteria :

2 o with I : and Xi&i)
x

, ...., Xit . Xiti , .... XriEri , -...En conjugate
(seetutorials ! )

.

Here : I : intensive variables
,
X :: extensive variables -

One such thermodynamic stability criterion is -it O
(positive isothermal compressibility).
In other words +
However

, forrdW gas we have

a parameter regime for whichit
At T=T

,
we have an inflection point in the pressure ,

i . e:

= 0 ;( 0 at (-

Example for vdW model : pob = t ; kitc=
More generally ,

the thermodynamic stability criterion says :

+ > = (of free energy density
iso therms should be

p= - f +p()t a convex function of Pr



③

hocus of all points p(T) for which (o) = 0 defines the sandal
The spinodal denotes the limit of stability.

Within spirodal , system is

absolutely unstable (free energydensity is concave)-

We will now show that for TCTC the system can lower its total free energy
by phase separationn.

↓ iconstr
Neglecting surface effects : Eps = [fpg = Vef(pe) +Vyf(pg) .
In canonical ensemble N

,
V are fixed. V = Ve + Vy

pV = PgVg + peVe-

Using these constraints

fis= +(e) + (f(py) = f(pg)+ [f(e) -f(pg)]

Fre SPV= pg(V-Ve) + peVe GES-= ggV + (e - fg)Ve
We conclude :

fas(pit)= f(pg ,T)+ [f(pe ,
T) -J(T)]

8n ↑q4 Pl

I festp) < +(p)
,

for suitable !~
TLTc-

choices of Pl and Pq1
& I cannot occur when TJT, i

. e

f conver)-



④

(peg , ge) are determined by minimisation of free energy.
(*)

geometrically : (of
Note that :

(E) upe ,
T) =M(pg ,
) (usethatu= =v)v

,+

=G
(* *) E) p(pe .+) = p(pg ,

T)

Why ? Define Mco(T) =M(pe ,
+) =upg ,T)

Mcolt)= - fpeT +pet =

Petfg
- f(py .

T) +Pgu(pg ,T)
which is just equal pressure condition .

Common tangent construction E) equal
chemical potential gloth phases.

equal pressure

(Generally ,
it should holdfor all intensive variables).

Pg(T) is called gas branch and pe(T) the Liquid branch-

Together they are called the binodal
-

metastable-
Typical

phasediagramVdW model highlights
subtle point :

phase transitions are

accompanied by non-analyticities unstable .

in the free energy D How does non-analytic behaviour occur

from the partition function ?
Let's illustrate this with a motel with a simple microscopic picture



🔗

How can a phase transition occur from a
⑤

microscopic picture?

Up until now we focused only on gas-liquid phase transitions. Here
, a sample

prepared with overall density p can phase separate into a dilute
gas

withdensity Pg and a dense liquid with density Pl. The density here

plays the role of an order parameter ,
-> a quantity that tells inwhich

phase one residess

(8) n

transition.

More general :

#im
second-order phase transition

Let's illustrate this idea with a simple model.

Take a lattice with on each lattice site a"spin" with value Si -#

E . g.4 Energy of a spin configuration :

↑ ↓ Ge N

S
(Ising model

↓ Elsig) = -gijijB Wilhelm henz,o
I Y ↑ 1920

N lattice sites . coupling
magneticat local external magneticof

parameter single field.
Spin:

When coupling parameter Jij <0 =) antiferromagnetic order.

Jijso => promotes ferromagnetic order.

So the ground state (T
=0) : ↑449 ↑↑

↑ ↑44 ↓ 4 ↓ ↑
4444 ↑ ↓It

ferromagnet antiferromagnet.
When we "turn on"temperature this ordered state is destroyed
=> T+ a most stable state is a "random" Spin state -

Paramagnet : acquire magnetization is ame direction as external
magnetic field.



⑥

Diamagnet : Acquires magnetization opposite to theexternal magnetic field.

Here
, we focus on the transition from paramagnet to ferromagnet.

So let's consider the Tsing model with just nearest neighbour interactions :

E(s :3) =-glsisig Co external magnetic field).

Canonical partition function : E(N
.D , PMB)ZeBEC

- solvable in 1D (transfer-Sij
matrix method)

solvable in ID consager (
No analytical solution in 3DM.

However ,
we can

gain some insights by introducing the magnetization :

per site : m =Usi EMS spatially averagedin ↓
constant magn-field

Note that : (si)=(i)eBB
z-
~-
= Hence (m/B):BB
=(

m
,T .

f : free energy per site.

Since ,
we cannot compute E analytically ,

we need to resort to approximations

WriteSi = (5) + Osi and keep only contributions up to quadratic
order in JSi. (fluctuation expansion)



↳
coordination number ⑰

Within this approximation: Disj=See

- + 1538s + 25sjr0(bsi)
So we find:

EGsis) = -JNz(s -(Jz(s)+B) si
z

uBmo)
Each spin feels an external magnetic field but also the average fieldcaused by surrounding spins.

Within mean-field approximation ,
we find :

2 = [2cosh (BJz(s) + BuB) exp(-EB()SM
Some find : (s) = tank (BJz() + BMB)

*

(self consistency condition
same is found of we compute free energy F((s))

=
Now

,
let's consider B = 0 and set units : M= = Sm

Taylor expansion of (4) => (m= BJz(M) - - (Bgzms) +@Gm)

Three solutions
mo = 0 (paramagnetic solution

my = =N3 ; t =E : Tz/k
TSTc : only one real solution .

TT>: three solutions .

Free energy can be expanded for small (m) :

F = Nkp(T-Tc)()+ + O(m) - NABTlog2.



⑧
=> Fy(m)) = constant + Eo(t)>+m>+ ....

When OCT)
, BLT) 20(m > =

o global minimum
when OCT) 0 => <my = Est global minimum).
Mental picture : TsTc

TTC

Norther
Symmetric under sit-si Xi
This is an example of spontaneous symmetry breaking

-> Ground state has different symmetry from the
symmetry of the underlying Hamiltonian.

But wouldn't we expect that(m) =09
So in presence of external magnetic field : (say B >O) => <m+> global
minimum belowTo

TSTc -

- TaTc but N+!
-

- -

- -TCTc .-- -T <Tc but finite N

-
~ -

I--- ----

So:



⑨
How can this non-analytic behaviour occur ?

De-BEr .

can only be non-analytic if N> a

~ A

Therefore ,

(m) (B = o)=M > (B) toE zon analytica
Lim lim (m)(B S ↓

phase transition.

Symmetry-broken state is stabilised by surface tension
= Ex- a in them

limit -

We call Fa(m) = Eo(t)m2 + YB(T)m" +....
the Landau free energy = minimum gives the moststable phase.

Gan be set up phenomenologically Sit-s : symmetry translates
↓hat metis should inherit this symmetry

F(m) = F((-m) .

Note that in MF approximation one can show that amounts to

(sisj) =< :](j) Because: U=
> check

but also U=< Y El Sis] S
In MF approximations one neglect spin-spin correlations

How valid is this ?


