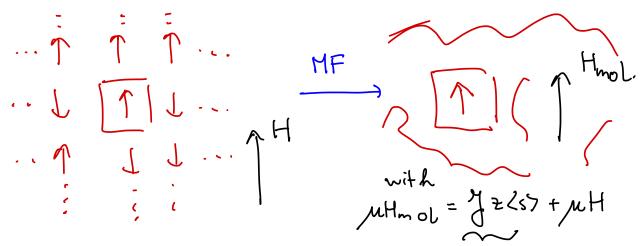
Lecture 3: Breakdown of mean-field theory

Phase transitions (=>) Thermodynamic instability (=>) Non-analyticities in free energy.

To highlight how phase transitions can occur microscopically, we considered the Ising model: E(2sig) = -7 Zisis; -MH Zisi. Si=ti i=1,..., N.

We determined the partition function in the mean-field approximation; which amounts to:



field generated by surrounding spins. and we found: (H=0) Z=e-BNf(kms) with 3m/m

where f (<m>) has qualitative behaviour:

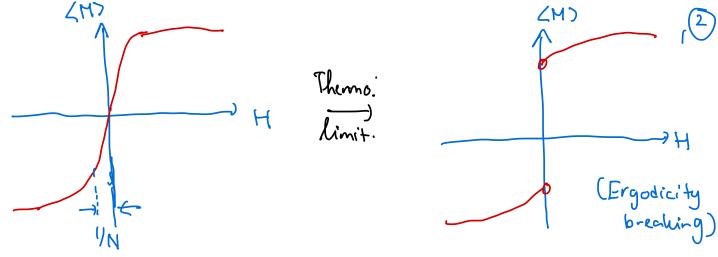
So for T<Tc: degenerate minima

but there is an energy borrier that

separates the two minima. This energy barrier becomes macroscopically large in the thermodynamic limit.

So which minimum will be chosen by the system? We apply an external field

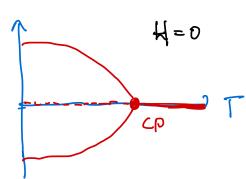
We find:
$$\langle m \rangle (H=0) = \begin{cases} 0 & (T>Tc) \\ \lim_{H\to 0^{\pm}} \lim_{N\to \infty} \langle m \rangle (H) \neq 0 \\ \lim_{N\to \infty} \lim_{H\to 0^{\pm}} \langle m \rangle (H) = 0 \end{cases}$$



Close to the Garie temperature, we can expand
$$f(km)$$
 and find:
 $f_L(m) = \frac{1}{2}a(T)m^2 + \frac{1}{4}b(T)m^4 + ...$ (a, b are intensive)

and
$$f_L(cm) = -\frac{a(T_c)^2}{2b(T_c)}$$
 So in MF, activation larrier scales with NT

We can draw the phase diagram



Q: where is the spinodal ?

dimensionality

We found $T_c = \frac{7}{2} \frac{7}{100}$ For (hyper) cubic lattices 2 = 20

Pspatial

and we found $\langle m \rangle \sim \sqrt{-3t} \sim (-t)^{13}$ (for t70)

(B here is critical exponent) So we find for:

MFT exact

2 0
4 2.27
6 4.0

ß:	MPT	Exact
0=1 D=2 D=3	1(4 1(2 1)2	not defined (noPT) 1/3

What about other thermodynamic properties stumming from non-analyticities?

$$\langle m \rangle (t=0) \sim \left(\frac{h}{b}\right)^{1/3} \sim h^{1/5} \delta = 3.$$

So we find:

	MPT	exact	
051	3	exp	
D=2.	3	15	
D=3	3	1 4.25 V	

Magnetic susceptibility
$$\chi_{T} = \lim_{H \to 0} \left(\frac{\partial M}{\partial H} \right)_{T}$$
.

We find:
$$\beta \chi_T^{-1} = \frac{\partial h}{\partial \omega} \Big|_{h=0} \sim t + 3 \, \zeta_m \gamma^2 = \begin{cases} t & \text{for } t > 0 \\ -2t & \text{for } t < 0 \end{cases}$$

We define y as $\chi_{+} \sim (t)^{-1}$ So:

1	HFT	Exact
D=1	•	erp
0=5	t	714
०=३।	1	1.24-

Heat capacity
$$C_{H} = \left(\frac{\partial \angle E}{\partial T}\right)_{N|H} \quad \text{with } \angle E = \left(\frac{\partial \beta F}{\partial \beta}\right)_{N|H}$$

We find
$$C_H(H=0) = \begin{cases} C_0 & (+>T_c) \\ \frac{3}{2}Nk_B + G_0 & (T < T_c) \\ C_H(h=0) \end{cases}$$

GH= 161-d

or, \$1,518 are called critical exponents => they characterize the behaviour of the system close to the critical point (=) universality

MFT becomes progressively worse with decreasing dimensionality.

We noted in the previous lecture that the MF approximation is equivalent to setting <5:5j7 = <5:><5;) in the Ising (for the internal energy) model.

4

Let's go back to Ising model:

and
$$s = \frac{1}{N} \sum_{i=1}^{N} s_i$$

Then
$$\langle s \rangle = \frac{1}{N} \frac{1}{2} \left(\frac{\partial z}{\partial \beta \mu H} \right)_{N, py}$$
 and $\langle s^2 \rangle = \frac{1}{N^2 z} \left(\frac{\partial^2 z}{\partial \beta \mu H} \right)_{N, py}^{2}$.

So:
$$\langle s^2 \rangle - \langle s \rangle^2 = \frac{1}{N^2} \left(\frac{\partial^2 \ln Z}{\partial (\beta \mu H)^2} \right)_{\beta J, N} = \frac{1}{N} \left(\frac{\partial Z s }{\partial \beta H \mu} \right)_{\beta J, N}$$

or IN XT Magnetic susceptibility is related

Cij is the spin-spin correlation function & range of which spins are correlated.

Note that $\chi_T \to \infty$ at CP.

So @ CP we have long-ranged correlations (although interactions are short-ranged ?)

Note that this relation goes beyond that of lattice models.

Generally speaking: $\chi_T = \frac{1}{k_B T} \left(\langle M^2 \rangle - \langle M \rangle^2 \right)$.

Suppose M= [dr m(r), =) kBT XT=[dr]dr' [<m(r)m(r')) - <m(i)) <m(z)

Suppose system is homogeneous: m(r)= m = cst.

and we define: $G(\vec{r}-\vec{r}') = Lm(\vec{r})m(\vec{r}')$.

So flipping a block of 1,2,5,2000... spins have all same Boltzmann weight. Such functuations will occur at finite T and destroy long-ranged order of This is called the Peierls argument.

Greating domain walls is in 1D an "easy" source of entropy.

What about 2D? The energetic cost of flipping a block of M spins now scale with MIL So DEX JM12.

harge fluctuations are more "expensive" and occur statistically speaking less. Suppression of larger scale fluctuations leads to finite T phase transition & In 3D: $\Delta E \propto J M^{2/3}$ => larger suppression of large fluctuations.

=> Explains why MFT becomes better for increasing D ?

If turns out: D>4 MFT becomes exact.

This is called the upper critical dimension.

When is NFT accurate? For from the CP. Qualitative behaviour is accurately captured by MFT. So mean-field theory is still worthwhile to study if the spatial dimension is large enough? How good is the Ising model?

The true microscopic picture of a ferromagnet is of course more complex than what is inside the Ising model. This is the essence of modelling: finding out which features of the system are relevant to describe the phenomenon we are interested in. Close to CP are the long-wavelength spin excitations. So we want to have a systematic way of deriving physics on the mesoscopic scale.

goal: microscopic degrees of freedom -> mesoscopic (fluctuating) order parameter field. Fig. spins (7). It is continuous, but no variations on scales smaller than the lattice spacing a. I.e. FT of m(r) does not include wavevectors lill < 1/a. Let us denote a general order parameter field by $\vec{q}(\vec{r})$ So what we want: $Z = Tr[e^{-\beta H_n i}] = \int D \vec{\phi} e^{-\beta F_L [\vec{\phi}]}$ Integration over all possible field configurations $\Phi(F)$ Should be viewed as a reparametrization of & interms of a fluctuating order parameter $\vec{\phi}(\vec{r})$ Behaviour of FLIF] can be captured by few phenomenological parameters (handau). rell' (space); Fell (order parameter). Examples: n=1: gas-ligned phase transition, binary mixtures, Ising magnets (uniaxial) Superfundity, superconductivity, planar magnety. Magnets.

d=1: wires

d=2: sarfaces linturfaces.

d=3: our world.

d = 4: relativistic field theory.

ore (\$(\$).\$(\$))"

Sometimes the order parameter is tensorial; e.g. in lignid crystals. Example of apartially ordered phase- $Q = \left\langle \frac{3}{2N} \sum_{i=1}^{N} (\hat{\alpha}_i, \hat{\nu}_i - \frac{1}{3}I) \right\rangle.$ $= \frac{3}{2} S \left(\hat{n} \hat{n} - \frac{1}{3} \mathbb{T} \right) + \frac{P}{2} \left(\hat{e}^{(i)} \hat{e}^{(i)} - \hat{e}^{(2)} \hat{e}^{(2)} \right)$ biaxial order. unioxial order Symmetry-based approach to FLIF]. We write: F[[]= [dr f[(](F), Vo(), Vo[), Vo[),] non-local interactions.

(short-range interactions)

For now: no explicit i dependence (bulk system: i.e. no external) potential or localised impurity). fl(f(f)) is then written as an expansion in terms of powers of o and its gradients. Allowed since singular behaviour only occurs at the macroscopic scale (thermodynamic limit). f_(o'(r)) must respect the symmetries of the microscopic Hamiltonian. E.g. Heisenberg model (classical): - 7 2, 3; 5; is in variant under rotations of spin degrees of freeden. if we set $(\bar{\phi}(\bar{r})) \propto (\bar{\gamma}(\bar{z})) + 1$ then it amounts to: FIRAGED]= FLIAGED] This means only allowed terms

rotation in order parameter space.

If the underlying space ès isotropic. =) only derivatives that are invariont under spatial rotations.

e.g.: $|\nabla \vec{\phi}|^2$.

or $(\nabla^2 \vec{\phi})^2$ or $[\vec{\phi}(\vec{r})]^2 |\nabla \vec{\phi}(\vec{r})|^2$ etc.

So for magnetic system we find: (== m)

 $\beta F_{L} [\vec{m}] = const + \int d^{2}\vec{r} \left[\frac{\alpha}{2} m(\vec{r})^{2} + \frac{b}{4} m(\vec{r})^{4} + \frac{K}{2} [\nabla \vec{m}]^{2} + \cdots - \vec{h} \cdot \vec{m} [\vec{r}] \right] (4)$ short scales

t nom magnetic dofs.

Stability & should be bounded from below. (else probability would diverge!)

In other words, for e.g. (*) => b>0.

Remark a, b, K, ... depend on microscopic interactions and thermodynamic state variables.

They are not universal.

They also typically depend on temperature.

FL [] follows from coarse graining: integrating (summing) over microscopic degrees of freedom while constraining their average to \$\(\phi\)(7).

Finally, note that in MF approximation:

Z= SDJ c-BFL[] = -B min FL[]. (souddle point approximation)

Although FLIP] is analytic, it does not mean that min FLIP] is analytic!