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Lecture3 : Breakdown of mean-field theory

Phase transitions E) Thermodynamic instability) Non-analyticities
in free energy.

To highlight how phase transitions can occur microscopically , we considered
N

Si =/the Ising model : Es :])
=-Sij-MH i= 1, ...,N .

We determined the partition function in the mean-field approximation,which amounts to :
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! ii MHmo
= Jz(s) +uH
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and we found : (H = 0)

reSo for TCT> : degenerate minima
but there is an energy

barrier that

separates the two minima. This energy barrier becomes macroscopically
large in the thermodynamic limit.

So which minimum will be chosen by the system? We apply an external field
& [T>Tc)

We find : [m] (H =%) = Shim hinm(H
& (m) (H) = 0
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Close to the Curie temperature , we can expand f(m)) and find :

f (m) = = a(T)m2 + +b(T)m" +... Ca
, b are intensive)

and fikm)) =-ll So in MF
,
activation barrier scales with NT

We can draw the phase diagramo
N

h N

I
!
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Q :
where is the spinodal ?

How good is MF theory?
We found Tc= For thyper cubic lattices z =2

↑spatial
and we found (m> -FiE -(-t)B (for +40) dimensionality

.

t=
T-T

& here is critical exponent).
Fo

So we find for :

↳·fined InoptD=2 I I
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What about other thermodynamic properties stemming from non-analyticities?
<m > (t= o) ~ (A) h d = 3

.

So we find :

D X(h=0)
D=2

Magneticsusceptibility +=
We find : BX=ht+m= Fat
We define y as X+

V

So:
Heat capacity
-

= (N With (E) = NIH
We find CH(H=) =Go CTCTC) Call=0

-
-

CH = 17-: I
I
->t

0 . 11

&Pirit are called critical exponents => they sharacterize the behaviour
of the system close to the
critical point El universality

MFT becomes progressively worse with decreasing dimensionality.
We noted in the previous lecture that the MF approximation is

equivalent to setting [sisj) = (i) (j) in the Ising
(for the internal energy motel



<m) =n(s) . ⑭
Let's

go
back to Ising model :

Recall
Z = Zepisj +MHis and =Si

Esig

Then (s)= )npy and <57 = i phnpy.
So :

< - (s =hey*N
*+ Magnetic susceptibility is related

to magnetic (spin) fluctuations .
* = N(52) - (s])=( : Sj] -Li))]

·

= ]
.

Quantifies
Gij is the spin-spin correlation function G range of which spins

are correlated.

Note that X+4 & at CP
·

So ofCPe have long-ranged correlations (although interactions are
short ranged #

Note that this relation goes beyond that of lattice models.

Generally speaking : X+= ( <M2-(M) ·

Suppose M= /dim(r) .
> RTX+=]difdEm()m(r))

- <mir)) (mbri)
Suppose system is homogeneous : m(r)= m = est
and we define : G(- ) = <m(r)m(r)] .
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- ⑤

then : 4= BV(d[G(i) - m =]
This is our first

E D examp↳ of
bulk response correlations a fluctuation - dissipation
function- of microscopic relation

degrees of freedom.

Typically , we have that : Gc()-e for >3
with by the so-called correlation length. Es length

scale of

If fluctuations become macroscopic in size , they can scatter light
when E-Travelength of light.

This is called critical opalescense
(Video)-

At <P X+
+ E) E+ o defines new critical exponent v:

E(T , h=0) a It)
- v

Macroscopiccorrelation is
what drives the formation

~

Why does MF approximation breakdown ? of ordered phases &

The 1D Using model does not exhibit a phase transition at finite
temperature and short-ranged interactions. However the MFT predicts
a finite T phase transition. What is going on ?

Suppose we have aTo ground state for N spins :

.... 449494449949 ... .. E = -NylaT

↓ flip M spins

... 44k + + ++ + 1 + 444 ....
E = (-Ny + 4)kyT .
BLE = 47 -

-
M

The
energy cost of flipping a block

of M spins is independent of MD..



⑳
So flipping a block of 1 , 2 ,

5
, 2000... Spins have all same Boltzmann

weight. Such fluctuations will occur at finite T and destroy long
ranged order to This is called theBeierlsargument -

Greating domain walls is in ID an "easy" source of entropy.
What about 2D ? The energetic cost of flipping ablock of M
spins now scale with M1 So LEEYM"2
harge fluctuations are more"expensive" and occur statistically speaking
less

. Suppression of large-scale fluctuations leads to finite T phase
transition ? In 3D : LEATM43 => larger suppression of

large fluctuations-
=> Explains why MFT becomes better for increasing D
It turns out : D24 MFT becomes exact .

This is called the upper
critical dimension.

When is MFT accurate? Far from the CP · Qualitative behaviour

is accurately captured by MFT. So mean-field theory is still
worthwhile to study if the spatial dimension is large enough!
#Howgood is the Ising model?

The true microscopic picture of a ferromagnet is of course more
complex than what is inside the Ising model. This is the essence of

modelling : finding out which features of the system are relevant to
describe the phenomenon we are interested in . Close to <Pare the

long-wavelength spir excitations . So we want to have asystematic
way of deriving physics on the mesoscopic scale .
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Goal : microscopic degrees of freedom -> mesoscopic (fluctuating)

order parameter field.
E .
g . spinsEs (r) . E is continuous

,
but no variations on scales

smaller than the lattice

spacing a
I. e . FT of intr) does not include wavevectors (i) Ya
Let us denote a general order parameter field by f (i)
So what we want : = Tr[c-PHri] =/Age-BE[i]

↓
Integration over all possible

-

field configurationp()
Should be viewed as a reparametrization of E interms of a fluctuating
order parameter of (i)
Behaviour of FLE] can be captured by few phenomenological
parameters (Landau).

vectorial
VER (space) ; =R Corder parameter) .
Examples :
- n=1: gas-liquid phase transition , binary mixtures,

Ising magnets (uniaxial)
n= 2: Superfluidity , superconductivity , planar magnets-
2= 3 : Magnets -

d = 1 : wires

d=2: surfaces /interfaces .

d= 3 : our world.

d = 4 : relativistic field theory-
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Sometimes the order parameter is tensorial ; e.g . in Liquid crystals.-

Example of apartially ordered phasee.

000, to =-]
of

= ES(nn - (1) + = "-* ')
--

uniaxial order biaxial order
.

-memetry-basedapproach to FLIP] -

We write : F =Jafz(i), ), (i), . . . )
-
non-local interactions -

(short-range interactions S
For now : no explicit i dependence (bulk system : i. e. no external

potential or localised impurity) .

f ((:)) is then written as an expansion in terms of powersof
and its gradients. Allowed since singular behaviour only
· cours at the macroscopic scale (thermodynamic limit) -

& (P(i)) must respect the symmetries of the microscopic Hamiltonian -

E
.

g. Heisenberg model (classical) :
-y ·j

is

invariantunderrotationsofdegreeoffreedacounts to:
FIRC)] : FIF]

.

Frotation in order parameter space -
This means only allowed terms

are

((). (r)n
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If the underlying space is isotropic . =) only derivatives that are invariant

under spatial rotations.
e.g: 1.

or (t2j)
2

or IPRIK* etc.

So for magnetic system we find : (P =m)

BFztm] = const + (d* [m(r +&m+m
I +... - tin (r)]

.

(x)

short scales
↑ now magnetic dofs-

Stability In should be lounded from below .
Celse probability
would diverge ! )-

In other words , fore.g .
(E) => 670 .

Remark a
, b, K, . . .. depend on microscopic interactions and

thermodynamic state variables-

They are not universal=

They also typically depend on temperature-
# [i] follows from coarse graining : integrating (summing)
over microscopic degrees of freedom while constraining their

average to (r).

Finally, note
that in MF approximation :

z = (e-PF) _ -BuFt . (saddle point approximation)

Although FLIP] is analytic , it does not mean that minFET]is
cytic !↑


