

Lecture 5: Correlations in Gaussian approximation.

Partition function: $Z = \int D\vec{\phi} e^{-\beta F_L[\vec{\phi}]} \quad (*)$

functional integral

When $F_L[\vec{\phi}]$ has discrete symmetry \rightarrow domain walls
 continuous symmetry \rightarrow Goldstone modes / bosons

Intuition for goldstone modes

But there exists excitations that look like

that cost little energy by stretching the winding over longer and longer distances.

Examples • Phase fluctuations in superfluids.

- Phonons
- Magnons.

• Schlieren texture in nematic liquid crystals.

Take for example $O(3)$ model:

$$F_L[\vec{m}] = \int d^d \vec{r} \left[\frac{k}{2} |\nabla \vec{m}|^2 + \frac{\alpha}{2} |\vec{m}|^2 + \frac{b}{4} |\vec{m}|^4 \right]$$

and write $\vec{m} = m_0 (\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta)$

$$\begin{aligned} \phi &\in [0, 2\pi) \\ \theta &\in [0, \pi) \end{aligned}$$

$$\text{Then } F_L[\vec{m}] = \int d^d \vec{r} \left[\frac{k}{2} |\nabla m_0|^2 + \frac{\alpha}{2} m_0^2 + \frac{b}{4} m_0^4 \right]$$

$$+ \frac{k}{2} m_0^2 \left[(\nabla \theta)^2 + \sin^2 \theta (\nabla \phi)^2 \right] + \dots$$

Two Goldstone modes. θ and ϕ and they interact.

Generally let's take effective Hamiltonian / Landau free energy that is invariant under symmetry group G . Suppose G is spontaneously broken to H . Then the manifold of ground states is G/H and $\# \text{goldstones} = \dim G - \dim H$.

Example $O(N)$ model. $G = O(N)$, $H = O(N-1)$

Ground state manifold: $\frac{O(N)}{O(N-1)} = S^{N-1}$ $\Rightarrow N-1$ Goldstone modes.

This is consistent, since $\dim(O(N)) = \frac{1}{2}N(N-1)$

(Recall $O(N) = \{A \in \mathbb{R}^{N \times N} \mid A^T A = I\}$ $\xrightarrow{\text{N(N+1)/2 constraints}}$)

Mean-field theory does not describe Goldstone modes (cont. sym.) or domain walls (discrete symmetry). So let's take $O(N)$ model

$$F_L[\vec{\phi}] = \frac{1}{2} \int d^d r \left[K |\nabla \vec{\phi}|^2 + \alpha |\vec{\phi}|^2 + \frac{b}{2} |\vec{\phi}|^4 \right]$$

with $Z = \int \mathcal{D}\vec{\phi} e^{-\beta F_L[\vec{\phi}]}$ Write $\vec{\phi} = \langle \vec{\phi} \rangle + \delta \vec{\phi}$

Then: $Z = e^{-\beta F_L[\langle \phi \rangle]} \int \mathcal{D}\delta\phi \exp \left[-\beta K \int d^d r \left\{ |\nabla \delta\phi|^2 + \frac{1}{2} (T)^{-2} |\delta\phi|^2 \right\} \right]$

(Note that this is de facto an application of the functional Taylor expansion)

Recall from last lecture:

$$\mathcal{F}[u] = \mathcal{F}[u_0] + \int dx \left. \frac{\delta \mathcal{F}}{\delta u(x)} \right|_{u=u_0} [u(x) - u_0(x)] + \frac{1}{2} \int dx \int dx' \left. \frac{\delta^2 \mathcal{F}}{\delta u(x) \delta u(x')} \right|_{u=u_0} [u(x) - u_0(x)] [u(x') - u_0(x')] + \dots$$

$$\xi(T) = \begin{cases} \sqrt{\frac{K}{\alpha(T)}} TSE & T > T_c \\ \sqrt{\frac{K}{2\alpha(T)}} & T < T_c \end{cases}$$

The lowest-order correction to MFT is quadratic (why?).

We are interested in computing correlators $\langle \delta\phi(\vec{r})\delta\phi(\vec{r}') \rangle$ and to see what are the corrections to the mean-field result. So we need to know how to compute Gaussian functional integrals.

Let us consider a scalar order parameter first. So integrals are of the form:

$$\mathcal{Z}[\vec{f}] = \int \mathcal{D}\phi \exp \left[-\frac{1}{2} \int d^d \vec{r} \int d^d \vec{r}' \phi(\vec{r}) G^{-1}(\vec{r}, \vec{r}') \phi(\vec{r}') \right. \\ \left. + \int d^d \vec{r} \vec{f}(\vec{r}) \phi(\vec{r}) \right] -$$

(we add on purpose sources which will be clear in a moment).

Note that (see tutorials):

$$\mathcal{Z}(\vec{f}) = \int_{-\infty}^{+\infty} dx_1 \dots \int_{-\infty}^{+\infty} dx_n e^{-\frac{1}{2} \vec{x} \cdot \underline{A} \cdot \vec{x} + \vec{f} \cdot \vec{x}} = \mathcal{Z}(0) \exp \left(\frac{1}{2} \vec{f} \cdot \underline{A}^{-1} \cdot \vec{f} \right),$$

$$\text{where } \mathcal{Z}(0) = \frac{(2\pi)^{n/2}}{\sqrt{\det(\underline{A})}} = (2\pi)^{n/2} \exp \left[-\frac{1}{2} \text{Tr}(\log \underline{A}) \right].$$

$$\text{Furthermore, } \langle x_i, \dots x_n \rangle = \left. \frac{1}{\mathcal{Z}(\vec{f})} \frac{\partial^n}{\partial f_i, \dots \partial f_n} \mathcal{Z}(\vec{f}) \right|_{\vec{f}=0}.$$

In particular:

$$\langle x_i x_j \rangle = \left. \frac{1}{\mathcal{Z}(\vec{f})} \frac{\partial^2}{\partial f_i \partial f_j} \mathcal{Z}(\vec{f}) \right|_{\vec{f}=0} = A_{ij}^{-1}$$

$$\text{Note that: } A_{ik} A_{kj}^{-1} = \delta_{ij}$$

So now we can generalize to continuous case:

$$\mathcal{Z}[\vec{g}] = \mathcal{Z}(0) \exp \left[\frac{1}{2} \int d^d \vec{r} \int d^d \vec{r}' g(\vec{r}) G(\vec{r}, \vec{r}') g(\vec{r}') \right]$$

$$\text{with } \mathcal{Z}(0) = \mathcal{N} \sqrt{\det G^{-1}} = \mathcal{N} \exp \left[-\frac{1}{2} \text{Tr}(\log G^{-1}) \right].$$

$$\text{where } \int d\vec{r}'' G^{-1}(\vec{r}, \vec{r}'') G(\vec{r}'', \vec{r}') = \delta(\vec{r} - \vec{r}')$$

and $\langle \phi(\vec{r}) \phi(\vec{r}') \rangle = G(\vec{r}, \vec{r}')$.

So let us first consider the correlation function of our \mathbb{Z}_2 model.

$\Rightarrow \langle \delta \phi(\vec{r}) \delta \phi(\vec{r}') \rangle = G(\vec{r}, \vec{r}')$ where

$G^{-1}(\vec{r}, \vec{r}') = \beta K \left(-\nabla^2 + \xi(T)^{-2} \right) \delta(\vec{r} - \vec{r}')$. So how to determine $G(\vec{r}, \vec{r}')$?

$\Rightarrow \int d\vec{r}'' G^{-1}(\vec{r}, \vec{r}'') G(\vec{r}'', \vec{r}') = \int d\vec{r}'' \beta K \left(-\nabla^2 + \xi(T)^{-2} \right) \delta(\vec{r} - \vec{r}'') G(\vec{r}'', \vec{r}')$

$\Rightarrow \beta K \left[-\nabla^2 + \xi(T)^{-2} \right] G(\vec{r} - \vec{r}') = \delta(\vec{r} - \vec{r}')$

Solve with FT. For finite volume V , we have for our fields:

$$\phi_{\vec{k}} = \int d^d \vec{r} e^{-i \vec{k} \cdot \vec{r}} \phi(\vec{r}) \Leftrightarrow \phi(\vec{r}) = \frac{1}{V} \sum_{\vec{k}} e^{i \vec{k} \cdot \vec{r}} \phi_{\vec{k}}.$$

(Recall since we did square gradient, we implicitly set $\phi_{\vec{k}} = 0$ for $|\vec{k}| > \Lambda$ with $\Lambda = \frac{\pi}{a}$).

Since it is finite spatial volume: $\vec{k} = \frac{2\pi}{L} \vec{n}$ $\vec{n} \in \mathbb{Z}^d$ (periodic bcs)

with $V = L^d$. So in thermodynamic limit:

$$\phi(\vec{r}) = \int \frac{d^d \vec{k}}{(2\pi)^d} e^{i \vec{k} \cdot \vec{r}} \tilde{\phi}(\vec{k}), \Leftrightarrow \tilde{\phi}(\vec{k}) = \int d^d \vec{k} e^{-i \vec{k} \cdot \vec{r}} \phi(\vec{r})$$

So we find $\tilde{G}(\vec{k}) = \frac{k_B T}{K} \frac{1}{\vec{k}^2 + \xi(T)^{-2}}$ let's check this result in $d=3$.

So $G(\vec{r}) = \frac{k_B T}{K} \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{e^{i \vec{k} \cdot \vec{r}}}{\vec{k}^2 + \xi(T)^{-2}}$ (see Tutorials).

$$= \frac{k_B T}{4\pi K} \frac{e^{-r/\xi}}{r} \Rightarrow \langle \delta \phi(\vec{r}) \delta \phi(\vec{r}') \rangle = \frac{k_B T}{4\pi K} \frac{e^{-|\vec{r} - \vec{r}'|/\xi}}{|\vec{r} - \vec{r}'|}.$$

ξ is indeed correlation length!

At CP: $G(\vec{r} - \vec{r}') \sim \frac{1}{|\vec{r} - \vec{r}'|^{d-2+\eta}}$ At MF+Gauss $\Rightarrow \eta = 0$! But $\eta = \eta_{h(2D)}$ $\eta \approx 0.063$ (3D)

Remarks: • $G(\vec{r})$ is a Green's function. In Field Theory language it is called a propagator or sometimes vertex function.

• We could have used $\int D\phi = \lim_{N \rightarrow \infty} \prod_{i=1}^N \int d\phi_i$ and then make coordinate transf. with discrete FT.

Then $\int D\phi = \prod_{\vec{k}} G \int d\phi_{\vec{k}}^+ d\phi_{\vec{k}}^-$ with $\phi_{\vec{k}}^* = \phi_{-\vec{k}}^+$.

Now (using shorthand notation $\delta\phi = \phi'$):

$$\begin{aligned} \int D\phi' \exp \left\{ -\frac{\beta K}{2} \int d^d \vec{r} \left[(\nabla \phi')^2 + \xi^{-2} \phi'^2 \right] \right\} \\ = \prod_{\vec{k}} G \left\{ \int d\phi_{\vec{k}}^+ d\phi_{\vec{k}}^- \exp \left\{ -\frac{\beta K}{2} \sum_{\vec{k}} \phi_{\vec{k}}^* (\vec{k}^2 + \xi^{-2}) \phi_{\vec{k}}^+ \right\} \right\}. \\ \Rightarrow \langle \phi_{\vec{k}}^+ \phi_{\vec{k}}^{*-} \rangle = \frac{k_B T}{\vec{k}^2 + \xi^{-2}} \end{aligned}$$

But this is like using equipartition theorem!

$$\Rightarrow H = \sum_{i=1}^N \frac{\vec{p}_i^2}{2m} \quad \langle \frac{\vec{p}_i^2}{2m} \rangle = \frac{1}{2} k_B T. \quad \alpha = x, y, z. \\ i = 1, \dots, N.$$

(Every quadratic degree of freedom in Hamiltonian receives $\frac{1}{2} k_B T$).

What about free energy?

$$\begin{aligned} \mathcal{F} &= e^{-\beta F_L[\langle \phi \rangle]} \int D\delta\phi \exp \left[-\frac{\beta K}{2} \int d^d \vec{r} \left\{ (\nabla \delta\phi)^2 + \xi(T)^{-2} \delta\phi^2 \right\} \right] \\ &= e^{-\beta F_L[\langle \phi \rangle]} e^{-\frac{1}{2} \sum_{\vec{k}} \log [\beta K (\vec{k}^2 + \xi^{-2})]} \end{aligned}$$

$$\beta F = \beta F_L[\langle \phi \rangle] + \frac{1}{2} \sum_{\vec{k}} \log [\beta K (\vec{k}^2 + \xi^{-2})]. \quad \text{In continuum limit:}$$

(6)

with $\beta \Delta F = \beta F - \beta F_{MF}$ and $V = L^d$

$\tilde{F}[\langle \phi \rangle]$

$$\frac{\beta \Delta F}{V} = \frac{1}{2} \int \frac{d^d k}{(2\pi)^d} \log \left[\beta K (\vec{k}^2 + \xi^{-2}) \right].$$

We find that in the Gaussian approximation, the same result as in mean-field theory (critical exponents, T_c), but the only correction is in the heat capacity. Define $C_V = \frac{C_V}{V}$, then $C_V = -T \frac{\partial^2 (F/V)}{\partial T^2}$.

Taking the derivative gives two contributions, which are proportional to

$$I_1 = \int_{|\vec{k}| < \Lambda} \frac{d^d k}{(2\pi)^d} \frac{1}{(\vec{k}^2 + \xi^{-2})^2} \quad \text{and} \quad I_2 = \int_{|\vec{k}| > \Lambda} \frac{d^d k}{(2\pi)^d} \frac{1}{\vec{k}^2 + \xi^{-2}}.$$

Let us analyze both integrals.

First:

$$I_2 \propto \int_0^\Lambda dk \frac{k^{d-1}}{\vec{k}^2 + \xi^{-2}}$$

$$\propto \xi^{2-d} \int_0^{\xi \Lambda} dq \frac{q^{d-1}}{1+q^2}$$

Let's do rescaling: $\vec{q} := \xi \vec{k}$

Recall at T_c $\xi \rightarrow \infty$

\therefore inspect integrand for $q \rightarrow 0$ and $q \rightarrow \infty$

* For q small and $d \geq 1$ there are no problems with divergence.

• For q large integrand $\sim q^{d-3}$ so for convergence: $d-3 < -1$
 $d < 2$.

$$\text{So } I_2 \propto \begin{cases} \xi^{2-d} & \text{for } d \geq 1 \\ \sim \ln \Lambda \xi & \text{for } d = 2 \\ \Lambda^{d-2} & \text{for } d > 2 \end{cases}$$

Now let us analyse I_1 :

$$I_1 \propto \xi^{4-d} \int_0^{\xi/\Lambda} dq \frac{q^{d-1}}{(1+q^2)^2}.$$

- At $q \rightarrow 0$ again convergent for $d \geq 1$
- At $q \rightarrow \infty$ integrand $\sim q^{d-5}$ so integrable at infinity iff $d < 4$

$$I_1 \propto \begin{cases} \xi^{4-d} & 1 \leq d < 4 \\ \ln \Lambda \xi & d=4 \\ \Lambda^{d-4} & d > 4 \end{cases} \quad (\text{Recall } \Lambda \sim \frac{1}{a})$$

Since Λ is a finite scale imposed by a microscopic length scale; leading order divergence at T_c goes like ξ^{4-d} for $1 \leq d < 4$.

$$\text{and } \xi \sim |T - T_c|^{-\nu} \quad \nu = 1/2$$

$$\text{So } \Delta C_V \sim |T - T_c|^{v(4-d)} = |T - T_c|^{-\frac{1}{2}(2-\frac{d}{2})} \quad \text{for } 1 \leq d < 4.$$

$v = \frac{1}{2}$ (MF)

first correction to MF.

For $d \geq 4$ we find that ΔC_V is a constant.

$$\text{So recall } C_V \sim |T - T_c|^{-\alpha} \quad \begin{aligned} \text{In MF theory } \alpha &= 0 \text{ (discontinuity)} \\ \text{with Gaussian correction } \alpha &= 2 - \frac{d}{2} \quad d < 4. \\ \alpha &= 0 \quad d \geq 4. \end{aligned}$$

Critical exponents are unaffected for $d \geq 4$. This is called the upper critical dimension ($d_u = 4$)

Still discontinuous, critical exponent is unaffected.

Heat capacity diverges
at critical point !