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Lecture5 correlationsinGaussian approximation.

Partition function : Z = /De-BFtE](
I

functional integral
When FLIG] has discrete symmetry

-> domain walls
continuous symmetly -> Goldstone modes bosons

Intuition for goldstone modes

# 144444444
same

energy

But there exists excitations that look like ↑

Any-
that cost little

energy by stretching the winding over longer and longerdistances.

Examples · Phase fluctuations in superfluids .

· Phonons
· Magnons -

·Schlieren texture in nematic liquid crystals -Take for example O (3) model :

Fitm] = (dd [Elm+m + Emi]
de [0 ,

2π)
and write m = mo(cost sint , sind sint , cast) f - [0 ,π)
Then F- [m]= SddTE (mol+ mo + EmoY

+ Emo [[ #P + sint(p(J+ ...
Two Goldstone modes. O and I and they interact.



②

Generally let's take effective Hamiltonian/Landau free energy that is
invariant under symmetry group G . Suppose G is spontaneously broln to H .
Then the manifold of ground states is G/H and #goldstones = dimG-dimH.
Example O(N) model . G = O(N) , H = O(N-1)
Ground state manifold : = SN

= N-1 guldstone modes.
This is consistent

,
since dim (O(N)) = EN (N-1)

(Recall O (N) = GAE R
***
/ATA = ES
-> N(NH)/2 constraints · (

Mean-field theory does not describeGoldstone modes (cont . sym . ) or
domain walls (discrete symmetry) . So let's take OIN) model

Fil] =ESTKIV" +alp+ zi"]
with E =Ste-BFIGS Write = <5) +5

Then : 2 = e-BEI(p7]9854exp[-KSdI+E(T) 1043]for N =1

(Note that this is defacto an application of thefunctional Taylorexpansion
Recall from last Lecture :

FTul = Fluo +/Exlu-u
ECT)-[FT

[

- IT-tc)
- TK .

+=/dx(dx[(x-no(x][u(x) - vox%..
The lowest-order correction to MFT is quadratic (why ? ) .



③
We are interested in computing correlators(GP)5p()) and
to see what are the corrections to the mean-field result . So we need to
know how to compute Gaussian functional integrals .

Let us consider a scalar order parameter first. So integrals are of
the form :

EIJ]= SDexpl-tSdrfdPlE)G"(i)(i)
- Jad g(r)p(t)] -

(we add on purpose sources which will be clear in a moment).

Note that (see tutorials) :

&1 =JMat
where Elo==CTexp[-Etrlog]

Furthermore
, ( - kin)=fiz()/ = 0.

In particular :
(j)=ygzij))

Note that : AirArj = Fij
So now we can generalize to continuous case :

z[g] = zoD exp[Efa= (ddy(r)G(i)((i)]
with EIo] =NetC =Nexp[-ETollog(Y)] .

where Sar'"6"(v ,
i") G( + ",) = &( - )



④
and <P(r)p(r)) = G(r) .

So let us first consider the correlation function of ourI2 model .

=> (Op)5)) :Grr) where

6"(, ) = Bk)- + E(T)
-

2)((-) .

So how to determine Gir)?

=>Jd :"6"(r")G(r) =fdr" pK(F
"

+ 3(T)) di")G(i , i)

=) 8 [-t2+ E(i)
-

2]G(= ) .= G(r)

Solve with FT
.

For finite volume V , we have for our fields :

↑ =Sadie-i (i) Es pl) =↓et
(Recall since we did square gradient , we implicitly set 2 = 0 for >N

-
with 1= ).

Since it is finite spatial volume: R=/
*

(periodic bas)
with V = Lt . So in thermodynamic limit :

↑ (i) =Seeit) . es F =Sadtcitr()
So we find ICE)= Let's check this result in

d=3 -

So G()=(secTutorials) .

=(i)=
E is indeed correlation length



At CP : G(r) -y At MF+ Gauss => Y
=0 X Bur ⑤

y=Yn(2D)y:0.836Remarks : a G(r) is a Green's function. In Field Theory language (D)-

it is called a propagator or sometimes vertex function -

and then make· We could have used JDq =lind coordinate transf
with discrete FT

.

Then JDP=did with
Now :lusing shorthand notation (p = p') :

50% exp[-B([N + 5
% 42]S &

=Hafddexp)-BEG-]

If
=> (d

*

)= T
But this is like using equipartition theorem

I.

= H= (i) = ET=xigi
i = 1 , ...,

N

(Every quadratic degree of freedom in Hamiltonian receives [RiT) .
What about free energy ?

z = e
- PF -[(b)(Dexp[- B(dd(((4p + &(t)" (S)
- e-BFILH] e-tZlog[BK(E +3 )]

BF=F[4] + t log[Bk(+E)] ·

In continuum
limit :



⑤
with BDF =BF-BFMF and V= Lo

~

E[(47]

&Flog[Pk(+ 3 -2)].

We find that in the Gaussian approximation ,
the same result as in

mean-field theory (critical exponents ,Tc) ,
but the only correction is

in the heat capacity. Define av = E ,
then C =- T

Taking the derivative gives two contributions, which are proportional to
-

↓

#=di and In =Sh+2
lk1

Let us analyze both integrals .·

Fir Sti

Ino
Let's do rescaling::= Et

Recall at T
> 3 +@· : inspect integrand for gtv

and g+

* Fora small and21 there are no problems with divergence.

· For glarge integrand -gd-3 so for convergence : d-34-1
dC2 .

2
-d

E for d= 1

So In a Guenfora



⑨
Now let us analyse I:

↑ aB1
· At gto again convergent for dzl
· Atg+ integrand - gd-5 so integrable at infinity iff &44

zu-d 11d < Y
I

,
a E en 15 ↓ 4 (Recall Muta)

Nd- 4 274

Since 1 is a finite scale imposed by a microscopic length scale ; leading order

divergence at T, goes like EH-d ,EdL4.

and E-IT-t- IV v= 12

So 4-IT-Tal
v(4 -d)

=IT-Tc#d) for 1224
J first correction to MF.

=z(MF)

For diy we find that Now is a constant

So recall Cp-IT-Tal
- In MF theory&

=0 (discontinuity)
with Gaussian correction d = 2-Edy .

u =0d3,4.

Critical exponents are unaffected for dy.4. . This is called the upper
critical dimension (du =4)



⑨
d > 4

=in Still discontinuous
,
critca

MF exponent is unaffected.

O

I fleat capacity diverges= at critical point


