Lecture 8: Interacting classical fluids

The canonical partition function in the classical limit is
$$\frac{1}{2}(N_1V_1T) = \frac{1}{2^{N}N!} \int_{0}^{\infty} d\vec{p}^{N} (d\vec{r}^{N} e^{-\beta H(\vec{r}^{N},\vec{p}^{N})})$$

with Q(N,V,T)= (JTM e-BD(FM) configurational integral

Here,
$$\Lambda = \frac{h}{\sqrt{2\pi m k_B T}}$$

(Notice we cannot use statistical field theory methods generally speaking since the functional inverse of v does not necessarily exist?)

~ Problem boils down to computing (Q(N,V,T).

For now, let us consider the case where Vert = 0 (homogeneous) bulk systems).

Furthermore, we neglect three-body interactions.

$$\vec{r}_{ij} = \vec{r}_i - \vec{r}_i$$

$$\vec{r}_{ij} = |\vec{r}_{ij}|$$

TT (e-Bv(rij)-1+1)
izj (=-Bv(rij) Mayer function.

$$= \prod_{i \ge j} (i + f_{M}(r_{ij})) = i + \sum_{i \ge j} f_{M}(r_{ij}) + \dots$$

identical particles and there are N(N-1) pairs.

$$\frac{V^{N}}{N! \Lambda^{3N}} + \frac{V^{N-2}}{N! \Lambda^{3N}} = \frac{N(N-1)}{2} \int d\vec{r}_{1} \int d\vec{r}_{2} \int d\vec{r}_{2} \int d\vec{r}_{1} \int d\vec{r}_{2} \int d\vec{r}_{2} \int d\vec{r}_{1} \int d\vec{r}_{2} \int d\vec{r}_{2} \int d\vec{r}_{2} \int d\vec{r}_{2} \int d\vec{r}_{1} \int d\vec{r}_{2} \int d\vec$$

Where we have defined the second virial coefficient
$$B_2 = -\frac{1}{2} \int d\vec{r} f_M(r)$$
 Note that $B_2 = B_2(T)$

Define
$$F_{ex}(N_1V_1T) = F(N_1V_1T) - F_{i,j}(N_1V_1T)$$

$$\Rightarrow f_{ex} = \underbrace{\beta f_{ex}(N_1V_1T)}_{V} = \underbrace{N(N-1)}_{V^2} B_x = g^2 B_2(T), \qquad f = \frac{F}{V}$$

We can obtain the pressure as
$$\beta p = -f + g(\frac{\partial f}{\partial p})_T$$
 and find

=)
$$\beta p = 9 + B_2(T)p^2 + \dots$$

$$\begin{cases} B_2 > 0 \text{ repulsions} \\ B_2 < 0 \text{ attractions} \end{cases}$$

Bz is dominated by attractions or repulsions!

How to obtain higher order corrections?

In principle, we could continue with this computation. However, the fixed particle constraint is tedious to hundle ...

Solution: het's go to the grand-cononical ensemble $\frac{7}{2}$ Define: $Q_N(V,T) = Q(N,V,T)$; $z = \frac{e\beta h}{13}$ (fugacity).

Then: $\Xi(\mu,V,T) = \sum_{N=0}^{\infty} \frac{\mathbb{Z}^N}{N!} Q_N(V,T)$ Furthermore, $\beta \Omega = -\ln \Xi_1$ and define $\beta \Omega = -V \sum_{n=1}^{\infty} b_n \mathbb{Z}^n$

 $b_1 = \frac{Q_1}{\nabla}$, $b_2 = \frac{Q_2 - Q_1^2}{2! \sqrt{3}}$, $b_3 = \frac{Q_3 - 3 Q_2 Q_1 + 2 Q_1^3}{3! \sqrt{3}}$,

where we used ln(1+x)= \(\frac{\infty}{1} \) (-1)^{n+1} \(\frac{\infty}{n} \),

We conclude that: • D(y,V,T)=-p(y,T)V= Bp(z,T)= Zibnzn.

• $\langle N \rangle = -\left(\frac{\partial \Omega}{\partial \mu}\right)_{V,T} = -2\left(\frac{\partial \Omega}{\partial z}\right)_{V,T} = 9 g(z,T) = \sum_{n=1}^{\infty} n b_n z^n$

However, we want to express z in terms of g. So we write $z = \sum_{n=1}^{\infty} a_n p^n \int_{n=1}^{\infty} dx \, dx$ We find (see Tutorials): $a = 1 \cdot n = 1$

Let us compute pressure. Bp(p,T)= p+B2(T)g2+B3(T)g3+...

 $B_{2}(T) = -\frac{1}{2V} \int d\vec{r}_{1} \int d\vec{r}_{2} f_{M}(r_{12}) = -\frac{1}{2} \int d\vec{r}_{1} f_{M}(r)$

and B3(T)= 1/3V (dr, (dr, (dr, (dr, fm (r,2) fm (r,3) fm (r,3) fm (r,3))

Remark: B2(TB)=0 6) TB: Boyle temperature

(signifies transition between repulsion | aftraction dominated at sufficiently low density).

It is useful sometimes to define excess quantities, e.g. Fex: = F-Fid (so the contribution over the idea) case)

Similarly, lifter =
$$\frac{F - F_i d}{\sqrt{k_B T}} = \frac{20}{N_{ex}} G_n(T) g^n$$
.

$$\beta p = -\left(\frac{\partial \beta F}{\partial V}\right)_{N,T} = -\beta f + p\left(\frac{\partial \beta F}{\partial p}\right)_{T}$$

$$\sum_{n=1}^{\infty} G_n(T) g^n$$

We conclude that:

$$\beta f = \frac{\beta F}{V} = 9 [\log (9 \lambda^3) - 1] + B_2 (\tau) g^2 + \frac{B_3(\tau)}{2} g^3 + \dots$$

The virial coefficients can be represented graphically as:

$$B_{2}(T) = -\frac{1}{2V} \int d\vec{r}_{1} \int d\vec{r}_{2}$$

$$B_3(T) = -\frac{1}{3V} \int d\vec{r}'_1 \int d\vec{r}'_2 \int d\vec{r}'_3$$

Note that diagrams like of drop out. Only inveducible clusters, v.e only connected graphs. (cutting one line doesn't make the graph to disconnect in two pieces)

Examples of virial expansions

Very important model system is the hard-sphere system:

$$v_{HS}(r) = \begin{cases} \infty & r < \sigma \\ 0 & r > \sigma \end{cases}$$

From now on: only 3d systems!

We find:
$$B_2 = \frac{2}{3}\pi\sigma^3$$

 $B_3 = \frac{5\pi^2}{60}$

Note that Bn & JCT) V

$$B_4 = \left[-\frac{\partial g}{200} + \frac{219\sqrt{2}}{224011} + \frac{4(3)}{224011} \right] B_2^3$$

It is convenient to define the volume fraction: $\eta = \frac{\text{volume occupied by particles}}{\text{total volume}}$

For hard spheres: $\eta = \frac{\pi}{6} \sigma^3 \rho$.

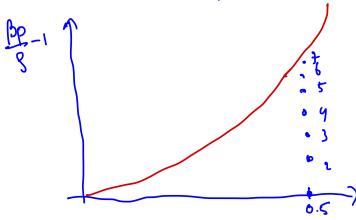
We find:

$$\frac{\beta P}{8} = 1 + 4\eta + 10\eta^2 + 18.365\eta^3 + 28.225\eta^4 + 39.74\eta^5 + 53.5\eta^6 + 70.8\eta^7 + \dots$$

 $\approx \sum_{n=1}^{\infty} (n^2 + 3n) \eta^n$ This series can be summed.

$$\Rightarrow \beta \beta = \frac{1+\eta+\eta^2-\eta^3}{(-\eta)^3}$$

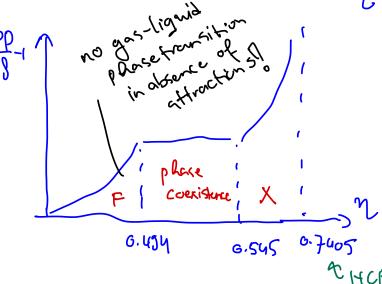
Gornahan-Starliny max i). deviation equation of state. In entire fauid range?



Virial expansion converges slowly.

What happens for 720.5?

(SLIDES)



Reason crystallization: Entropy ?

Free volume at high y is higher when particles are ordered on a crystal Cuttice.

(ii) A model which contains attractions 23 the Lennard-Jones potential

$$N_{\text{La}}(r) = 48 \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

We approximate:
$$v_{LJ}(r) = \begin{cases} v_{HS}(r) & rc\sigma \\ -4\varepsilon \left(\frac{\sigma}{r}\right)^{b} & rc\sigma \end{cases}$$

(6 can be free parameter)
WCA theory,

The free energy density can be written as

with a=16Evo Vo = 1663

could be approximated by Garnahan-Starling, However, alternative approximation:

The T is silent:

(1) 1/1/2 201]...(V-(N-1) dvn)

$$\approx \sqrt{M} \left(1 - \frac{N^2}{2} \frac{\partial v_0}{\sqrt{1 + \frac{N^2}{2}}} + \frac{\partial v_0}{\sqrt{1 + \frac{N^2}{2}}} \right)$$

$$\approx \left(V - \frac{N}{2} 8 v_0\right)^{M} =: \left(V - N b\right)^{M} \qquad \left(8 v_0 \angle Z V\right)$$

We thus find:
$$\beta f(g) = \rho \left[\log \left(\frac{\rho \Lambda^3}{1 - \log \rho} \right) - 1 \right] - \beta \alpha \rho^2$$
 Precisely the Value approximation.

Recall this was already written down when people were still disputing the existence of molecules & atom 5 V

Remarks on the virial expansion:

- · Virial coefficients become progressively harder to alculate for large n and more general model potentials (see Intorials)
- · For long-ranged interaction potentials BnCT) is ill-defined.

E.g.: Point Goulomb interactions, dipole-dipole interactions.

· Slowly converging series =) problem for dense fluids &

Farthermore, as before we are interested in correlation functions !

Density-density correlation functions

We define the classical dencity operator as:
$$\hat{p}(\vec{r}) = \sum_{i=1}^{n} \delta(\vec{r} - \vec{r}_i)$$

Observe that
$$g(\vec{r}) := \langle \hat{g}(\vec{r}) \rangle$$
 is the local density of the system-

E.g. in canonical ensemble with
$$F(F_1,...,F_N)$$
 completely symmetric (identical particle)

Now:
$$\int d\vec{r} g(\vec{r}) = \int d\vec{r} \langle \hat{p}(\vec{r}) \rangle = \frac{N}{Q(N_1 N_1 T)} \int d\vec{r} \int d\vec{r}_2 \dots \int d\vec{r}_N e^{-\beta \frac{1}{Q}(\vec{r}_1 \vec{r}_2 n_2 \dots \vec{r}_N)}$$

We introduce the two-body density operator:
$$g^{(2)}(\vec{r}_1\vec{r}') = \sum_{i \neq j} \sum_{j=1}^{n} S(\vec{r}_i - \vec{r}_j) S(\vec{r}' - \vec{r}_j)$$
, and define: $g^{(2)}(\vec{r}_i \vec{r}') = \langle \hat{g}^{(2)}(\vec{r}_i \vec{r}') \rangle$

Note the normalisation:
$$\int d\vec{r} \int d\vec{r}' p^{(2)}(\vec{r}_1\vec{r}') = N(N-1)$$

Interpretation: $p^{(2)}(\vec{r}_1,\vec{r}_1)$ is the probability to find a particle at \vec{r}_1 and one at \vec{r}_2 ; irrespective of what we know about the position and momenta of the other particles

For suitable $\Phi : g^{(2)}(\vec{r}_1\vec{r}') \longrightarrow g(\vec{r}_1g(\vec{r}')) \quad (|\vec{r}_1\vec{r}'| \longrightarrow \infty)$

This motivates us to define: $g(\vec{r}_i \vec{r}') = \frac{g^{(\nu)}(\vec{r}_i \vec{r}')}{g(\vec{r}_i)g(\vec{r}_i)}$

with property g(FiF') -1 for [F-F'] -0.

For bulk (Vext =0) we have translational invariance f isotropy.

=) $g(\vec{r}_1\vec{r}') \ge g(|\vec{r}-\vec{r}'|)$ This is called the radial distribution function or pair correlation function.

Interpretation: Reminder on probability theory.

Let X and Y be continuous stochastic variables with joint

probability density p(x,y). Then the so-called marginal distributions

are: $p_{\chi}(x) = \int dy p(x_i y_i)$

"integrating out dofs" in physics language

Then the conditional probability density of y given that x=x is $p(y|x) = \frac{p(x_1y_1)}{p_x(x_1)}$

Apply this terminology to the density density correlation functions:

N(N-1) : probability to find one particle at 7 and one

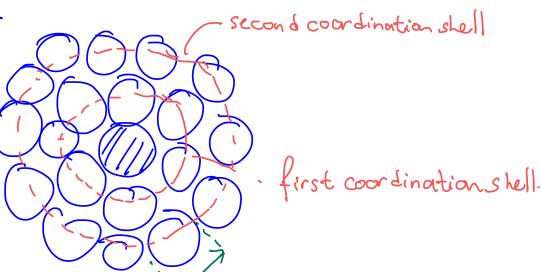
9(7) : probability to find one particle at ?.

=) $g(\vec{r},\vec{r}')$: probability to find particle at \vec{r}' .

Renowing there is a pointicle at \vec{r}' .

=) 411 r² pg(r) dr: given a particle in the origin, it says what is the number of particles between r and ortar.

Schematically:



S4DES