Problem Set 10 – Statistical Physics B

Problem 1: Van der Waals theory of the gas-liquid interface

Consider the square-gradient approximation

$$\mathcal{F}[\rho] = \int d\mathbf{r} \left[f_0(\rho(\mathbf{r})) + f_2(\rho(\mathbf{r})) |\nabla \rho(\mathbf{r})|^2 \right]. \tag{1}$$

First we take the more general case where $f_2(\rho)$ depends on the density ρ .

(a) Show that the Euler-Lagrange equation can be written as

$$f_2(\rho(z)) \left[\frac{d}{dz} \rho(z) \right]^2 = \omega(\rho(z)) + p_{\text{co}},$$
 (2)

where we can interpret $\omega(\rho_b)$ as the grand potential density for bulk systems with constant density ρ_b and p_{co} is the coexistence pressure of gas and liquid.

(b) Prove that the surface tension is given by

$$\gamma = 2 \int_{\rho_{\rm g}}^{\rho_{\rm l}} d\rho \, f_2(\rho)^{1/2} [\omega(\rho) + p_{\rm co}]^{1/2}. \tag{3}$$

Here, $\rho_{\rm l}$ and $\rho_{\rm g}$ are the densities of the coexisting liquid and gas, respectively. Do we need the explicit profile $\rho(z)$ to compute this quantity?

Within the van der Waals model f_2 is taken to be constant. Furthermore, we make the approximation

$$\omega(\rho) + p_{\text{co}} = K(\rho - \rho_{\text{g}})^2 (\rho_{\text{l}} - \rho)^2, \tag{4}$$

with K an phenomenological constant.

- (c) Provide arguments why this approximation is reasonable.
- (d) Show within this approximation that

$$\rho(z) = \frac{\rho_{\rm l} + \rho_{\rm g}}{2} - \frac{\rho_{\rm l} - \rho_{\rm g}}{2} \tanh\left(\frac{z}{2\xi}\right),\tag{5}$$

where $\xi = (f_2/K)^{1/2}/(\rho_l - \rho_g)$.

- (e) Sketch $\rho(z)$ for several values of ξ . Argue that ξ is a measure of the width of the interface.
- (f) Close to the critical point $\rho_{\rm l} \rho_{\rm g} \sim (T_{\rm c} T)^{1/2}$ within mean-field theory. Show that $\xi \sim (T_{\rm c} T)^{-1/2}$. (In reality it diverges as $(T_{\rm c} T)^{-\nu}$, with critical exponent $\nu = 0.63$.) What happens at the critical point? Interpret your answer.
- (g) Compute the surface tension γ and show that near the critical point $\gamma \sim (T_{\rm c} T)^{3/2}$. (In reality $\gamma \sim (T_{\rm c} T)^{\tilde{\mu}}$ with $\tilde{\mu} = 2\nu = 1.26$).

Problem 2: Microscopic interpretation of the square-gradient approximation. Consider the square-gradient approximation Eq. (1).

(a) Argue why terms proportional to $\nabla^2 \rho(\mathbf{r})$ and $\nabla \rho(\mathbf{r})$ do not occur.

(b) Consider the functional Taylor expansion of $\mathcal{F}_{\rm ex}[\rho]$ around the bulk density $\rho_{\rm b}$ to second order in the density deviations to the uniform fluid. Assume slowly varying density profiles which allows us to approximate the direct correlation function in Fourier space as $\tilde{c}^{(2)}(\rho_{\rm b};k) = a(\rho_{\rm b}) + b(\rho_{\rm b})k^2 + \dots$ By expanding also Eq. (1) around $\rho_{\rm b}$ and imposing consistency with the result from the functional Taylor expansion, show that one can make the identification

$$\mu_{\rm ex}(\rho_{\rm b}) = f'_{\rm ex}(\rho_{\rm b}), \quad a(\rho_{\rm b}) = -\beta f''_{\rm ex}(\rho_{\rm b}), \quad b(\rho_{\rm b}) = -2\beta f_2(\rho_{\rm b}).$$
 (6)

Physically interpret these identifications.

(c) Show that

$$\beta f_2(\rho) = \frac{1}{12} \int d\mathbf{r} \, r^2 c^{(2)}(\rho; r). \tag{7}$$

(d) Consider now a Lennard-Jones fluid. Argue that to a very good approximation,

$$f_2(\rho) = -\frac{\pi}{3} \int_{\sigma}^{\infty} dr \, r^4 v_{\text{att}}(r) > 0,$$
 (8)

where $v_{\rm att}(r)$ is the attractive part of the pair potential. Note that here f_2 does not depend on ρ .

(e) What is $f_2(\rho)$ for a hard-sphere fluid? You can use the Percus-Yevick approximation. What is the physical consequence of your result?