Problem Set 13 — Statistical Physics B

Problem 1: Correlations in space and time and their connection with self-diffusion
Consider a Hamiltonian of the form

N

H = Hy+ Z Vext (ri),
i=1

where Veyi(r) is an external potential and Hy being a reference Hamiltonian of the bulk system.
Consider dp(r) = p(r) — pp, with p, the bulk density and p(r) the one-particle density of the
inhomogeneous system.

(a) Within linear response theory, we define the density response function y(r,r’) via the
relation

op(r) = /dr’x(r,r')%xt(r').

Find an expression for x(r,r’) in terms of properties of the unperturbed system. Show
explicitly that the linear response of the density to the external potential has a local and
a non-local contribution. Connect your result to the fluctuation-dissipation theorem.

(b) Introduce the Fourier transform as §p(k) = [ drdp(r) exp(—ik - r). Prove that

5p(k) = —=BppS (k) Vext (k),
with S(k) the static structure factor.

Now we consider a non-equilibrium situation where we consider a dilute concentration of a solute
in a solvent. Imagine that for t — —oo we create an inhomogeneous density profile by turning
on a suitable Ve (r). At ¢ = 0 we turn off the external potential. The system will then relax
from a given non-equilibrium initial state p(r,0) to a new equilibrium state where the external
potential is absent. We denote the non-equilibrium density by p(r,t), with ¢ > 0.

(c) The density profile satisfies the so-called continuity equation
atp(r7 t) =-V- j<r7 t)a
with j the non-equilibrium average flux of solute particles. Derive this continuity equation.

(d) Give a microscopic expression for p(r,¢) in terms of a non-equilibrium ensemble average.
From it, derive a microscopic expression for j(r,t) in terms of a non-equilibrium ensemble
average and show that your expressions are consistent with the continuity equation.

For low concentrations of solute the flux satisfies Fick’s law j(r,t) = —DVp(r,t), with D
the so-called self-diffusion coefficient. Our goal is to relate D to the microscopic dynamics
of the system, for which we need to consider the behaviour of the correlation function C(r,t) =

{0p(r,t)6p(0,0)).

(e) Prove that this correlation function satisfies the differential equation 9,C (r,t) = DV2C(r, t)
by using the definition of the density response function in (a) generalised to the time-
dependent case. How does your result relate to the Onsager regression hypothesis?

(f) Show that 9;P(r,t) = DV?P(r,t), where P(r, ) is the conditional probability that a solute
particule is at position r and time ¢ given that the particle was in the origin for t = 0 (Hint:
relate C(r,t) to P(r,t) for dilute solute concentrations). Does the diffusion equation for
P(r,t) hold for all time and spatial variations?



(g) We define the mean-squared displacement of a tagged particle (here taken to be particle
1) as AR?(t) = (|r1(t) — r1(0)|?). Show that AR%(t) = 6Dt.

(h) Prove the so-called Green-Kubo relation

D= ;,/OOO dt (v(0) - v(t)),

with v(t) = £1(t).

(i) As a reasonable approximation, we take (v(0) - v(t)) ~ (v*)e~*/7. Use this approximation
to compute AR?(t) and sketch your result. Indicate in your plot that ARZ?(t) changes
from ballistic to diffusive behaviour after a time of the order of .

(j) In liquids we typically have that D ~ 1075 cm? /s at room temperature. Estimate the size
of 7 and comment on its value in terms of experimental accessibility.



