
Problem Set 13 – Statistical Physics B

Problem 1: Correlations in space and time and their connection with self-diffusion
Consider a Hamiltonian of the form

H = H0 +
N∑
i=1

Vext(ri),

where Vext(r) is an external potential and H0 being a reference Hamiltonian of the bulk system.
Consider δρ(r) = ρ(r) − ρb, with ρb the bulk density and ρ(r) the one-particle density of the
inhomogeneous system.

(a) Within linear response theory, we define the density response function χ(r, r′) via the
relation

δρ(r) =

∫
dr′ χ(r, r′)Vext(r

′).

Find an expression for χ(r, r′) in terms of properties of the unperturbed system. Show
explicitly that the linear response of the density to the external potential has a local and
a non-local contribution. Connect your result to the fluctuation-dissipation theorem.

(b) Introduce the Fourier transform as δρ̃(k) =
∫
dr δρ(r) exp(−ik · r). Prove that

δρ̃(k) = −βρbS(k)Ṽext(k),

with S(k) the static structure factor.

Now we consider a non-equilibrium situation where we consider a dilute concentration of a solute
in a solvent. Imagine that for t → −∞ we create an inhomogeneous density profile by turning
on a suitable Vext(r). At t = 0 we turn off the external potential. The system will then relax
from a given non-equilibrium initial state ρ(r, 0) to a new equilibrium state where the external
potential is absent. We denote the non-equilibrium density by ρ(r, t), with t ≥ 0.

(c) The density profile satisfies the so-called continuity equation

∂tρ(r, t) = −∇ · j(r, t),

with j the non-equilibrium average flux of solute particles. Derive this continuity equation.

(d) Give a microscopic expression for ρ(r, t) in terms of a non-equilibrium ensemble average.
From it, derive a microscopic expression for j(r, t) in terms of a non-equilibrium ensemble
average and show that your expressions are consistent with the continuity equation.

For low concentrations of solute the flux satisfies Fick’s law j(r, t) = −D∇ρ(r, t), with D
the so-called self-diffusion coefficient. Our goal is to relate D to the microscopic dynamics
of the system, for which we need to consider the behaviour of the correlation function C(r, t) =
⟨δρ(r, t)δρ(0, 0)⟩.

(e) Prove that this correlation function satisfies the differential equation ∂tC(r, t) = D∇2C(r, t)
by using the definition of the density response function in (a) generalised to the time-
dependent case. How does your result relate to the Onsager regression hypothesis?

(f) Show that ∂tP (r, t) = D∇2P (r, t), where P (r, t) is the conditional probability that a solute
particule is at position r and time t given that the particle was in the origin for t = 0 (Hint:
relate C(r, t) to P (r, t) for dilute solute concentrations). Does the diffusion equation for
P (r, t) hold for all time and spatial variations?
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(g) We define the mean-squared displacement of a tagged particle (here taken to be particle
1) as ∆R2(t) = ⟨|r1(t)− r1(0)|2⟩. Show that ∆R2(t) = 6Dt.

(h) Prove the so-called Green-Kubo relation

D =
1

3

∫ ∞

0
dt ⟨v(0) · v(t)⟩,

with v(t) = ṙ1(t).

(i) As a reasonable approximation, we take ⟨v(0) · v(t)⟩ ≈ ⟨v2⟩e−t/τ . Use this approximation
to compute ∆R2(t) and sketch your result. Indicate in your plot that ∆R2(t) changes
from ballistic to diffusive behaviour after a time of the order of τ .

(j) In liquids we typically have that D ∼ 10−5 cm2/s at room temperature. Estimate the size
of τ and comment on its value in terms of experimental accessibility.
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